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A decentralized convergence detection algorithm fc
asynchronous parallel iterative algorithms

Jacques M. BahiMember, IEEE Sylvain Contassot-VivietMember, IEEE Raphaél CouturieiMember, IEEE,
and Flavien Vernier

Abstract— We introduce a theoretical algorithm and its prac- following: we do not modify the iterative process but propos
tical version to perform decentralized detection of the glbal an additional mechanism which is superimposed onto the
convergence of parallel asynchronous iterative algorithm. We  55ynchronous iterations. Since we do not merge messages for
prove that even if the algorithm is completely decentralizd, the computation and messages for the convergence detection
the detection of global convergence is achieved on one praser . .
under the classical conditions. The proposed algorithm isery ~OUr method is tolerant to the loss of computational messages
useful in the context of grid computing in which the processts  Moreover, from a practical point of view, our mechanism de-
are distributed and in which detecting the convergence on a tects termination only a short time after the actual corsrecg
master processor may be penalizing or even impossible as ingnqg it yses quite a few communications as opposed to the
Peer to Peer computations framework. Finally, the efficieny of Savari and Bertsekas algorithm which requires a lot of reue
the practical algorithm is illustrated in a typical experiment.

messages.

The following section presents the previous studies rélate
to termination detection and leader election algorithniger,
the principle of asynchronous iterative algorithms arefhyi

. INTRODUCTION described and replaced in the global context of parallel ite

N the context of scientific computations, iterative algoative algorithms. The theoretical decentralized alganitfor

rithms are very well suited to a large class of problenobal convergence detection is detailed in Section IV dred t
and are in many cases either preferred to direct methodspooof that this method actually detects the global convecge
even sometimes the single way to solve a problem. Diremh at least one processor in a finite time after the global
algorithms give the exact solution of a problem within a &nitconvergence has happened is given in Section V-C. Since this
number of operations whereas iterative algorithms prowide theoretical algorithm is not directly applicable in all Feases,
approximation of it, we say that they converge (asymptdita we propose a practical version of this algorithm and define
towards this solution. When dealing with very great dimensi its domain of validity in Section VI. The relative efficiency
problems, iterative algorithms are preferred, especiéliyey of this algorithm is discussed in Section VIl according to
give a good approximation in a little number of iteration} [1 experimental results.

Those last properties have led to a good expansion of
parallel iterative algorithms. Nevertheless, most of ¢hpar- Il. RELATED WORKS
allel versions are synchronous. We have shown in [2] all Distributed termination detection consists in finding the
the interest of using asynchronism in such parallel iteeatitime at which a distributed computation has finished. This
algorithms especially in a global context of grid computingoroblem has already been studied in the general context of
The asynchronous algorithm proposed in this work useddistributed computing [3]-[5]. Nevertheless, most of thara
centralized method to detect the global convergence whash vbased on centralized algorithms which are not suited teelarg
not best suited to this context. scale and/or distant distributed computations. Indeeéseh

In this article, we propose a new non-centralized globat coalgorithms use the Master/Slave paradigm which is convinie
vergence detection algorithm based only on local inforamati for parallel computers but not for distributed parallel iiaes.
of the nodes. A theoretical version designed for totallynrasySome studies have also been done in the synchronous con-
chronous algorithms is presented and proved. Then, a pahicttext [6]. Concerning the asynchronous iterative algorithm
version working on partially asynchronous algorithms, i.elistributed termination detection was firstly introducad7]
asynchronous algorithms with bounded delays is deduceghder particular assumptions, such as the particular h@hav
Since this detection algorithm only works well on acycliof the nodes which have reached local convergence. Morgover
graphs, when the physical graph of the system containsssycl8avari and Bertsekas proposed another distributed version
the use of a spanning tree of the graph is sufficient to mandgg8] but still under more restrictive hypotheses than theo
all the communications related to the convergence detectiowe use, such as FIFO communications and with modifications

In this study, we focus on all aspects of convergenes the iterative process itself in order to make it terminate
detection, from theoretical point of view up to implemenin finite time. In [9], El Baz also proposed a review of
tation problems. The main features of our method are thiifferent methods of terminating asynchronous iteratigma

_ _ _ . rithms on message passing systems. Other authors havedstudi

The authors are with LIFC (Laboratoire d’Informatique de&diversité

de Franche-Comté), FRE CNRS 2661, IUT de Belfort-Monid| BP 527, IMmplementations of asynchronous algorithms but alway$ wit
90016 Belfort, France centralized convergence detection [10].

Index Terms— Parallel iterative algorithms, asynchronism,
convergence detection.



The originality of our approach is to use a leader electicacronym stands for Asynchronous lIterations - Asynchronous
algorithm to manage the termination of a particular class @ommunication. In this context, all the processors perform
parallel applications in a decentralized way. In fact, it$ed to their iterations without taking care of the progress of the
perform the global convergence detection of asynchrortets i other processors. They do not wait for predetermined data
ative algorithms using only local information of the nodEse to become available from other processors but they keep on
major difficulty comes from the asynchronism in the applicazomputing, trying to solve the given problem with whatever
tion which induces a far more complex behavior towards tttata happen to be available at that time. In the literatuoeibb
convergence and then may imply false detections or delayth@ domain, there is one algorithmic model corresponding
ones. In the literature about leader election, numerouana@r to these algorithms with two different formulations, thaxfe
are presented. The version we used in this paper has b8entsekas and Tsitsiklis [16] and those of El Tarazi [18]vNe
generally used in communication protocols such as the IEERheless, several variants can be deduced from these snodel
1394 (firewire) protocol [11] or in distributed systems [12]depending on when the communications are performed and
[13]. Some studies have been done in asynchronous systevhen the received data is incorporated in the computations,
as in [14], [15] but in the largely different context of faultsee e.g. [19], [20]. These algorithms give very good results
tolerant networks (node crashes or communication faijJurate global context of grid computing as has been shown in [2].
and not in order to control an application. Nevertheless, the global convergence detection algonitheal

To the best of our knowledge, this is the first study using an our previous studies was centralized, which was not well
election algorithm to manage the termination of asynchusnosuited to the context of grid computing where all the nodes

iterative algorithms. may not be directly accessible to each other for security
reasons. This is why we propose in this article a decengmliz
[1l. W HAT ARE PARALLEL ITERATIVE ALGORITHMS ? algorithm for global convergence detection.

A. lterative algorithms

. . IV. DECENTRALIZED ALGORITHM FOR GLOBAL
Iterative algorithms have the structure

CONVERGENCE DETECTION

"t =g(2¥),  k=0,1,.. withz®given (1)  we propose in this Section, a decentralized algorithm for
global convergence detection which works on all parallel
iterative algorithms, either asynchronous or synchrondiis
though the version described in the following is closer to
asynchronous algorithms which represent the most general
case, only a few adaptations are necessary to use it in the
synchronous context.

In the following, we consider to have a set &fprocessors
B. Parallel iterative algorithms numbered froni to N.

The parallel version of the iterative algorithm presented The major difficulty lies in the fact of showing that the
above is obtained by the classical block-decompositior (sproposed algorithm does not detect convergence prematurel
for example [16]). Indeed, in asynchronous algorithms, the delays between it-

There are two main reasons to design a decentralizetions could lead to a false realization of the convergenc
convergence detection algorithm for parallel iterativgoal criterion. This situation occurs in heterogenous contefxis
rithms. The first one is that the most general class of paralexample when a fast processor computes a new iteration
iterative algorithms corresponds to the asynchronouatiter whereas a slow processor computes a former iteration. This
algorithms which are not centralized by nature. The secodifficulty is increased with distant processors where the-co
one is of pratical interest since in numerous contexts ofafisemunication/computation ratio may be important.
these algorithms, the centralization is simply not possibhe The principle of our convergence detection is based on two
reader should refer to [16] for the theoretical formulatmin steps. The first one consists in detecting the local converye
asynchronous iterative algorithms. From this context, wiy 0 on each processor and the second one is properly the global
recall the notion of delay between data dependencies whiobnvergence detection.
is useful in the following of the article. The delay of block
(or processor)j according to blocki is notedd;'- (t) and the A | ocal convergence detection
data version of blocki available at timet on processot is
commonly noted as}(t) = ¢ — d’(t). In totally asynchronous
iterations, some classical conditions are assumed ovef, the
in order to ensure that the process actually iterates and t
evolves (see again [16]).

where each:* is ann - dimensional vector, ang is some
function from R" into itself. A fixed point z* of ¢ is
characterized by the properg(z*) = «*. The goal of the
iterative algorithm is to reach such a fixed point startiranir
any initial vectorz®.

Generally, due to limited numerical representations and
asymptotic convergences, the actual values of the fixedt poin
r?é)mponents cannot be exactly reached. Hence, a threshold
Is used to determine a sufficient accuracy near those values.
Moreover, in most cases, the residual does not follow a
) monotonous decrease and there are oscillations around the
C. AIAC algorithms given threshold when the process arrives near the solution.

AIAC algorithms which have been introduced in [17]Hence, if we don't take care, we can detect a local conveenc
are a variant of the totally asynchronous algorithms. Theo early, since, a few iterations later, the residual will g



TABLE |

back above the threshold, leading to a false detection of
DESCRIPTION OF VARIABLES USED INALGORITHM 1

local convergence. This is a common problem of iterative _ _ _
nbNeigNotLCV number of neighbors which have not yet sent

algorlthms. ) o a partialCV message to the current procesgor
Currently, there is no way to ensure a definitive local conver | nbiterPreLocalCV| number of successive iterations performed

gence on a processor without modifying the iterative preces R g”dlef thi T?Sidtua' thfShO'd R —

. T preLocal oolean pbeing true wnen an iteration IS unger
as in [16]. The common heuristic is then to assume that loca the residual threshold
convergence is achieved when the node has performed a giveMiocalcv frue when local convergence is achieved
number of successive iterations under the accuracy thicissho |_globalCV true when global convergence is achieved

This is the mechanism we use in Algorithm 1. It implies the
use of a constant, calleBHRESHOLDLCYV, which represents
this required number of successive iterations under thduak

threshold to assure local convergent€Y). It is important

to note that thiSTHRESHOLDLCYV value theoretically exists
and is finite since, by hypothesis, the asynchronous iterati
process converges.

Algorithm 1 Decentralized global convergence detection
forall P;,ie{l,...,N} do

nbNeigNotLCV «— nbNeighbors

nblterPreLocalCV«— 0

preLocalCV+« false

localCV « false

globalCV « false

B. Global convergence detection repeat
As said before, the idea is to use a scheme which is quite if = chaIC_\/ then

similar to the leader election protocol [21]. The latter sists .. Iterative process and .

in designating one processor to perform a given task. In our E evaluation of preLocalCV..

case, the global detection will be detected on one processor if preLocalCVthen

which will then propagate it to all its neighbors, and so on in nbiterPreLocalCVi— nbiterPreLocalCV + 1

all the connection graph. if nblterPreLocalCV= THRESHOLD.LLCYV then
Our election process works with what we calartialCV IogaICV — true

messages between processors. Such a message tells the re- end if

ceiver that all the processors in the subgraph depending on else

the sender (behind the sender) have reached local coneergen nbiterPreLocalCV— 0

Hence, on each processor, the algorithm considers the numbe end if
of neighbors which have not sent thgiartialCV message to end if
it yet. This is represented by theoNeigNotLCVvariable in if localCV then
Algorithm 1. Then, when this number becomes equal to one if nbNeigNotLCV= 0 then
and the processor has reached local convergence, it sends a globalCV « true
partialCV message to its last neighbor which has not sent else _
him such a message yet. It should be noticed that, as we if nbNeigNotLCV = 1 then ,
use a spanning tree of the communication graph to perform send a partialCV message to the last neighbor
the leader election, there always exists one node at least corresponding to nbNeigNotLCV
in the system which satisfiesbNeigNotLCV=1 Thus, the end if
propagation of convergence detection will start as soomiels s en_d i
a node enters in local convergence. gnd if
until globalCV

Finally, the processor which is in local convergence and )
which has receivegartialCV messages from all its neighbors ~ BroadCast a globalCV message to all neighbors from
(nbNeigNotLCV=0 detects the global convergence. This Which no globalCV message arrived
processor will then broadcast the global convergence to itsend for
neighbors, which will forward it to their neighbors, and so
on.

Function recvPartialCV() only consists in decreasing the
Our decentralized method for global convergence detectiBHMPer of neighbors which have not yet reached local con-
is given in Algorithm 1. For clarity, a description of theVergence. Function recvGlobalCV() consists in stopping th
variables used in this algorithm is given in Table I. iterative process on the node by setting fiebalCV value

Receipts of messages have been placed in separated flifidlue-
tions and do not directly appear in the main algorithm, since
they may happen at any time during an iteration of the main V. PROOF OF THE ALGORITHM
iterative loop. So, they are managed independently of thea ma We recall that our detection algorithm is to be used with
process. This is particular to asynchronous iterativergéfyos totally asynchronous algorithms. Within the scope of this
where communications are not performed and managedpaper, we consider any asynchronous iterative processhwhic
specific times in the algorithm but must be treated as sooonverges. This is achieved under conditions given in Sec-
as they occur. tion 1ll, which are verified in a large class of scientific



Algorithm 2 function recvPartialCV()
nbNeigNotLCV « nbNeigNotLCV - 1

The second statement only appears to point out that there
Algorithm 3 function recvGlobalCV() is no particular condition o (Z4).
globalCV « true

C. Proof of the theorem
We propose to make the proof in two steps:

computations.
(A) we prove thatS§(t4) # 0 implies all the other statements
A. Preliminary definitions of Theorem 1
Let P = {P, ..., Py} be the set of the processors. (B) we prove thatdty € N such thatS§(tq) # 0
Let us define NOpCVmes§E;, P;, t) between two neighboring
processors’ and P; at timet as: Part (A)
NOpCVmes§EPR;, P;,t) = ) . . .
true if P, has not yet received a partialCV Let us define NeighP;) the set of physical neighbors of
message fronP; processorP;. In order to get the processd, in S§(t), we
J

false if P, has received a partialCV message frgtn ~ Must have by Algorithm 1

Our detection algorithm is based on two particular prop- VP; € Neigh(P;), NOpCVmes§P;, P;,t) = false
erties of the processors which are the local convergence and hich implies i tor all th h
the number of neighbors having communicated their partialV'c" IMPIIES N turn for all the’; that

convergencenbNeigNotLCY. Since these properties evolve in VP, € Neigh(P;) \ {P;}, NOpCVmestP;, Py, t) = false
function of time, the seP(t) of processor$; can be written ! ’ e

as the following partition: and by recursion, we can deduce that

VP, € P(t)\ {P;}, 3P, € P(t),

P(t) = S§E)UST() V... USK_1(t) NOpCVmes§P,, P,,t) = false
U S USHEU...USE_ (%) P  Fot) = f @
whereS¢(#) is the set of processors having at time . This means that all th&, in this equation have se_ntpar-

_ tialCV message to the correspondiflg and by Algorithm 1,
nbNeigNotLCV =k this is only possible onc#, has reached local convergence.
localCy — | true ife=c Thus, we have

false ife=4d N1
The particular presentation @f(¢) is only for intuitive repre- VP, € Pt)\{PR}, Po & U Sd(t)
sentation of the partition. u=0

Finally, we notet. (i) the time at which processdr; reaches
local convergence and we defingk, j) as the receipt time

of the partialCV message o, from P; andt,,(j, k,t) as N-1

the communication time forn®; to P, at timet (¢ is included U Sat) =0
because communication times may vary during the process). u=0

and sinceP; € S§(t), then

We have then: Moreover, by Algorithm 1, we also know that the condition
bk, ) = te(G) + b (Gs Ey 1e(5)) for a processorP, to ver|f_y (2) (sendmg of apartialCV
message to another node) is to haventifleigNotLCVequals
to one.

B. Decentralized global convergence detection theorem Hence. it comes that

Theorem 1:If the following hypotheses are satisfied: 1
(H1) The communication graph used for the detection is con- VP, € P(t)\{P}, P, U Se(t)
nected and acyclic u—0

(H2) The asynchronous iterative process converges and then
(H3) Communications between neighbors are achieved in a

finite time NU1 SE(t) =10
then, there existg; € N such that u=2
S§(ta) #0 and all the other statements of Theorem 1 are verifiéd.
|57 (ta)] > 0
Si(ta) =0 ke{2,..,N—-1} Part (B)

Sd(ty) =0 ke{0,...,N—1}



By definition, at the beginning of the process, the following So, either these neighbors are communicating tipeir-

statements are verified:
SE0)=0 Vke{0,..,N—1}
S6(0) =10
SH(0) # 0

®)

tialCV message to this node, which is a contradiction to
A(¥') = (. Or, the other possibility is that these neighbors
have not sent theipartialCV message to this node yet.
Nevertheless, the only way for these neighbors not to have
sent theirpartialCV message to this node yet is that they

The third statement comes from (H1) which implies that thgave themselves at least two neighbors from which they have
graph always has at least one node with only one neighbopot received thepartialCV message yet. If we continue this

By (H2), we have

P, e S(t), ie{l,..,N}, ke{0,...,N—1} @
= Jt.(1) €N, Vi > t.(3), P; eUu 055(t)
hence
3t'(k) € N,vt > t'(k), |S(t)| =0, k€ {0,..,N —1} (5)
(3), (5) and Algorithm 1 imply that
S(tan) #0
ar,, ) Y <tans Ugsy Si() #0 ©)

Vit > tan, U SI(t)
Vit < tdna Sg(t) = @

0

The last statement is, in fact, a deduction of the second on

As seen in part (A)S§(t) # 0 implies thatUN ' SA(t) =0

which is in contradiction with the second statement for ea?pl

t <tan.

Now, attg,, we know by (6) thatS§(t4,) # 0.

So, everyP, € S¢(t4,), according to Algorithm 1, sends a

partialCV message to its unique neighb8r which verifies
NOpCVmess§P;, Py, tayn) = true.
If we define
A(t) ={P; € S{(t), 3P, € P(t),
NOpCVmes§P;, P, t) = NOpCVmeséPy, P;,t) = true}

and

B(t) = {P, € P(t), 3P, € A(t) such that
NOpCVmes§P;, Py, t) = true}

reasoning by recursion, we come to the conclusion that this
situation is only possible if all these nodes form a cyclehia t
graph which is a contradiction to hypothesis (H1).

Hence, we are sure that all the nodes have reached their
local convergence and sentpartialCV message which has
already arrived at the destination node.

Finally, (H1) also implies that there is at least one node
which has received theartialCV messages from all its
neighbors and is then located &§ (¢4, ). O

Remark 1:0One consequence is that as soon as thedset
becomes empty, it cannot become non-empty again.

Remark 2: Another consequence is that tities equivalent
to time t4 in Theorem 1 sinceS§(t') # 0 and then Part (A)
OF the proof implies all the other statements of the theorem.
Remark 3:At time t4,, all the processors have reached
eir local convergence and siné¥ (0) # () it is sure that
the setA becomes non-empty at the latest at timg.

Now, let us examine the set(t4,):

If it is empty, Lemma 1 and Remark 3 imply that it was
non-empty at the time just before and thigp corresponds to
the timet’ in Lemma 1 which also corresponds to the titge
in Theorem 1 as pointed out by Remark 2.

If it is non-empty, (6) implies thaB (¢4,) C Uf::ll SE(tan)
and there are two distinct possibilities over the Beétdn)'a)

(1) VP, € B(tq PZGSJStdn
(2) VP, € B(tq )PleUu QSC (tan)
Case (1)

So, A(t) is the set of processors whose sending of |n this case, there exists at least aflec B(t4,) such that

the partialCV message to exactly one element &)

AP, € A(tqn) for which NOpCVmesg&P,, P;, tq4,,)=true and

(corresponding set of destination nodes) has not yet WriVﬁOpCVmesSPZ,Pl-,tr(l,z')):false implyingP; € S§(t,(1,4)),

at timet.

From (H1), we deduce the following Lemma.
Lemma 1:Considering the sefl and timet’ > t4,

AW =1 #0, A)=0 = { \;;?etg;‘?(% -

Justification of Lemma 1:

Sincet’ > tq4,, We are in the context of (6) where all the

processors are in the subséts, v € {0, ..., N — 1}.
If we consider the state of the system at timgit is not
possible to have one node in another subset thamor S¢

and leading to the detection of the global convergencé’on
at time ¢,.(1,7). Hypothesis (H3) ensures that(l,i) < o
and then statement (B) is verified with = ¢,.({, 7).

Case (2)

In this case P, € B(t4,) implies that there is on8¢ (t4,),
u € {2,..,N — 1} such thatP, € S:(t4,), and then by
Algorithm 1

P e U S¢(tr(1,1)), with i such that

(8)
P, e A(tdn) and NOpCVmess;, P, tqn) = true

This means that each time a processor receivas#alCV
message, its number of neighbors which have not sent him a

since this would imply that this node has not yet received tipartialCV message yet decreases by one. Moreover, we use

partialCV message from at least two of its neighbors.

a union of theu — 1 first subsets because this processor may



receive othepartial CV messages from other neighbors in the Our practical algorithm, presented in Algorithm 4, uses
interval time betweern,,, andt.(l,), making it move down almost the same method to detect local convergence as in
by more than one subset. Algorithm 1. Nonetheless, since in practice we cannot be sur
Hence, by Lemma 1: that local convergence is actually reached, it does not stop
. either there exists at least of@ € B(t4,) for which the iterative process when an eventual local convergence is
P, € A(t.(1,1)), with t,(1,i) < oo by (H3), and we detected but continues to compute the iterations and totepda
come back to a similar context as in (7) wheté&) # () PreLocalC\V _ _
by replacingt,, by t,(l,i) and we obtain a recursion on In this new version, theTHRESHOLDLC\( value is re-
Ui\f:ll S¢(t). (8) ensures that this recursion will empt)placed by aTHRESHOLDSLCYV value, which stands for
all the subsetss¢(t),u € {2,..., N — 1} and will then su_pposgdbcal conve_rgenceZ(LC\o and represents the number
converge towards case (1). of iterations after WhICh we suppose that local f:on\_/ergémse
« or none of the nodes d(t,) comes in the setl which been reached. This value can _then be set arbltraplaim_alcv
becomes empty as soon as all the node®@f;,,) have Messages are replac\_ed blyartialCV messages (ths is for
received theirpartialCV message (in a finite time bysuppose)jwhose sendings are based upon these supposed local

(H3)), directly leading to Theorem 1 by Remark 2. ~ convergences. S ,
0 With this mechanism, it is possible to hayselLocalCV

which becomes true and which, a few iterations later, become
false again ifTHRESHOLDSLCV is smaller than the actual
reshold. So, when this happens, the supposed local conver
ence is canceled on the node and a new kind of message
ecanceISPartiaIC\/message) is sent to the same destination
processor as the previowsRartialCV message to alert that
local convergence is not achieved anymore in this part of the
VI. PRACTICAL VERSION OF THE ALGORITHM graph.
Everyone may have noted that THRESHOLDSLCV is
gater than or equal to the theoretical threshold, we come
ack to the context of Algorithm 1 and there won't be any
cancellation message during the execution of the algorithm

As a last remark, we can note that hypothesis (H3) al
implies that the termination of the iterative process on
nodes happens in a finite time after the global converge
detection on the elected node (at timgein Theorem 1).

The major problem of Algorithm 1 comes from the knowl-
edge of the minimal number of iterations necessary to ens
local convergence on each node. In real cases, it is notipess

to evaluate it and the value GHRESHOLDLCV cannot be oo _
precisely known. and the global detection is correctly detected. Neversiselia

This constant is the critical point of our algorithm sincx?r"’lctlc"j‘I cases, thHRESHOLDSLCV will not be chosen

the local convergence detection directly depends on it and’ large, which is unlikely to correspond to the theordtica

consequently, the global detection too. As a matter of fhitt, valu_e. . .
) . . Finally, when a processor receives a cancellation message,
is set smaller than the actual number of iterations necgssar ., . . : . )

. it increases its count of neighbors which are not yet in local
ensure local convergence, the algorithm may detect fats# lo

convergences leading to a false global convergence deect OV e 9eNce which will preventits own sending gfattialCV

On the other hand, if it is set larger than the correct valeall message (if not yet performed). Nevertheless, it is possitalt

convergences will be correctly detected as well as the gloége cancellation message arrives too late on a node andehat t

one but with extra delays which will decrease the efficiencoartialcv message has already been sent by this node. In that

of the algorithm. Moreover, the value of this constant alsgoc the cancellation message is forwarded to the dastinat

. . . o , r]ode of thepartialCV message, and so on in order to cancel
depends on the desired final accuracy since it is obwousM e .
all the diffusion of the false detection.

easier, and then faster, to reach low accuracies than high on o .. .
o5 Unfortunately, this is not yet sufficient to avoid all thedfal

Thus, even if Algorithm 1 is valid and theoretically allows . ) .
) - . global convergence detections. For example, let's consid
the detection of global convergence, it is not practicaighle

under this form since for a given value BHRESHOLDLCYV, all the nodes ’but two have reached their local convergence.
. . . For clarity, let's call themA and B. When one of the two
it may work in some particular cases but not for all of them

. . femaining nodes goes into tigtocalCV state (let's sayA),
In order to overcome this problem, we are brought to consider, . : . . :
) . ) . it then sends itsPartialCV message. But, if a few iterations
our practical algorithm in the partially asynchronous et

where the delays are bounded by a given inteBauch that: Igter it cancels itssLocalCV state and sends eanceISEar— .
" tialCV message, the false global convergence detection will
3B € N, such thatt — B < ,,;(t) <t (9) be avoided on3 only if the cancellation message arrives on
B beforeit has left its iterative loop.
Contrary to the appearances, this is not a strong weaknes®bviously, nothing ensures us that this message will arrive
of our algorithm since in practice, delays are always firfite. soon enough to avoid the false detection.
arbitrarily large delays, the completion of the iterativeqgess  Nevertheless, if we can evaluate the maximal communica-
is not ensured in a finite time which does not present a gredin time on each link in the communication graph and if these
practical interest. times are finite, it is then possible to avoid the false daiast
According to the first algorithm, we then introduce addiby adding an additional condition for leaving the iterativep.
tional mechanisms around the local convergence detection: This condition consists in waiting for a particular amouht o



time after the supposed global convergence has been foundAdgorithm 4 Practical version of Algorithm 1
the elected node. This waiting is expressed in the conditionfor all P;,i € {1,...,N} do

of the main iterative loop of Algorithm 4. This amount of nbNeigNotLCV «— nbNeighbors

time (represented biaxTraversalTimen the algorithm) is nblterPreLocalCV— 0

the maximal time needed for a message to go from one node to preLocalCV+« false

another one in the communication graph. Since, in this conte sLocalCV « false

all the maximal communication times between neighbors are globalCV « false

known and finite, thigraversaltime is also finite and can be repeat

computed.

Hence, by this scheme, we take into account all cancellation
messages sent before the time at which global convergence
is normally detected on the elected node, including those
which are in transit. When no cancellation message arrines o
the elected node during this additional time interval, glob
convergence can be surely assumed.

It is interesting to see that the knowledge of maximal
time communication is not only required in the decentralize
algorithm but also in the centralized one (between the maste
and all other nodes) to ensure the coherence of the detection
However, in practical cases, an upper bound of this maximal
traversal time can always be evaluated

In fact, with this mechanism, we ensure that the global
convergence we detect actually corresponds to a time at
which all the nodes of the system are in local convergence.
Finally, this is exactly the same halting criterion as in
sequential iterative algorithms with the same assumptions
upon local convergence. The use of a threshold to detect the
local convergences can also be seen as a moderation of the
number of messages sent for the global convergence detectio

As for Algorithm 1, receipts have been placed in separated
functions and do not directly appear in the main algorithm.
But a new problem, induced by having two kinds of messages
concerning the local convergences, arises with the order of
these receipts. In some communication systems, the order of
the messages may not be respected, especially in the cofitext
asynchronous algorithms. Thus, the modifications of thée var
ablesnbNeigNotLCVand globalCV in the receipt functions
given in Algorithm 5 and Algorithm 6 must be performed only
when the received message actually corresponds to a more
recent state on the source node.

A simple solution to this problem is to associate to each
message the number of the iteration at which it is sent
from its source node, in order to be able to reorder the

... iterative process and .
... evaluation of preLocalCV..
if - sLocalCVthen
if preLocalCVthen
nblterPreLocalCV— nblterPreLocalCV + 1
if nblterPreLocalCV = THRESHOLDSLCV
then
sLocalCV « true
end if
else
nblterPreLocalCV— 0
end if
else
if = preLocalCVthen
sLocalCV — false
nblterPreLocalCV— 0
if a sPartialCV message has already been sent
then
send a cancelSPartialCV message with the cur-
rent iteration number to the same destination
neighbor
end if
else
if nbNeigNotLCV = 0 then
globalCV «+ true
else
if nbNeigNotLCV = 1 then
send a sPartialCV message with the current
iteration to the last neighbor corresponding
to nbNeigNotLCV
end if
end if
end if
end if

until time period with globalCV> MaxTraversalTime
BroadCast a globalCV message to all neighbors from

messages on the destination node. So, for each receipt of which no globalCV message arrived
sPartialCV andcancelSPartialC\Mnessages, the modifications end for

of nbNeigNotLCVand globalCV will only occur when the

current message actually represents a more recent Changﬂlﬁérithm 5 function recvSPartialCV()
5N

state on the source node. These checkings correspond to-tt & ‘Node— number of the source node of the message

currentlterNum«— iteration number of source node
if previterNumS[srcNodek previterNumC[srcNode]

first test in both Algorithms 5 and 6. The second test only
consists in updating the previous iteration number frons thi
source node, if necessary. This mechanism implies the use
of additional arrays described in Table II. For each kind of
message, they contain the greatest (and then the most yecent
iteration numbers received from each neighbor. Their sze i
set to N which is not optimal but allows to directly map the
ranks of the processors on the array indices.

Concerning the function recvGlobalCV(), it is not shown

and previterNumCJsrcNodek currentiterNumthen

nbNeigNotLCV «— nbNeigNotLCV - 1

end if

if previterNumS[srcNodek currentiterNumthen
previterNumS[srcNode}- currentlterNum

end if




TABLE Il
ARRAYS USED FOR ORDER VERIFICATIONS IN FUNCTIONS
RECVSMARTIAL CV() AND RECVCANCELSPARTIAL CV()

By efficiency, we mean the delay required to detect the
global convergence. There is no direct way to measure it
Al . . - I since the time at which the global detection actually be-
previterNumS[N] | array indicating, for each neighbor, the greates ; ; ;
iteration number received in sPartialCV messages glns.cannc_n_ be.evaluated. Hen(;e, in order to estimate the
until current time. Initialized to -1. relative efficiencies of the detection algorithms, we corepa
previterNumCIN] | array indicating, for each neighbor, the greatest  the execution times of three variants of the same parallel
iteration number received in cancelSPartialCV | - jtarative algorithm. Each of them using a different coneerce
messages until current time. Initialized to 0. . .
detection algorithm.

To be able to test the centralized version, the grid contexts

Algorithm 6 function recvCancelSPartialCV() used have no access constraints (due to security for example
srcNode— number of the source node of the message An application typically solved by iterative algorithmssha
currentlterNum«— iteration number of source node been chosen for our tests. It is a non-linear chemical proble
if previterNumC[srcNodek previterNumS[srcNode] called the advection-diffusion problem.

and previterNumS[srcNodek currentlterNunthen
nbNeigNotLCV « nbNeigNotLCV + 1
globalCV « false

end if

if previterNumC[srcNodek currentlterNumthen
previterNumCJ[srcNode}- currentlterNum

A. Description of the non-linear problem

In this problem, we want to compute the evolutions of the
concentrations of two chemical species in a two-dimensiona
domain. It is solved by using a discretization of the space
on a two-dimensional grid: x and z. The evolutions are given

end if
for each point (x,z) of the grid for a given time interval by
differential equations:
here since it is exactly the same as in Algorithm 3. act 92¢t act o act

In short, the whole mechanism described by Algorithm 475, = Kh@ +V8x + &Kv(z)g +R(c!, 2, t) (10)

and its additional functions prevent false global detertio here i . .
. . N erei = 1,2 denotes the number of the chemical species
by cancelingpartialCV messages when it finds false loca)"

. . ) and
convergence detections. Moreover, it does not add an irmipiort

overhead after the detection of the right global convergenc ~ B'(c!, 1) = —qic'e® — gaclc® + 2gs(t)c” + qa(t)c?
R2(ct, t) = qietc® — qactc? + qu(t)c?
VIl. EXPERIMENTS . (11)
The major interest of such an algorithm is to dramaticallv)ylth
enhance the flexibility of deployment of parallel iterative #n = 4.0x10°° V. o= 107°
algorithms. Effectively, when performing grid computing i Ku(2) = 107%5 ¢ = 3.7x10'
a global context, a very common case is to use several distan€1 = 1.63x107'° G2 = 4.66x1071°
clusters. Nevertheless, due to access constraints (fleewal ¢;(t) = e %/sn) for sin(wt) >0
private networks...), all the machines in a given clusteyma ¢;(t) = 0 otherwise

not be able to communicate with any other machine in anotk}%dj = 3,4, w = 1/43200, a3 = 22.62 anday = 7.601
cluster. Hence, a classical centralized convergence tilatec The tim’e ,interval is0 72’005]
where each node sends state messages to a master node CW%IIowing ’

be used.

and the initial conditions are

The centralized detection can however still be used if c!(2,2,0) = 10°a(z)3(2) (12)
explicit forwarding of state messages is done between A(x,2,0) = 10"%a(z)B(2)
neighboring nodes of the system. That is to say, when,ap
node needs to send a message to the master, it sends the 9 4
message to one of its neighbors which is closer to the master o(z) =1=(0.1z = 1%+ (0.1z — 1)7/2 (13)

and this neighbor will forward the message to one of its Blz) =1 - (012 = 1)+ (0.12 = 4)*/2
neighbors yet more closer to the master than itself and so orThe discretization along x and z allows us to rewrite the
until reaching the master. This version has the advantagesistem of PDEs (Partially Differential Equations) in a syst
require no modification of the detection process on the masté ODEs (Ordinary Differential Equations):

node. Nonetheless, it is clearly more expensive in terms of

communications and delay to detect the global converge. dy(t) _ Fly@®),t) with y=(c', ) (14)

dt
Finally, it is interesting to compare the efficiency of the de The global solution of Equ.14 is computed using the finite
centralized version with the two other versions, the céimtrd differences scheme. A main loop is made over the time steps,
one and the forwarding one, in two classical contexts of griie Euler implicit method is used to discretize the systemngl
computing (local and distant). These experiments wilhalls each time interval and the iterative Newton method is used to
to deduce what kind of detection algorithm to use in a givdimearize the obtained non-linear system. There are twaamai
computing context. strategies to perform the Newton method. The first one ctansis



in applying the Newton method on the entire system aride Ill. They represent the total execution times (compaitat
using an asynchronous parallel linear solver over the ¢lolmand convergence detection) of the algorithm.

system. Unfortunately, several synchronizations are sszog

at each time step. In the second approach, called multiaglit TABLE I

Newton, the system is decomposed into several sub-systerﬁgTAL EXECUTION TIMES (SECONDS OF THEAIAC ALGORITHM WITH
which are locally solved by a sequential linear system solve THE THREE CONVERGENCE DETECTION ALGORITHMS

ac_cording to data dependenCie_S b_Etwe_en the SUb'SVStem_S- In—Grid context Centralized | Forwarded| Decentralized

this method, only one synchronization is needed at each time[ Distant sites (400) 163 162 155

step (see [22] for further information about this method). | | Distant sites (600) 649 651 639
Local site (800) 368 373 373

our case, the multisplitting approach has been chosen tdth t
GMRES method [1] as the sequential linear solver. ! . . L .

An AIAC algorithm has been designed to solve this problem A fl_rst questlpn Whl(_:h may arise is: what about the interest
and three variants have been written according to the conva} Using machines with different powers 2 In other words:

gence detection algorithm used. In each program, only tWé)uld the execution be faster on the fastest machine alone ?
convergence detection is different ' In fact, it is not the case since although the slower machines

The particular interest of this application in our evalaatis (€"d to slow down the global parallel progress (compared to a

that it uses a series of iterative processes separated bjreyn cluster with the same number_of machines but onIy_containing
nizations. In each iterative process, the convergencetitmte € fastest model), they contribute to process multiple @at
algorithm is used and then, the impact of its efficiency ovéi€ Same time and then to be faster than one machine alone.
the overall execution time is more important than in a singfe®" €xample, the execution on the fastest machine with the
iterative process. So, this is a convenient example to pofiid Size600 x 600 takes about 1987 seconds. Moreover, there
out eventual differences among the convergence detectldrf!SO the advantage of increasing the amount of resources
algorithms. to so_lve Iarger proble_zms_. For exampl_e, the exec_utlon of the
algorithm with the grid size300 x 800 is not possible on a
B. results single machine due to memory lack.

Two grid contexts have been used to perform our exper-ln the local context, the centralized version is better sinc

iments. The first one is composed of ten machines : c\)ﬁlgéndrggrﬁi';ﬁ;? T.i mzsézgﬁr\;irzye?xrgg;hvihc:‘g;m'te’
pentium 111 833Mhz, one pentium Il 900Mhz, one Pentium | ' s

1.7Ghz, three Athlon XP 2000, two Pentium IV 2.4Ghz, on§_‘b.tams the best performances. This comes from the fact that

Pentium IV 2.6Ghz and one Athlon XP 2800, scattered ov IS metrtu;d onI)t/huszs t(:ortnmun|cat|ons_ betweeczjn nelrg]]_htr)]o_rs t?]nd

four distant sites linked with 10Mbits/s Ethernet and ADSIEOSes 'goth:rtceo o'?hef Zﬁ;POnngver a given node, which Is the

128Kb/s. The second one is a local cluster of forty PCs linké&§>c ! o, Versions. -
However, the interesting result is that the forwarding iers

with L0OMDbits/s Ethernet containing three kinds of prooess is substantially less efficient than the decentralized onthe

raistant context. This is very interesting since in such sase
y those two versions can be used due to access constraints

oreover, even better results could be expected for the
rﬂscentralized version with more distant machines. This is
ential for future trends of large scale grid computing.
hus, the decentralized algorithm is not only interestiog f
pe deployment of parallel iterative algorithms but carpals
ring better performances in the context of grid computing b
ducing the latency of global convergence detection.

Pentium IV 2.4Ghz.

Our experiments have been done with no other users on
machines. Moreover, different sizes of the non-linear dham
problem have been used on each grid context to take i
account the different numbers of machines and then to havé
sufficient amount of computation. Discretization gridstof x
400 and600 x 600 points have been used for the distant clust
and a larger grid oB00 x 800 points has been used for the
local cluster which contains more machines. Using difiereff
grid sizes is not a problem since the focus point of those
experiments is the difference between execution times ®f th VIIl. CONCLUSION
three tested algorithms and not their absolute values. Theoretical and practical versions of a decentralized-algo

All our algorithms have been implemented using the freghm for global convergence detection in parallel itarati
Corba [23] ORB OmniOrb 4. It is a robust and high peralgorithms have been presented.
formance ORB which is certified to be in compliance with The theoretical version of this algorithm has been proved to
Corba 2.1. The most interesting features of this progrargmiwork correctly on all totally asynchronous convergingatare
environment for the implementation of our algorithms are thalgorithms under two classical assumptions in this donthan:
thread support and the remote procedure call (RPC) mechammunication graph used is connected and acyclic, and the
nism which allow us to efficiently perform the asynchronousommunications between processors are performed in a finite
communications. Moreover, this choice is also related & thime.
facility of deployment of this environment compared to more The proposed algorithm is very useful in the context of
classical communication libraries like MPI. grid computing where the processors are distributed andevhe

The results (averages of a series of ten executions) obtaimetecting the convergence on a master processor may be
for the three variants of convergence detection are givelain penalizing or even impossible. This is the case for large
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clusters with geographically distributed machines. Itioy@s [7] D. P. Bertsekas and J. N. Tsitsiklis, “Convergence raté rmination

the performances of iterative algorithms especially if the of asynchronous iterative algorithms,” @onference Proceedings, 1989
ication/ tati tio i t ligibl International Conference on Supercomputing Crete, Greece: ACM
communication/computation ratio 1S not negligiole. SIGARCH, June 5-9, 1989, pp. 461-470.

It has been discussed why the theoretical algorithm cari8] S. A. Savari and D. P. Bertsekas, “Finite termination efrachronous

; ; ; iterative algorithms,"Parallel Computing vol. 22, pp. 39-56, 1996.
not be dlreCtIy used in practice for tOta”y asynChronou?Q] D. E. Baz, Contribution a [lalgorithmique parallele, le concept

algorithms. Ne_VGrtheleSSa the praCtical_ version propdskiyl d'asynchronisme: étude théorique, mise en oeuvre, dicaipn. HDR
works on partially asynchronous algorithms and may eventu- LAAS CNRS, Institut National Polytechnique de Toulouse989

; [10] A. S. Charao, “Multiprogrammation parallele géiggle des
ally work on particular cases of totally asynchronous onidis. méthodes de decomposition de domaine Ph.D.  dissmntati

the r_nOdiﬁcationS from _the theore“(?f_ﬂ version to the pradti Institut National Polytechnique de Grenoble, 2001. [CeflinAvail-
version have been detailed and justified. It has also beemsho  able: http://www-mediatheque.imag.fr/Mediatheque. iB#8ollections-

; ; ; ; i electroniques/publications/index.html
that the practical version us.es.an e_ndmg m.eChamsm Slmlﬂ?f] I. C. Society, “leee standard for a high performanceasdus,” IEEE,
to the one used for sequential iterative algorithms. Tech. Rep. Std 1394-1995, August 1996.

This algorithm presents several advantages. The first did G. Antonoiu and P. K. Srimani, “A self-stabilizing leadelection algo-

. . . : : rithm for tree graphs,Journal of Parallel and Distributed Computing
is to avoid communication bottlenecks which are inherent to "3, "> op. 227-232, 1 May 1996.

centralized versions. The second one is a larger flexikitity [13] M. EI-Ruby, J. Kenevan, R. Carison, and K. Khalil, “Leadelection
the context of global grid computing since it does not reguir  in distributed computing systems,” Proceedings of Computing in the

. 90’s, ser. LNCS, N. A. Sherwani, E. de Doncker, and J. A. Kapenga,
a strongly connected graph but only an acyclic graph. Such Eds., vol. 507, Berlin, Germany: Springer, Oct. 1991, p-a556.

a graph can always be extracted from the dependency grapi H. Garcia-Molina, “Elections in a distributed commgi system,IEEE
of the system. This is particularly convenient for deploytse Transactions on Computersol. 1, no. 31, pp. 47-59, January 1982.

- . S. D. Stoller, “Leader election in asynchronous dmttéd systems,”
through firewalls where some of the processors used in i IEEE Transactions on Computersol. 49, no. 3, pp. 283-284, 2000,

computation may be accessible only through one machine. [oOnline]. Available: citeseer.ist.psu.edu/5897.html
Experimental results have pointed out that, in such distdA@l D. P. Bertsekas and J. N. TsitsiklBarallel and Distributed Computa-

. . tion: Numerical Methods Englewood Cliffs NJ: Prentice Hall, 1989.
contexts, the decentralized algorithm reduces the Iat@.rﬁcy[ﬂl] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “@bg dynamic

the convergence detection and then improves the overall |oad balancing with asynchronism in iterative algorithnmstioe compu-
performances of parallel iterative algorithms. Moreoaiy tational grid,” in17th International Parallel and Distributed Processing

method does not involve any modification of the iterative imp;gcl)%mp(lig: S 2003),IEEE computer society piee, France,

process as opposed to [8]. This has the double advantage tgibe M. E. Tarazi, “Some convergence results for asynchusnalgorithms,”
easier to implement and also to work surely when the itezativ __ Numer. Math. vol. 39, pp. 325-340, 1982.

PRI - D. E. Baz, P. Spiteri, J. C. Miellou, and D. Gazen, “Asgranous
process converges, which is not always the case with meth&% iterative algorithms with flexible communication for naréar network

modifying the initial iterative process. Finally, since wi® flow problems,”Journal of Parallel and Distributed Computingol. 38,
not merge messages for the computation and messages for theno. 1, pp. 1-15, 10 Oct. 1996.

: . [2Q] J. M. Bahi, “Asynchronous iterative algorithms for rexpansive linear
convergence detection, our method is tolerant to the loss %q systems,Journal of Parallel and Distributed Computingol. 60, no. 1,

computational messages pp. 92-112, Jan. 2000.
Finally, this decentralized algorithm for global convenge [211 N.  Lynch,  Distributed  Algorithms ~ San ~ Francisco,

. . . . Cs: M Kauf , 1996. Online]. Available:
detection is an important step towards the full adaptation http:,,theor(;?g?mit‘edaﬁd?,z?sqalgs_hm [Online] varenie

of parallel iterative algorithms in global grid computing{22] J. M. Bahi, J.-C. Miellou, and K. Rhofir, “Asynchronousuttisplitting
especially for AIACs. The power of these last algorithms has methods for nonlinear fixed point problems\tumerical Algorithms

| dv b h . | . di h vol. 15, no. 3 and 4, pp. 315-345, 1997.
already been shown In several previous studies suc as}&%] A. Pope, The CORBA Reference Guide: Understanding the Common
u

and [17], and therefore the next step is to study a power Object Request Broker Architecture Reading, MA, USA: Addison-
and convenient environment for the deployment of an AIAC ~ Wesley, Dec. 1997.
algorithm on a global cluster.
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