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A decentralized convergence detection algorithm for
asynchronous parallel iterative algorithms

Jacques M. Bahi,Member, IEEE,Sylvain Contassot-Vivier,Member, IEEE,Raphaël Couturier,Member, IEEE,
and Flavien Vernier

Abstract— We introduce a theoretical algorithm and its prac-
tical version to perform decentralized detection of the global
convergence of parallel asynchronous iterative algorithms. We
prove that even if the algorithm is completely decentralized,
the detection of global convergence is achieved on one processor
under the classical conditions. The proposed algorithm is very
useful in the context of grid computing in which the processors
are distributed and in which detecting the convergence on a
master processor may be penalizing or even impossible as in
Peer to Peer computations framework. Finally, the efficiency of
the practical algorithm is illustrated in a typical experim ent.

Index Terms— Parallel iterative algorithms, asynchronism,
convergence detection.

I. I NTRODUCTION

I N the context of scientific computations, iterative algo-
rithms are very well suited to a large class of problems

and are in many cases either preferred to direct methods or
even sometimes the single way to solve a problem. Direct
algorithms give the exact solution of a problem within a finite
number of operations whereas iterative algorithms providean
approximation of it, we say that they converge (asymptotically)
towards this solution. When dealing with very great dimension
problems, iterative algorithms are preferred, especiallyif they
give a good approximation in a little number of iterations [1].

Those last properties have led to a good expansion of
parallel iterative algorithms. Nevertheless, most of these par-
allel versions are synchronous. We have shown in [2] all
the interest of using asynchronism in such parallel iterative
algorithms especially in a global context of grid computing.
The asynchronous algorithm proposed in this work used a
centralized method to detect the global convergence which was
not best suited to this context.

In this article, we propose a new non-centralized global con-
vergence detection algorithm based only on local information
of the nodes. A theoretical version designed for totally asyn-
chronous algorithms is presented and proved. Then, a practical
version working on partially asynchronous algorithms, i.e.
asynchronous algorithms with bounded delays is deduced.
Since this detection algorithm only works well on acyclic
graphs, when the physical graph of the system contains cycles,
the use of a spanning tree of the graph is sufficient to manage
all the communications related to the convergence detection.

In this study, we focus on all aspects of convergence
detection, from theoretical point of view up to implemen-
tation problems. The main features of our method are the
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following: we do not modify the iterative process but propose
an additional mechanism which is superimposed onto the
asynchronous iterations. Since we do not merge messages for
the computation and messages for the convergence detection,
our method is tolerant to the loss of computational messages.
Moreover, from a practical point of view, our mechanism de-
tects termination only a short time after the actual convergence
and it uses quite a few communications as opposed to the
Savari and Bertsekas algorithm which requires a lot of request
messages.

The following section presents the previous studies related
to termination detection and leader election algorithms. Then,
the principle of asynchronous iterative algorithms are briefly
described and replaced in the global context of parallel iter-
ative algorithms. The theoretical decentralized algorithm for
global convergence detection is detailed in Section IV and the
proof that this method actually detects the global convergence
on at least one processor in a finite time after the global
convergence has happened is given in Section V-C. Since this
theoretical algorithm is not directly applicable in all real cases,
we propose a practical version of this algorithm and define
its domain of validity in Section VI. The relative efficiency
of this algorithm is discussed in Section VII according to
experimental results.

II. RELATED WORKS

Distributed termination detection consists in finding the
time at which a distributed computation has finished. This
problem has already been studied in the general context of
distributed computing [3]–[5]. Nevertheless, most of themare
based on centralized algorithms which are not suited to large
scale and/or distant distributed computations. Indeed, these
algorithms use the Master/Slave paradigm which is convenient
for parallel computers but not for distributed parallel machines.
Some studies have also been done in the synchronous con-
text [6]. Concerning the asynchronous iterative algorithms,
distributed termination detection was firstly introduced in [7]
under particular assumptions, such as the particular behavior
of the nodes which have reached local convergence. Moreover,
Savari and Bertsekas proposed another distributed version
in [8] but still under more restrictive hypotheses than the ones
we use, such as FIFO communications and with modifications
of the iterative process itself in order to make it terminate
in finite time. In [9], El Baz also proposed a review of
different methods of terminating asynchronous iterative algo-
rithms on message passing systems. Other authors have studied
implementations of asynchronous algorithms but always with
centralized convergence detection [10].
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The originality of our approach is to use a leader election
algorithm to manage the termination of a particular class of
parallel applications in a decentralized way. In fact, it isused to
perform the global convergence detection of asynchronous iter-
ative algorithms using only local information of the nodes.The
major difficulty comes from the asynchronism in the applica-
tion which induces a far more complex behavior towards the
convergence and then may imply false detections or delayed
ones. In the literature about leader election, numerous variants
are presented. The version we used in this paper has been
generally used in communication protocols such as the IEEE
1394 (firewire) protocol [11] or in distributed systems [12],
[13]. Some studies have been done in asynchronous systems
as in [14], [15] but in the largely different context of fault
tolerant networks (node crashes or communication failures)
and not in order to control an application.

To the best of our knowledge, this is the first study using an
election algorithm to manage the termination of asynchronous
iterative algorithms.

III. W HAT ARE PARALLEL ITERATIVE ALGORITHMS ?

A. Iterative algorithms

Iterative algorithms have the structure

xk+1 = g(xk), k = 0, 1, ... with x0 given (1)

where eachxk is an n - dimensional vector, andg is some
function from R

n into itself. A fixed point x∗ of g is
characterized by the propertyg(x∗) = x∗. The goal of the
iterative algorithm is to reach such a fixed point starting from
any initial vectorx0.

B. Parallel iterative algorithms

The parallel version of the iterative algorithm presented
above is obtained by the classical block-decomposition (see
for example [16]).

There are two main reasons to design a decentralized
convergence detection algorithm for parallel iterative algo-
rithms. The first one is that the most general class of parallel
iterative algorithms corresponds to the asynchronous iterative
algorithms which are not centralized by nature. The second
one is of pratical interest since in numerous contexts of useof
these algorithms, the centralization is simply not possible. The
reader should refer to [16] for the theoretical formulationof
asynchronous iterative algorithms. From this context, we only
recall the notion of delay between data dependencies which
is useful in the following of the article. The delay of block
(or processor)j according to blocki is noteddi

j(t) and the
data version of blockj available at timet on processori is
commonly noted asri

j(t) = t−di
j(t). In totally asynchronous

iterations, some classical conditions are assumed over theri
j(t)

in order to ensure that the process actually iterates and then
evolves (see again [16]).

C. AIAC algorithms

AIAC algorithms which have been introduced in [17],
are a variant of the totally asynchronous algorithms. The

acronym stands for Asynchronous Iterations - Asynchronous
Communication. In this context, all the processors perform
their iterations without taking care of the progress of the
other processors. They do not wait for predetermined data
to become available from other processors but they keep on
computing, trying to solve the given problem with whatever
data happen to be available at that time. In the literature about
the domain, there is one algorithmic model corresponding
to these algorithms with two different formulations, thoseof
Bertsekas and Tsitsiklis [16] and those of El Tarazi [18]. Nev-
ertheless, several variants can be deduced from these models
depending on when the communications are performed and
when the received data is incorporated in the computations,
see e.g. [19], [20]. These algorithms give very good resultsin
the global context of grid computing as has been shown in [2].
Nevertheless, the global convergence detection algorithmused
in our previous studies was centralized, which was not well
suited to the context of grid computing where all the nodes
may not be directly accessible to each other for security
reasons. This is why we propose in this article a decentralized
algorithm for global convergence detection.

IV. D ECENTRALIZED ALGORITHM FOR GLOBAL

CONVERGENCE DETECTION

We propose in this Section, a decentralized algorithm for
global convergence detection which works on all parallel
iterative algorithms, either asynchronous or synchronous. Al-
though the version described in the following is closer to
asynchronous algorithms which represent the most general
case, only a few adaptations are necessary to use it in the
synchronous context.

In the following, we consider to have a set ofN processors
numbered from1 to N .

The major difficulty lies in the fact of showing that the
proposed algorithm does not detect convergence prematurely.
Indeed, in asynchronous algorithms, the delays between it-
erations could lead to a false realization of the convergence
criterion. This situation occurs in heterogenous contexts, for
example when a fast processor computes a new iteration
whereas a slow processor computes a former iteration. This
difficulty is increased with distant processors where the com-
munication/computation ratio may be important.

The principle of our convergence detection is based on two
steps. The first one consists in detecting the local convergence
on each processor and the second one is properly the global
convergence detection.

A. Local convergence detection

Generally, due to limited numerical representations and
asymptotic convergences, the actual values of the fixed point
components cannot be exactly reached. Hence, a threshold
is used to determine a sufficient accuracy near those values.
Moreover, in most cases, the residual does not follow a
monotonous decrease and there are oscillations around the
given threshold when the process arrives near the solution.
Hence, if we don’t take care, we can detect a local convergence
too early, since, a few iterations later, the residual will go
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back above the threshold, leading to a false detection of
local convergence. This is a common problem of iterative
algorithms.

Currently, there is no way to ensure a definitive local conver-
gence on a processor without modifying the iterative process,
as in [16]. The common heuristic is then to assume that local
convergence is achieved when the node has performed a given
number of successive iterations under the accuracy threshold.
This is the mechanism we use in Algorithm 1. It implies the
use of a constant, calledTHRESHOLDLCV, which represents
this required number of successive iterations under the residual
threshold to assure local convergence (LCV). It is important
to note that thisTHRESHOLDLCV value theoretically exists
and is finite since, by hypothesis, the asynchronous iterative
process converges.

B. Global convergence detection

As said before, the idea is to use a scheme which is quite
similar to the leader election protocol [21]. The latter consists
in designating one processor to perform a given task. In our
case, the global detection will be detected on one processor,
which will then propagate it to all its neighbors, and so on in
all the connection graph.

Our election process works with what we callpartialCV
messages between processors. Such a message tells the re-
ceiver that all the processors in the subgraph depending on
the sender (behind the sender) have reached local convergence.
Hence, on each processor, the algorithm considers the number
of neighbors which have not sent theirpartialCV message to
it yet. This is represented by thenbNeigNotLCVvariable in
Algorithm 1. Then, when this number becomes equal to one
and the processor has reached local convergence, it sends a
partialCV message to its last neighbor which has not sent
him such a message yet. It should be noticed that, as we
use a spanning tree of the communication graph to perform
the leader election, there always exists one node at least
in the system which satisfiesnbNeigNotLCV=1. Thus, the
propagation of convergence detection will start as soon as such
a node enters in local convergence.

Finally, the processor which is in local convergence and
which has receivedpartialCV messages from all its neighbors
(nbNeigNotLCV=0) detects the global convergence. This
processor will then broadcast the global convergence to its
neighbors, which will forward it to their neighbors, and so
on.

Our decentralized method for global convergence detection
is given in Algorithm 1. For clarity, a description of the
variables used in this algorithm is given in Table I.

Receipts of messages have been placed in separated func-
tions and do not directly appear in the main algorithm, since
they may happen at any time during an iteration of the main
iterative loop. So, they are managed independently of the main
process. This is particular to asynchronous iterative algorithms
where communications are not performed and managed at
specific times in the algorithm but must be treated as soon
as they occur.

TABLE I

DESCRIPTION OF VARIABLES USED INALGORITHM 1

nbNeigNotLCV number of neighbors which have not yet sent
a partialCV message to the current processor

nbIterPreLocalCV number of successive iterations performed
under the residual threshold

preLocalCV boolean being true when an iteration is under
the residual threshold

localCV true when local convergence is achieved
globalCV true when global convergence is achieved

Algorithm 1 Decentralized global convergence detection

for all Pi, i ∈ {1, . . . , N} do
nbNeigNotLCV← nbNeighbors
nbIterPreLocalCV← 0
preLocalCV← false
localCV← false
globalCV← false
repeat

if ¬ localCV then
. . . iterative process and. . .
. . . evaluation of preLocalCV. . .
if preLocalCVthen

nbIterPreLocalCV← nbIterPreLocalCV + 1
if nbIterPreLocalCV= THRESHOLDLCV then

localCV← true
end if

else
nbIterPreLocalCV← 0

end if
end if
if localCV then

if nbNeigNotLCV= 0 then
globalCV← true

else
if nbNeigNotLCV= 1 then

send a partialCV message to the last neighbor
corresponding to nbNeigNotLCV

end if
end if

end if
until globalCV
BroadCast a globalCV message to all neighbors from
which no globalCV message arrived

end for

Function recvPartialCV() only consists in decreasing the
number of neighbors which have not yet reached local con-
vergence. Function recvGlobalCV() consists in stopping the
iterative process on the node by setting theglobalCV value
to true.

V. PROOF OF THE ALGORITHM

We recall that our detection algorithm is to be used with
totally asynchronous algorithms. Within the scope of this
paper, we consider any asynchronous iterative process which
converges. This is achieved under conditions given in Sec-
tion III, which are verified in a large class of scientific
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Algorithm 2 function recvPartialCV()
nbNeigNotLCV← nbNeigNotLCV - 1

Algorithm 3 function recvGlobalCV()
globalCV← true

computations.

A. Preliminary definitions

Let P = {P1, ..., PN} be the set of the processors.
Let us define NOpCVmess(Pi, Pj , t) between two neighboring
processorsPi andPj at time t as:

NOpCVmess(Pi, Pj , t) =






true if Pi has not yet received a partialCV
message fromPj

false if Pi has received a partialCV message fromPj

Our detection algorithm is based on two particular prop-
erties of the processors which are the local convergence and
the number of neighbors having communicated their partial
convergence (nbNeigNotLCV). Since these properties evolve in
function of time, the setP (t) of processorsPi can be written
as the following partition:

P (t) = Sc
0(t) ∪ Sc

1(t) ∪ . . . ∪ Sc
N−1(t)

∪ Sd
0 (t) ∪ Sd

1 (t) ∪ . . . ∪ Sd
N−1(t)

whereSe
k(t) is the set of processors having at timet:

nbNeigNotLCV = k

localCV =

{

true if e = c
false if e = d

The particular presentation ofP (t) is only for intuitive repre-
sentation of the partition.
Finally, we notetc(i) the time at which processorPi reaches
local convergence and we definetr(k, j) as the receipt time
of the partialCV message onPk from Pj and tm(j, k, t) as
the communication time formPj to Pk at timet (t is included
because communication times may vary during the process).
We have then:

tr(k, j) = tc(j) + tm(j, k, tc(j))

B. Decentralized global convergence detection theorem

Theorem 1:If the following hypotheses are satisfied:

(H1) The communication graph used for the detection is con-
nected and acyclic

(H2) The asynchronous iterative process converges
(H3) Communications between neighbors are achieved in a

finite time

then, there existstd ∈ N such that

Sc
0(td) 6= ∅
|Sc

1(td)| ≥ 0
Sc

k(td) = ∅ k ∈ {2, ..., N − 1}
Sd

k(td) = ∅ k ∈ {0, ..., N − 1}

The second statement only appears to point out that there
is no particular condition onSc

1(td).

C. Proof of the theorem

We propose to make the proof in two steps:

(A) we prove thatSc
0(td) 6= ∅ implies all the other statements

of Theorem 1
(B) we prove that∃td ∈ N such thatSc

0(td) 6= ∅

Part (A)

Let us define Neigh(Pi) the set of physical neighbors of
processorPi. In order to get the processorPi in Sc

0(t), we
must have by Algorithm 1

∀Pj ∈ Neigh(Pi), NOpCVmess(Pi, Pj , t) = false

which implies in turn for all thePj that

∀Pk ∈ Neigh(Pj) \ {Pi}, NOpCVmess(Pj , Pk, t) = false

and by recursion, we can deduce that

∀Pa ∈ P (t) \ {Pi}, ∃Pb ∈ P (t),
NOpCVmess(Pb, Pa, t) = false

(2)
This means that all thePa in this equation have sent apar-

tialCV message to the correspondingPb and by Algorithm 1,
this is only possible oncePa has reached local convergence.

Thus, we have

∀Pa ∈ P (t) \ {Pi}, Pa 6∈
N−1
⋃

u=0

Sd
u(t)

and sincePi ∈ Sc
0(t), then

N−1
⋃

u=0

Sd
u(t) = ∅

Moreover, by Algorithm 1, we also know that the condition
for a processorPa to verify (2) (sending of apartialCV
message to another node) is to have itsnbNeigNotLCVequals
to one.

Hence, it comes that

∀Pa ∈ P (t) \ {Pi}, Pa ∈
1

⋃

u=0

Sc
u(t)

and then
N−1
⋃

u=2

Sc
u(t) = ∅

and all the other statements of Theorem 1 are verified.�

Part (B)
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By definition, at the beginning of the process, the following
statements are verified:

Sc
k(0) = ∅ ∀k ∈ {0, ..., N − 1}

Sd
0 (0) = ∅

Sd
1 (0) 6= ∅

(3)

The third statement comes from (H1) which implies that the
graph always has at least one node with only one neighbor.
By (H2), we have

Pi ∈ Sd
k(t), i ∈ {1, ..., N}, k ∈ {0, ..., N − 1}

⇒ ∃ tc(i) ∈ N, ∀t ≥ tc(i), Pi ∈
⋃k

u=0 Sc
u(t)

(4)

hence

∃t′(k) ∈ N, ∀t ≥ t′(k), |Sd
k(t)| = 0, k ∈ {0, ..., N − 1} (5)

(3), (5) and Algorithm 1 imply that

∃tdn,















Sc
1(tdn) 6= ∅

∀t < tdn,
⋃N−1

u=0 Sd
u(t) 6= ∅

∀t ≥ tdn,
⋃N−1

u=0 Sd
u(t) = ∅

∀t < tdn, Sc
0(t) = ∅

(6)

The last statement is, in fact, a deduction of the second one.
As seen in part (A),Sc

0(t) 6= ∅ implies that
⋃N−1

u=0 Sd
u(t) = ∅

which is in contradiction with the second statement for each
t < tdn.

Now, at tdn, we know by (6) thatSc
1(tdn) 6= ∅.

So, everyPi ∈ Sc
1(tdn), according to Algorithm 1, sends a

partialCV message to its unique neighborPk which verifies
NOpCVmess(Pi, Pk, tdn) = true.
If we define

A(t) = {Pi ∈ Sc
1(t), ∃!Pk ∈ P (t),

NOpCVmess(Pi, Pk, t) = NOpCVmess(Pk, Pi, t) = true}

and

B(t) = {Pk ∈ P (t), ∃Pi ∈ A(t) such that
NOpCVmess(Pi, Pk, t) = true}

So, A(t) is the set of processors whose sending of
the partialCV message to exactly one element ofB(t)
(corresponding set of destination nodes) has not yet arrived
at time t.

From (H1), we deduce the following Lemma.
Lemma 1:Considering the setA and timet′ ≥ tdn

A(t′ − 1) 6= ∅, A(t′) = ∅ ⇒

{

∀t ≥ t′, A(t) = ∅
∃Pi ∈ Sc

0(t
′)

Justification of Lemma 1:

Sincet′ ≥ tdn, we are in the context of (6) where all the
processors are in the subsetsSc

u, u ∈ {0, ..., N − 1}.
If we consider the state of the system at timet′, it is not

possible to have one node in another subset thanSc
0 or Sc

1

since this would imply that this node has not yet received the
partialCV message from at least two of its neighbors.

So, either these neighbors are communicating theirpar-
tialCV message to this node, which is a contradiction to
A(t′) = ∅. Or, the other possibility is that these neighbors
have not sent theirpartialCV message to this node yet.
Nevertheless, the only way for these neighbors not to have
sent theirpartialCV message to this node yet is that they
have themselves at least two neighbors from which they have
not received thepartialCV message yet. If we continue this
reasoning by recursion, we come to the conclusion that this
situation is only possible if all these nodes form a cycle in the
graph which is a contradiction to hypothesis (H1).

Hence, we are sure that all the nodes have reached their
local convergence and sent apartialCV message which has
already arrived at the destination node.

Finally, (H1) also implies that there is at least one node
which has received thepartialCV messages from all its
neighbors and is then located inSc

0(tdn). ♦

Remark 1:One consequence is that as soon as the setA
becomes empty, it cannot become non-empty again.

Remark 2:Another consequence is that timet′ is equivalent
to time td in Theorem 1 sinceSc

0(t
′) 6= ∅ and then Part (A)

of the proof implies all the other statements of the theorem.
Remark 3:At time tdn, all the processors have reached

their local convergence and sinceSd
1 (0) 6= ∅ it is sure that

the setA becomes non-empty at the latest at timetdn.

Now, let us examine the setA(tdn):
If it is empty, Lemma 1 and Remark 3 imply that it was

non-empty at the time just before and thentdn corresponds to
the timet′ in Lemma 1 which also corresponds to the timetd
in Theorem 1 as pointed out by Remark 2.

If it is non-empty, (6) implies thatB(tdn) ⊆
⋃N−1

u=1 Sc
u(tdn)

and there are two distinct possibilities over the setB(tdn):(7)

(1) ∀Pl ∈ B(tdn), Pl ∈ Sc
1(tdn)

(2) ∀Pl ∈ B(tdn), Pl ∈
⋃N−1

u=2 Sc
u(tdn)

Case (1)
In this case, there exists at least onePl ∈ B(tdn) such that
∃!Pi ∈ A(tdn) for which NOpCVmess(Pl, Pi, tdn)=true and
NOpCVmess(Pl, Pi, tr(l, i))=false implyingPl ∈ Sc

0(tr(l, i)),
and leading to the detection of the global convergence onPl

at time tr(l, i). Hypothesis (H3) ensures thattr(l, i) < ∞
and then statement (B) is verified withtd = tr(l, i).

Case (2)
In this case,Pl ∈ B(tdn) implies that there is oneSc

u(tdn),
u ∈ {2, ..., N − 1} such thatPl ∈ Sc

u(tdn), and then by
Algorithm 1

Pl ∈
u−1
⋃

v=0

Sc
v(tr(l, i)), with i such that

Pi ∈ A(tdn) and NOpCVmess(Pi, Pl, tdn) = true

(8)

This means that each time a processor receives apartialCV
message, its number of neighbors which have not sent him a
partialCV message yet decreases by one. Moreover, we use
a union of theu− 1 first subsets because this processor may
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receive otherpartialCV messages from other neighbors in the
interval time betweentdn and tr(l, i), making it move down
by more than one subset.

Hence, by Lemma 1:

• either there exists at least onePl ∈ B(tdn) for which
Pl ∈ A(tr(l, i)), with tr(l, i) < ∞ by (H3), and we
come back to a similar context as in (7) whereA(t) 6= ∅
by replacingtdn by tr(l, i) and we obtain a recursion on
⋃N−1

u=1 Sc
u(t). (8) ensures that this recursion will empty

all the subsetsSc
u(t), u ∈ {2, ..., N − 1} and will then

converge towards case (1).
• or none of the nodes ofB(tdn) comes in the setA which

becomes empty as soon as all the nodes ofB(tdn) have
received theirpartialCV message (in a finite time by
(H3)), directly leading to Theorem 1 by Remark 2.

�

As a last remark, we can note that hypothesis (H3) also
implies that the termination of the iterative process on all
nodes happens in a finite time after the global convergence
detection on the elected node (at timetd in Theorem 1).

VI. PRACTICAL VERSION OF THE ALGORITHM

The major problem of Algorithm 1 comes from the knowl-
edge of the minimal number of iterations necessary to ensure
local convergence on each node. In real cases, it is not possible
to evaluate it and the value ofTHRESHOLDLCV cannot be
precisely known.

This constant is the critical point of our algorithm since
the local convergence detection directly depends on it and,
consequently, the global detection too. As a matter of fact,if it
is set smaller than the actual number of iterations necessary to
ensure local convergence, the algorithm may detect false local
convergences leading to a false global convergence detection.
On the other hand, if it is set larger than the correct value, local
convergences will be correctly detected as well as the global
one but with extra delays which will decrease the efficiency
of the algorithm. Moreover, the value of this constant also
depends on the desired final accuracy since it is obviously
easier, and then faster, to reach low accuracies than high ones.

Thus, even if Algorithm 1 is valid and theoretically allows
the detection of global convergence, it is not practically usable
under this form since for a given value ofTHRESHOLDLCV,
it may work in some particular cases but not for all of them.
In order to overcome this problem, we are brought to consider
our practical algorithm in the partially asynchronous context
where the delays are bounded by a given integerB such that:

∃B ∈ N, such thatt−B < ri
j(t) ≤ t (9)

Contrary to the appearances, this is not a strong weakness
of our algorithm since in practice, delays are always finite.For
arbitrarily large delays, the completion of the iterative process
is not ensured in a finite time which does not present a great
practical interest.

According to the first algorithm, we then introduce addi-
tional mechanisms around the local convergence detection:

Our practical algorithm, presented in Algorithm 4, uses
almost the same method to detect local convergence as in
Algorithm 1. Nonetheless, since in practice we cannot be sure
that local convergence is actually reached, it does not stop
the iterative process when an eventual local convergence is
detected but continues to compute the iterations and to update
preLocalCV.

In this new version, theTHRESHOLDLCV value is re-
placed by aTHRESHOLDSLCV value, which stands for
supposedlocal convergence (SLCV) and represents the number
of iterations after which we suppose that local convergencehas
been reached. This value can then be set arbitrarily.partialCV
messages are replaced bysPartialCV messages (thes is for
supposed) whose sendings are based upon these supposed local
convergences.

With this mechanism, it is possible to havepreLocalCV
which becomes true and which, a few iterations later, becomes
false again ifTHRESHOLDSLCV is smaller than the actual
threshold. So, when this happens, the supposed local conver-
gence is canceled on the node and a new kind of message
(a cancelSPartialCVmessage) is sent to the same destination
processor as the previoussPartialCV message to alert that
local convergence is not achieved anymore in this part of the
graph.

Everyone may have noted that ifTHRESHOLDSLCV is
greater than or equal to the theoretical threshold, we come
back to the context of Algorithm 1 and there won’t be any
cancellation message during the execution of the algorithm
and the global detection is correctly detected. Nevertheless, in
practical cases, theTHRESHOLDSLCV will not be chosen
too large, which is unlikely to correspond to the theoretical
value.

Finally, when a processor receives a cancellation message,
it increases its count of neighbors which are not yet in local
convergence which will prevent its own sending of apartialCV
message (if not yet performed). Nevertheless, it is possible that
the cancellation message arrives too late on a node and that the
partialCV message has already been sent by this node. In that
case, the cancellation message is forwarded to the destination
node of thepartialCV message, and so on in order to cancel
all the diffusion of the false detection.

Unfortunately, this is not yet sufficient to avoid all the false
global convergence detections. For example, let’s consider that
all the nodes but two have reached their local convergence.
For clarity, let’s call themA and B. When one of the two
remaining nodes goes into thesLocalCV state (let’s sayA),
it then sends itssPartialCV message. But, if a few iterations
later it cancels itssLocalCV state and sends acancelSPar-
tialCV message, the false global convergence detection will
be avoided onB only if the cancellation message arrives on
B beforeit has left its iterative loop.

Obviously, nothing ensures us that this message will arrive
soon enough to avoid the false detection.

Nevertheless, if we can evaluate the maximal communica-
tion time on each link in the communication graph and if these
times are finite, it is then possible to avoid the false detections
by adding an additional condition for leaving the iterativeloop.

This condition consists in waiting for a particular amount of
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time after the supposed global convergence has been found on
the elected node. This waiting is expressed in the condition
of the main iterative loop of Algorithm 4. This amount of
time (represented byMaxTraversalTimein the algorithm) is
the maximal time needed for a message to go from one node to
another one in the communication graph. Since, in this context,
all the maximal communication times between neighbors are
known and finite, thistraversal time is also finite and can be
computed.

Hence, by this scheme, we take into account all cancellation
messages sent before the time at which global convergence
is normally detected on the elected node, including those
which are in transit. When no cancellation message arrives on
the elected node during this additional time interval, global
convergence can be surely assumed.

It is interesting to see that the knowledge of maximal
time communication is not only required in the decentralized
algorithm but also in the centralized one (between the master
and all other nodes) to ensure the coherence of the detection.
However, in practical cases, an upper bound of this maximal
traversal time can always be evaluated

In fact, with this mechanism, we ensure that the global
convergence we detect actually corresponds to a time at
which all the nodes of the system are in local convergence.
Finally, this is exactly the same halting criterion as in
sequential iterative algorithms with the same assumptions
upon local convergence. The use of a threshold to detect the
local convergences can also be seen as a moderation of the
number of messages sent for the global convergence detection.

As for Algorithm 1, receipts have been placed in separated
functions and do not directly appear in the main algorithm.
But a new problem, induced by having two kinds of messages
concerning the local convergences, arises with the order of
these receipts. In some communication systems, the order of
the messages may not be respected, especially in the contextof
asynchronous algorithms. Thus, the modifications of the vari-
ablesnbNeigNotLCVand globalCV in the receipt functions
given in Algorithm 5 and Algorithm 6 must be performed only
when the received message actually corresponds to a more
recent state on the source node.

A simple solution to this problem is to associate to each
message the number of the iteration at which it is sent
from its source node, in order to be able to reorder the
messages on the destination node. So, for each receipt of
sPartialCVandcancelSPartialCVmessages, the modifications
of nbNeigNotLCVand globalCV will only occur when the
current message actually represents a more recent change of
state on the source node. These checkings correspond to the
first test in both Algorithms 5 and 6. The second test only
consists in updating the previous iteration number from this
source node, if necessary. This mechanism implies the use
of additional arrays described in Table II. For each kind of
message, they contain the greatest (and then the most recent)
iteration numbers received from each neighbor. Their size is
set toN which is not optimal but allows to directly map the
ranks of the processors on the array indices.

Concerning the function recvGlobalCV(), it is not shown

Algorithm 4 Practical version of Algorithm 1

for all Pi, i ∈ {1, . . . , N} do
nbNeigNotLCV← nbNeighbors
nbIterPreLocalCV← 0
preLocalCV← false
sLocalCV← false
globalCV← false
repeat

. . . iterative process and. . .

. . . evaluation of preLocalCV. . .
if ¬ sLocalCV then

if preLocalCVthen
nbIterPreLocalCV← nbIterPreLocalCV + 1
if nbIterPreLocalCV = THRESHOLDSLCV
then

sLocalCV← true
end if

else
nbIterPreLocalCV← 0

end if
else

if ¬ preLocalCVthen
sLocalCV← false
nbIterPreLocalCV← 0
if a sPartialCV message has already been sent
then

send a cancelSPartialCV message with the cur-
rent iteration number to the same destination
neighbor

end if
else

if nbNeigNotLCV= 0 then
globalCV← true

else
if nbNeigNotLCV= 1 then

send a sPartialCV message with the current
iteration to the last neighbor corresponding
to nbNeigNotLCV

end if
end if

end if
end if

until time period with globalCV> MaxTraversalTime
BroadCast a globalCV message to all neighbors from
which no globalCV message arrived

end for

Algorithm 5 function recvSPartialCV()
srcNode← number of the source node of the message
currentIterNum← iteration number of source node
if prevIterNumS[srcNode]< prevIterNumC[srcNode]
and prevIterNumC[srcNode]< currentIterNumthen

nbNeigNotLCV← nbNeigNotLCV - 1
end if
if prevIterNumS[srcNode]< currentIterNumthen

prevIterNumS[srcNode]← currentIterNum
end if
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TABLE II

ARRAYS USED FOR ORDER VERIFICATIONS IN FUNCTIONS

RECVSPARTIAL CV() AND RECVCANCELSPARTIAL CV()

prevIterNumS[N] array indicating, for each neighbor, the greatest
iteration number received in sPartialCV messages
until current time. Initialized to -1.

prevIterNumC[N] array indicating, for each neighbor, the greatest
iteration number received in cancelSPartialCV
messages until current time. Initialized to 0.

Algorithm 6 function recvCancelSPartialCV()
srcNode← number of the source node of the message
currentIterNum← iteration number of source node
if prevIterNumC[srcNode]< prevIterNumS[srcNode]
and prevIterNumS[srcNode]< currentIterNumthen

nbNeigNotLCV← nbNeigNotLCV + 1
globalCV← false

end if
if prevIterNumC[srcNode]< currentIterNumthen

prevIterNumC[srcNode]← currentIterNum
end if

here since it is exactly the same as in Algorithm 3.
In short, the whole mechanism described by Algorithm 4

and its additional functions prevent false global detections
by cancelingpartialCV messages when it finds false local
convergence detections. Moreover, it does not add an important
overhead after the detection of the right global convergence.

VII. E XPERIMENTS

The major interest of such an algorithm is to dramatically
enhance the flexibility of deployment of parallel iterative
algorithms. Effectively, when performing grid computing in
a global context, a very common case is to use several distant
clusters. Nevertheless, due to access constraints (firewalls,
private networks...), all the machines in a given cluster may
not be able to communicate with any other machine in another
cluster. Hence, a classical centralized convergence detection
where each node sends state messages to a master node cannot
be used.

The centralized detection can however still be used if
explicit forwarding of state messages is done between
neighboring nodes of the system. That is to say, when a
node needs to send a message to the master, it sends the
message to one of its neighbors which is closer to the master
and this neighbor will forward the message to one of its
neighbors yet more closer to the master than itself and so on
until reaching the master. This version has the advantage to
require no modification of the detection process on the master
node. Nonetheless, it is clearly more expensive in terms of
communications and delay to detect the global converge.

Finally, it is interesting to compare the efficiency of the de-
centralized version with the two other versions, the centralized
one and the forwarding one, in two classical contexts of grid
computing (local and distant). These experiments will allow us
to deduce what kind of detection algorithm to use in a given
computing context.

By efficiency, we mean the delay required to detect the
global convergence. There is no direct way to measure it
since the time at which the global detection actually be-
gins cannot be evaluated. Hence, in order to estimate the
relative efficiencies of the detection algorithms, we compare
the execution times of three variants of the same parallel
iterative algorithm. Each of them using a different convergence
detection algorithm.

To be able to test the centralized version, the grid contexts
used have no access constraints (due to security for example).
An application typically solved by iterative algorithms has
been chosen for our tests. It is a non-linear chemical problem
called the advection-diffusion problem.

A. Description of the non-linear problem

In this problem, we want to compute the evolutions of the
concentrations of two chemical species in a two-dimensional
domain. It is solved by using a discretization of the space
on a two-dimensional grid: x and z. The evolutions are given
for each point (x,z) of the grid for a given time interval by
differential equations:

∂ci

∂t
= Kh

∂2ci

∂x2
+V

∂ci

∂x
+

∂

∂z
Kv(z)

∂ci

∂z
+ Ri(c1, c2, t) (10)

where i = 1, 2 denotes the number of the chemical species
and

R1(c1, c2, t) = −q1c
1c3 − q2c

1c2 + 2q3(t)c
3 + q4(t)c

2

R2(c1, c2, t) = q1c
1c3 − q2c

1c2 + q4(t)c
2

(11)
with

Kh = 4.0× 10−6 V = 10−3

Kv(z) = 10−8e
z
5 c3 = 3.7× 1016

q1 = 1.63× 10−16 q2 = 4.66× 10−16

qj(t) = e−aj/sin(ωt) for sin(ωt) > 0
qj(t) = 0 otherwise

andj = 3, 4, ω = π/43200, a3 = 22.62 anda4 = 7.601.
The time interval is[0, 7200s] and the initial conditions are

the following

c1(x, z, 0) = 106α(x)β(z)
c2(x, z, 0) = 1012α(x)β(z)

(12)

with

α(x) = 1− (0.1x− 1)2 + (0.1x− 1)4/2
β(z) = 1− (0.1z − 1)2 + (0.1z − 4)4/2

(13)

The discretization along x and z allows us to rewrite the
system of PDEs (Partially Differential Equations) in a system
of ODEs (Ordinary Differential Equations):

dy(t)

dt
= f(y(t), t) with y = (c1, c2) (14)

The global solution of Equ.14 is computed using the finite
differences scheme. A main loop is made over the time steps,
the Euler implicit method is used to discretize the system along
each time interval and the iterative Newton method is used to
linearize the obtained non-linear system. There are two main
strategies to perform the Newton method. The first one consists
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in applying the Newton method on the entire system and
using an asynchronous parallel linear solver over the global
system. Unfortunately, several synchronizations are necessary
at each time step. In the second approach, called multisplitting
Newton, the system is decomposed into several sub-systems
which are locally solved by a sequential linear system solver
according to data dependencies between the sub-systems. In
this method, only one synchronization is needed at each time
step (see [22] for further information about this method). In
our case, the multisplitting approach has been chosen with the
GMRES method [1] as the sequential linear solver.

An AIAC algorithm has been designed to solve this problem
and three variants have been written according to the conver-
gence detection algorithm used. In each program, only the
convergence detection is different.

The particular interest of this application in our evaluation is
that it uses a series of iterative processes separated by synchro-
nizations. In each iterative process, the convergence detection
algorithm is used and then, the impact of its efficiency over
the overall execution time is more important than in a single
iterative process. So, this is a convenient example to point
out eventual differences among the convergence detection
algorithms.

B. results

Two grid contexts have been used to perform our exper-
iments. The first one is composed of ten machines : one
pentium III 833Mhz, one pentium III 900Mhz, one Pentium IV
1.7Ghz, three Athlon XP 2000, two Pentium IV 2.4Ghz, one
Pentium IV 2.6Ghz and one Athlon XP 2800, scattered over
four distant sites linked with 10Mbits/s Ethernet and ADSL
128Kb/s. The second one is a local cluster of forty PCs linked
with 100Mbits/s Ethernet containing three kinds of processor:
fifteen Duron 800Mhz, ten Pentium IV 1.7Ghz and fifteen
Pentium IV 2.4Ghz.

Our experiments have been done with no other users on the
machines. Moreover, different sizes of the non-linear chemical
problem have been used on each grid context to take into
account the different numbers of machines and then to have a
sufficient amount of computation. Discretization grids of400×
400 and600×600 points have been used for the distant cluster
and a larger grid of800 × 800 points has been used for the
local cluster which contains more machines. Using different
grid sizes is not a problem since the focus point of those
experiments is the difference between execution times of the
three tested algorithms and not their absolute values.

All our algorithms have been implemented using the free
Corba [23] ORB OmniOrb 4. It is a robust and high per-
formance ORB which is certified to be in compliance with
Corba 2.1. The most interesting features of this programming
environment for the implementation of our algorithms are the
thread support and the remote procedure call (RPC) mecha-
nism which allow us to efficiently perform the asynchronous
communications. Moreover, this choice is also related to the
facility of deployment of this environment compared to more
classical communication libraries like MPI.

The results (averages of a series of ten executions) obtained
for the three variants of convergence detection are given inTa-

ble III. They represent the total execution times (computation
and convergence detection) of the algorithm.

TABLE III

TOTAL EXECUTION TIMES (SECONDS) OF THE AIAC ALGORITHM WITH

THE THREE CONVERGENCE DETECTION ALGORITHMS

Grid context Centralized Forwarded Decentralized
Distant sites (400) 163 162 155
Distant sites (600) 649 651 639
Local site (800) 368 373 373

A first question which may arise is: what about the interest
of using machines with different powers ? In other words:
would the execution be faster on the fastest machine alone ?
In fact, it is not the case since although the slower machines
tend to slow down the global parallel progress (compared to a
cluster with the same number of machines but only containing
the fastest model), they contribute to process multiple data at
the same time and then to be faster than one machine alone.
For example, the execution on the fastest machine with the
grid size600×600 takes about 1987 seconds. Moreover, there
is also the advantage of increasing the amount of resources
to solve larger problems. For example, the execution of the
algorithm with the grid size800 × 800 is not possible on a
single machine due to memory lack.

In the local context, the centralized version is better since
communications to the master are very fast. On the opposite,in
the distant context, it is the decentralized version which always
obtains the best performances. This comes from the fact that
this method only uses communications between neighbors and
does not force the detection over a given node, which is the
case in the two other versions.

However, the interesting result is that the forwarding version
is substantially less efficient than the decentralized one in the
distant context. This is very interesting since in such cases,
only those two versions can be used due to access constraints.

Moreover, even better results could be expected for the
decentralized version with more distant machines. This is
essential for future trends of large scale grid computing.

Thus, the decentralized algorithm is not only interesting for
the deployment of parallel iterative algorithms but can also
bring better performances in the context of grid computing by
reducing the latency of global convergence detection.

VIII. C ONCLUSION

Theoretical and practical versions of a decentralized algo-
rithm for global convergence detection in parallel iterative
algorithms have been presented.

The theoretical version of this algorithm has been proved to
work correctly on all totally asynchronous converging iterative
algorithms under two classical assumptions in this domain:the
communication graph used is connected and acyclic, and the
communications between processors are performed in a finite
time.

The proposed algorithm is very useful in the context of
grid computing where the processors are distributed and where
detecting the convergence on a master processor may be
penalizing or even impossible. This is the case for large
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clusters with geographically distributed machines. It improves
the performances of iterative algorithms especially if the
communication/computation ratio is not negligible.

It has been discussed why the theoretical algorithm can-
not be directly used in practice for totally asynchronous
algorithms. Nevertheless, the practical version proposedfully
works on partially asynchronous algorithms and may eventu-
ally work on particular cases of totally asynchronous ones.All
the modifications from the theoretical version to the practical
version have been detailed and justified. It has also been shown
that the practical version uses an ending mechanism similar
to the one used for sequential iterative algorithms.

This algorithm presents several advantages. The first one
is to avoid communication bottlenecks which are inherent to
centralized versions. The second one is a larger flexibilityin
the context of global grid computing since it does not require
a strongly connected graph but only an acyclic graph. Such
a graph can always be extracted from the dependency graph
of the system. This is particularly convenient for deployments
through firewalls where some of the processors used in the
computation may be accessible only through one machine.
Experimental results have pointed out that, in such distant
contexts, the decentralized algorithm reduces the latencyof
the convergence detection and then improves the overall
performances of parallel iterative algorithms. Moreover,our
method does not involve any modification of the iterative
process as opposed to [8]. This has the double advantage to be
easier to implement and also to work surely when the iterative
process converges, which is not always the case with methods
modifying the initial iterative process. Finally, since wedo
not merge messages for the computation and messages for the
convergence detection, our method is tolerant to the loss of
computational messages

Finally, this decentralized algorithm for global convergence
detection is an important step towards the full adaptation
of parallel iterative algorithms in global grid computing,
especially for AIACs. The power of these last algorithms has
already been shown in several previous studies such as [2]
and [17], and therefore the next step is to study a powerful
and convenient environment for the deployment of an AIAC
algorithm on a global cluster.
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tant professor. His research interests include parallel
and distributed computation, numerical algorithms
and data mining. He is a member of the IEEE and
the IEEE Computer society.

Flavien Vernier graduated from the LIFC of Uni-
versity of Franche-Compté (France) in 2001. Since
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