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Dispersion Estimation From Linear Array
Data in the Time-Frequency Plane
Antoine Roueff, Jérôme I. Mars, Jocelyn Chanussot, and Helle Pedersen

Abstract—We consider the problem of estimating the dispersion
of a wave field from data recorded by a linear array of geophones.
The fact that the data we are looking at may contain several prop-
agating waves make this even more challenging. In this paper, a
new algorithm is proposed to solve this issue. Currently, there are
two methods for estimating wave dispersion described in the lit-
erature. The first method estimates the group delay function from
the time-frequency representation (TFR) of each sensor separately.
It is efficient as long as the patterns of the different waves do not
overlap in the time-frequency plane. The second method estimates
the dispersion from the two-dimensional (2-D) Fourier transform
of the profile (or more generally from a velocity-frequency repre-
sentation). This assumes that the dispersion is constant along the
entire sensor array. It is efficient as long as the patterns of the
waves do not overlap in the frequency domain. Our method can be
thought of as a hybrid of the above two methods as it is based on the
construction of a TFR where the energy of waves that propagate at
a selected velocity are amplified. The primary advantage of our al-
gorithm is the use of the velocity variable to separate the patterns of
the propagating waves in the time-frequency plane. When applied
to both synthetic and real data, this new algorithm gives much im-
proved results when compared with other standard methods.

Index Terms—Dispersion, linear array, radon transform, time-
frequency representations.

I. INTRODUCTION

ANALYSIS of seismic surface waves applied to near sur-

face structures is an increasingly important tool in civil

and seismic engineering [1]. Surface waves are highly energetic

and are dispersive because their depth penetration depends on

their wavelength (i.e., on the frequency). This implies that the

different harmonics of the wave propagate at different veloci-

ties, and consequently, the wave’s duration (in the time domain)

tends to increase with distance. Within the signal processing

community, these waves have been widely studied. Their de-

scription in the time-frequency plane is problematic because

their dispersive characteristics make the standard quadratic

time-frequency representations (TFRs) (such as the Wigner

distribution) unsuitable [2], [3]. In this paper, we consider data
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recorded by a linear array of sensors. Our approach is somewhat

different to that of the classical time-frequency literature as we

want to construct a TFR from a multisignal analysis.

We show an example of a dispersive wave in Fig. 3(a). This

synthetic profile1 of a dispersive wave has a horizontal axis refer-

encing the sample number and a vertical axis showing the sensor

number. In our case, where the array is linear, this vertical axis

can be thought of as a distance variable corresponding to the dis-

tance between the source and the sensor. From the figure, one

can see that the filter that models the propagation is not a simple

delay; there is phase distortion of the wave. In this paper, we

focus on the estimation of the dispersion of surface waves from

a seismic profile. The fact that we consider data containing sev-

eral wave fields adds to the difficulty of this problem. Actually,

when estimating the dispersion of one wave, the noise part of

the data that disturb this processing is the random noise and the

other waves that are also present in the data.

This analysis has two applications. First, in civil engineering,

the parameters of the dispersive waves make it possible to in-

vert for the shear velocity as a function of depth. Second, in

petroleum exploration, energetic surface waves are often con-

sidered as noise, and the relevant signal part of the data cor-

responds to volume waves. Consequently, the rejection of the

surface waves (simplified by dispersion estimation) greatly im-

proves the signal-to-noise ratio (SNR) [4], [5].

Two groups of methods are proposed in the literature for

the estimation of dispersion. The first group is based on an

improved interpretation of the TFRs for each trace separately

[6]–[8]. These one-dimensional (1-D) methods lead to the es-

timation of the group velocity between the source and each

sensor. The second set of methods is a multisensor analysis that

leads to a global (or mean) estimation of the phase velocity be-

tween the sensors using velocity-frequency representations [9],

[10]. The advantages and drawbacks of those two classical ap-

proaches are reviewed in Section II. As explained in Section III,

our method takes advantage of the classical ones by designing a

multisensor analysis in the time-frequency plane. Section IV is

devoted to the application of the different methods to real data.

II. CLASSICAL METHODS OF DISPERSION ESTIMATION

A. One-Dimensional Analysis

The first set of classical methods to be discussed here is

based on single sensor analysis (1-D analysis). To illustrate

these methods, we consider a signal containing a synthetic

wave recorded by a sensor at the distance from the source.

1A profile is the image formed by the stacking of the different recorded
signals.

1053-587X/$20.00 © 2005 IEEE
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Fig. 1. Estimation and correction of dispersion using a reassigned
spectrogram. (a) Initial record. (b) Reassigned Spectrogram. (c) Record
after dispersion correction.

The time representation of such a signal is shown in Fig. 1(a).

The transfer function between the source and the sensor is

denoted by . This method assumes that there is no attenuation

during the propagation, so the modulus of the Fourier transform

(FT) of [denoted by ] is equal to 1

(1)

where is the phase of , (i.e., ).

When it is assumed that, at the source, all the harmonics of the

wave are localized at the same instant , the transfer function

can be written as

(2)

where is the group delay of the wave at frequency as it

is defined in the signal processing community, and is

the group delay of the wave between the source and the sensor at

Fig. 2. Examples of issues of overlap for ridge estimation of several waves.
(a) Signal 1 (scalogram). (b) Signal 1 (reassigned scalogram). (c) Signal 2
(scalogram). (d) Signal 2 (reassigned scalogram). (e) Signal 1+2 (scalogram).
(f) Signal 1+2 (reassigned scalograms).

frequency . This delay is directly related to the group velocity

by

(3)

To estimate the dispersion, we need to calculate . From

(2), the unknown function to be estimated is . Different

methods are available to estimate depending on the TFR

used [11]–[13]. In this paper, we use the ridge of the reassigned

spectrogram (or scalogram) [14] as proposed by Pedersen et al.

in [8]. The delay at each frequency is estimated as

the duration between the origin and the ridge of the pattern

of the wave, as illustrated in Fig. 1(b). This method estimates

efficiently . However, when there is no a priori information,

two parameters, namely, the phase shift and the delay

from (2), are unknown and are arbitrarily fixed.

Once is estimated, it is possible to compensate for the prop-

agation of the wave. Fig. 1(c) shows the signal , filtered by

, which is concentrated around . The major issue

with this 1-D technique is that in the presence of several waves

with close time-frequency locations, there may be some over-

lapping phenomena between the patterns of the different waves.

As a consequence, the ridges of the different components may

be impossible to characterize. This is illustrated in Fig. 2, where
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Fig. 3. Profile filtered at frequency f . (a) Initial profile. (b) j2DFT j of (a).
(c) Filtered profile by a complex exponential. (d) j2DFT j of (c).

both scalograms and reassigned scalograms are shown. In (a)

and (b) or (d) and (e), the ridges can easily be defined, but in (c)

and (f), the patterns overlap, making interpretation impossible.

Note that in this paper, we intend to compare different dis-

persion estimation methods from a seismic profile whose dis-

persion is assumed to be spatially stationary (i.e., constant all

along the sensor array). The application of this 1-D method to a

profile is performed by estimating the dispersion at all the indi-

vidual sensors, and afterwards, a global result is found by taking

the mean of the different estimations [7]. This method is suitable

when only a few sensors are available.

B. Multisensor Analysis

The second set of classical methods presented is based on

multisensor analysis. To introduce them, we study a synthetic

dispersive wave [refer to the time domain Fig. 3(a)]. In Fig. 3(b),

we show the modulus of the two dimensional Fourier transform

(2DFT, which is also called the – spectrum2) of the profile

[4]. The temporal and spatial frequencies are, respectively, re-

lated to the time and distance (number of sensor) variables. Note

that in the frequency domain, the space variable is no longer on

the vertical axis but on the horizontal one. The – spectrum

is typically represented in this way by the geophysical commu-

nity. All axes use normalized frequencies, and within the –

images, we focus on the 0 to 0.3 temporal frequencies.

As we will show later, the nonlinearity of the pattern gives ev-

idence of the wave’s dispersion. The dispersion between sensor

and sensor is characterized by the transfer function

denoted . Denoting as the dispersive wave at sensor ,

we get , where stands for the convolu-

tion operator. the Fourier transform (FT) of can be

2In the name f–k spectrum, the f refers to temporal frequency and the k to
the wave number linked to the spatial frequency.

written , where is the phase

of . As stated in the previous paragraph, the dispersion is

assumed to be spatially stationary along all the sensors (i.e.,

), and the modulus is assumed to be equal to one

(no attenuation). Thus, . The phase velocity

is directly related to by

(4)

where is the distance between two sensors.

In presence of one dispersive wave, the th trace is equal to

the original wave convolved times with :

(5)

Hence, the profile in the time-space domain can be modeled

by

(6)

where is the sensor number, is time, and

is the temporal Fourier transform (FT ) of .

The estimation of for a given temporal frequency

using classical multisensor methods is two-step process. First,

the profile at frequency is analyzed by computing the tem-

poral Fourier transform at . In time, the filtered profile denoted

by becomes

(7)

which is equal to

(8)

This results in the profile shown in Fig. 3(c) in the time do-

main (real part) and in Fig. 3(d) in – space. The second step in

the estimation of is to find the correction that aligns the

sinusoids in Fig. 3(c). This second operation actually estimates

the correction that compensates for the dispersion at . For

this particular correction, the delay between one sensor and the

next is null. Thus, in the frequency domain, this corresponds to

the case where the point is located at the zero value on the spatial

frequency axes (vertical) in Fig. 3(d) (see the arrow). In practice,

two corrections are used to align the sine waves. The first one is

a phase shift of the profile. More precisely, it corresponds to the

application of a phase shift to each trace (of the profile).

The second one is a delay of the profile. It corresponds to the

application of the delay to each trace .

In both cases, the criterion to find the best correction is the

maximization of the energy of the signal corresponding to the

summation of all traces (after correction). In the first case, the

signal corresponding to the summation of all traces is

(9)

which leads to

(10)
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and then to

(11)

Thus, the phase shift that maximizes the energy of

is

(12)

This is equivalent to

(13)

This leads to

(14)

where stands for modulo .

Replacing by and applying a similar procedure to

all s leads to a two–dimensional (2-D) representation

that is actually the 2-D Fourier transform (2DFT) of

[9]. Its modulus is shown in Fig. 3(b), where one can visualize

at the point of maximum energy in

each line (each frequency). Note that the modulo results in

an aliasing effect in the – pattern, which can hinder our un-

derstanding of this frequency representation. For this reason, the

pattern is split into two parts.

In the second case, we apply a delay correction to the pro-

file. Since the calculation is similar, the signal corresponding to

the summation of all traces is given by

(15)

which leads to

(16)

Thus, the delay , which maximizes the energy of

, is

(17)

This is equivalent to

(18)

which leads to

(19)

Fig. 4. Delay-frequency representation.

Applying a similar procedure to all s leads to a repre-

sentation (referred to as a slant stack representation [10]). Note

that this representation is actually the Fourier transform of the

Radon transform [15]. Its modulus image is shown in Fig. 4;

at the point of maximum energy for each line (i.e., each fre-

quency), one can read . Note that this

time aliasing depends on frequency (see Fig. 4).

These two classical multisensor methods are fast and result

in good estimations of the phase velocity between the sensors

( ). In fact, these are the most widely used methods when

dealing with large profiles (i.e., many traces). In addition, in

the presence of several propagating waves where the frequency

patterns of the different waves do not overlap, the analysis can

be applied to each pattern independently because Fourier and

Radon transforms are linear.

In practice, the main issue with these methods is trying to

guarantee the condition of spatial stationarity (which means

that is constant along all the different sensors) because the

dispersion depends on the state of the ground, which may vary

between the sensor array. This issue can be solved by processing

the profile with a sliding window selecting only a few traces

[16]. However, the consequence of applying these methods

to only a few traces is that the spatial frequency resolution,

which is inversely proportional to the number of used sensors

( ) may be low. Thus, when we have several waves

with similar frequency locations and velocities, overlapping

phenomena become a problem. To illustrate this phenomenon,

we consider a synthetic profile with four propagating waves

[see Fig. 5(a)]. Two are nondispersive waves with the same

negative velocity, and two are dispersive waves with positive

velocity. When the number of sensors is large (50 sensors),

the – image [Fig. 5(b)] and slant stack image [Fig. 6(a)]

are still useful, even if the different wave patterns overlap in

the image. However, when the number of sensors drops to ten

[keeping traces from 31 to 40; see Fig. 5(c)], the corresponding

velocity-frequency representations [see Figs. 5(d) and 6(b)] are

no longer useful.

To summarize, the two classical methods for performing

dispersion estimation are based either on single-signal time-fre-

quency or on multisignal velocity-frequency representations.

We have outlined the advantages and drawbacks of these

methods using a synthetic example. In the next section, we

present a new algorithm, which is a combination of these two
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Fig. 5. Examples of spatial resolution issues in the f–k representation.
(a) Profile with 50 traces. (b) j2DFT j of (a). (c) Profile with ten traces.
j2DFT j of (c).

classical methods. Its application is also illustrated using the

same synthetic profile.

III. PROPOSED METHOD

A. Time Resolution

As we described in the previous section, in presence of several

waves, the standard 1-D method uses the time variable in order

to separate the patterns of the different waves, whereas the stan-

dard multisignal method uses the velocity variable to separate

the patterns of the different waves. Basically, these methods are

complementary. The method we propose will make use of both

the time and velocity variables to separate the different wave

patterns. There are two ways of presenting our method. On the

one hand, it can be considered to be an – spectrum representa-

tion, where time-resolution is introduced. As we will see in this

section, the introduction of time resolution is done by analyzing

the profile around each temporal frequency with a short time

duration sine wave instead of the complex exponential .

On the other hand, the method can also be seen as the construc-

tion of a TFR, where the energy of waves which propagate at a

selected velocity are amplified. This will be highlighted in the

next section.

This section will be presented in a manner similar to that of

the previous one, where multisignal analysis was discussed. The

main difference to note is that when one analyzes the profile at

the temporal frequency to estimate , we convolve the

profile with a short time duration sine wave localized around

noted instead of convolving it with the complex exponential

. This wavelet (where )

is a bandpass filter. In this paper, we use the Morlet wavelet,

Fig. 6. Examples of spatial resolution issues in the slant-stack representation.
(a) Profile with 50 traces. (b) Profile with ten traces.

Fig. 7. Example of the frequency resolution issue. The amplitude maxima of
the curves are normalized to 1. On the left is the FT modulus of the profile p,
on the right is the FT modulus of the wavelet  , and in the middle is the FT
modulus of the filtered profile p .

which is a sine wave with a Gaussian envelope. The filtered

profile can be written as

(20)

The filters applied are local in time. The increase in time reso-

lution and the consequently decreased frequency resolution are

shown by comparing Figs. 3(c) and 8(c), and Figs. 3(d) and

8(d). One of the problems with low-frequency resolution is that

the product of the wave spectrum and the wavelet spec-

trum is not necessarily centered at (see Fig. 7). This

means that when we find the correction that aligns the wavelets

in Fig. 8(c) and moves the pattern on the spatial frequency axes

(vertical) in Fig. 8(d), we estimate the correction that compen-

sates the dispersion at and not . Our final

goal is to estimate the function . To address this

issue, the main frequency is estimated using the instanta-

neous frequency of the filtered signal [17] (we will return to

this point after having described the proposed algorithm in Sec-

tion III-B). When several estimations are available, the func-

tion is estimated by extrapolating the function

.

Assuming that the function can be differentiated

twice, it is possible to consider a wavelet whose bandwidth is

small enough compared with the derivative of the curvature of

the ridge in Fig. 8(b) so that we can assume that the pattern in
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Fig. 8. Profile filtered by the wavelet. (a) Initial profile in time. (b) j2DFT j

of (a). (c) Profile filtered by the wavelet. (d) j2DFT j of (c).

Fig. 8(d) is a linear segment. This is equivalent to assuming that

the phase of the propagation filter can be approximated around

, to the first order, by

(21)

By defining and

, this can be rewritten as3

(22)

Substituting (22) into (20) leads to

(23)

which is equal to

(24)

This means that the propagation of can be approximated by

the phase shift followed by the delay . This is in

agreement with the observation in Fig. 8(c). Thus, the dispersion

at can be compensated by inserting a phase shift and a

delay [symbolized by both arrows in Fig. 8(d)].

In order to estimate the correction (phase shift delay) that

compensates for the dispersion, we consider the summation of

all traces after correction:

(25)

3Here, � (f ) is the delay between two sensors and not between the sensor
and the source. like in Section II-A.

Fig. 9. Propagation compensation of the filtered profile p on (a) the first

sensor (a) and on (b) the last sensor.

which becomes

(26)

It is clear that the dispersion is compensated when

( ).

When this occurs [see Fig. 9(a)], the sum is localized in time

because and are both localized in time. In addition, if we

choose to be an analytic symmetric wavelet, the maximum

magnitude of is located on the arrival time of the wave (at the

frequency ) on the first trace.

In practice, the waves, when several are present, usually leave

at the same instant from the source. Thus, they have more chance

to be separated in time when arriving at the last sensor. There-

fore, instead of compensating the propagation to get the arrival

time of the wave on the first sensor, we reverse the distance

axis. In this way, when the propagation is compensated, one

gets Fig. 9(b), and the maximum magnitude of is

located at the arrival time of the wave on the last sensor (noted

).

In the standard multisignal method, we apply one correction

(phase shift or delay), and we store the energy of the signal cor-

responding to the sum of all traces. In our method, we apply two

corrections (phase shift and delay), but we actually want a third

piece of information: the arrival time of the wave on the

last sensor. To estimate , we propose for each arrival time

on the last sensor to look for the maximum magnitude on the
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signal corresponding to the sum of all traces among all double

corrections (phase shifts and delays):

(27)

where .

The advantage is that in presence of several waves with dif-

ferent arrival times has several local maxima localized at

the different arrival times. Furthermore, in order to concentrate

the patterns around the local maxima of , when estimating

the maximum of magnitude of , we only consider

the corrections for which has a local

maximum at :

(28)

where is the set of all pairs such that

has a local maximum at .

At this step, the frequency is still unknown. It must be

estimated for each double correction using the instantaneous

frequency

(29)

where is the phase of .

Then, for each arrival time , an estimation of the phase

is given using (22):

(30)

In our example with one wave, the magnitude function

results in one maximum localized at the arrival time of the wave

on the last sensor and at this sample .

B. Application to All Frequencies

The previous paragraph details how our algorithm performs

the estimation of at a specific frequency . Applying a

similar procedure to each frequency means that we apply a filter-

bank to the profile and then, for each filter output, look

for the correction that maximizes the magnitude of the sum of all

traces. As the filtering operation is linear, we can apply the fil-

terbank after the correction and the summation of the traces and,

thus, estimate the best correction for all the frequencies simul-

taneously. This has the advantage of greatly reducing the cost of

calculation because the set of corrections are applied only once.

The application of this operation means that for each delay and

phase shift correction, we apply a linear TFR to the signal cor-

responding to the summation of all traces to visualize where in

the time-frequency plane the summation amplifies the energy.

Stacking the different TFRs deduced from the different correc-

tions leads to a volume that can be interpreted as a time-fre-

quency-velocity volume. However, in order to visualize all this

information, we choose to project this three-dimensional (3-D)

information onto the time-frequency plane: For each (time, fre-

quency) location, we look for the maximum magnitude among

Fig. 10. Proposed algorithm. (Left) Initial profile. (Middle) Different time-
frequency images associated with different corrections. (Right) Information we
retain: a magnitude image and its corresponding correction arguments.

Fig. 11. Algorithm to generate five time-frequency images.

all the time-frequency images. This is illustrated in Fig. 10,

where on the right, we obtain the magnitude image and both of

the corresponding argument correction images: delay and phase

shift, respectively. Note that in order to simplify the legibility

of the data, we plot all the pixels whose value on the magnitude

image is smaller than 1% of the maximum of the image in white.

In order to have a good TFR, the linear TFR we choose is

the continuous wavelet transform (CWT) [13], [18]. In addition,

the mother wavelet should be symmetric, analytic, and have a

good TFR that is similar to seismic waves. For these reasons,

we choose the Morlet wavelet [19].

The resulting algorithm is detailed in Fig. 11. On completion

of the algorithm, we obtain five images in the time-frequency

plane, giving, respectively, the magnitude , the delay

, the phase shift , the frequency and

the dispersion phase estimators . Four of these images

are shown in our synthetic example (see Fig. 12). The image

of is not shown because it has no visual interest. Note

that the magnitude image is very similar to the TFR of the wave
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Fig. 12. Description of the data by four time-frequency images. (a) Magnitude
image I (t; f). (b) Delay image I (t; f). (c) Phase shift image I (t; f).
(d) Phase image I (t; f).

on the last sensor. The spreading of the pattern in time is pro-

portional to the number of sensors present. In order to obtain

the narrowest pattern, one should use only two sensors. How-

ever, increasing the number of sensors is sometimes necessary

when noise is present in the data. Usually, one knows if there is

some noise in the data by looking at the time-frequency patterns

of the amplitude image. This noise can either be random or an-

other wave field. Following this, the pattern on the magnitude

image is used to estimate a new ridge. This is shown in black on

the four images. Then, from the location corresponding to this

ridge, the delay and the phase can be read from

Fig. 12(b) and (d), respectively. Their corresponding frequency

is read from the image of . Finally, by extrapolating

the curve and , one can simulta-

neously estimate the dispersion phase and group delay between

the sensors.

Note that this algorithm could be more efficient if some a

priori knowledge of the wave’s velocity is available. For ex-

ample, if after analysis with the classical Fourier methods we

know the approximate wave velocity, we can insert a test line

into the algorithm (see Fig. 11) to remove some unwanted cases.

Now, we apply our algorithm to the previous synthetic ex-

ample (see Fig. 5), where four waves are present within the

profile (composed of ten sensors). We use the a priori informa-

tion that the dispersive waves in which we are interested have a

positive velocity. Therefore, only positive delay corrections

have be applied. The propagations of nondispersive waves have

yet to be compensated. Thus, when we estimate the maximum

magnitude among all corrections, only the dispersive waves are

present. In addition, thanks to the time resolution (see the re-

sulting Fig. 13), both dispersive waves are separated, and they

do not overlap in the time-frequency plane. In this example,

our algorithm manages to separate the waves, whereas classical

Fig. 13. Four time-frequency images showing both dispersive waves.
(a) Magnitude image I (t; f). (b) Delay image I (t; f). (c) Phase shift image
I (t; f). (d) Phase image I (t; f).

Fig. 14. Dispersion estimation result for a dispersive wave. (a) j2DFT j of the
dispersive wave. (b) j2DFT j after correction.

methods do not (see Figs. 2 and 5). Finally, for both disper-

sive waves, the group delay and the phase can be

read from images (b) and (d) of Fig. 13 at the position corre-

sponding to the ridge in the pattern of the corresponding wave

(one of these ridges is shown in black in Fig. 13). In order to

check our results for the synthetic wave, we plot, in Fig. 14, the

– spectra before and after correction for the dispersion of the

wave. The image shows that the dispersion has been perfectly

compensated for and has been correctly estimated.

The presented algorithm is related to both velocity- and time-

frequency representations but is more robust since it can use

time and velocity variables to separate the different waves. Our

method actually constructs a TFR of the waves as they arrive at

the last sensor and, to do it, simultaneously uses the information

in all the traces.

C. Computation Cost Discussion and Parameter Settings

From a computational point of view, our method is not com-

petitive with the standard methods since we need to estimate two

corrections (phase shift and delay) instead of one. Applying our
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Fig. 15. Love wave dispersion correction. (a) Initial profile. (b) j2DFT j of
(a). Results using (c) and (d) the standard Fourier method and (e) and (f) the
proposed method.

method to large profiles will require to introduce optimization

tools because what takes time is the application of the entire cor-

rection family .

Choosing this family, and thus affecting the calculation time,

is the main parameter-setting issue. If we want to be very ac-

curate in the estimation of , we need to try many

corrections. In all the presented examples (synthetic and real),

we used 0.1 samples as a delay step and 0.02 rad as a phase shift

step. The maxima and minima values of delay and phase are ar-

bitrarily chosen.

IV. RESULTS FROM REAL DATA SETS

A. First Real Data Set

The first real data set we consider is shown in Fig. 15(a) and

(b), in time-distance and in – space, respectively. It contains a

Love wave (surface wave). In the – image, it appears that the

dispersive wave’s pattern is not perfectly defined; a high-fre-

quency component of the pattern seems to be separated from

the main one. This is due to substrate variations between the

sensors. When the dispersion is estimated for the whole profile

using velocity-frequency representations [1], it is not possible

to align the high-frequency part of the image [see Fig. 15(c) and

(d)]. When we apply our algorithm, we estimate the dispersion

using a sliding window, which is two sensors wide, ensuring that

Fig. 16. Comparison between a reassigned scalogram and a magnitude image
for the presented algorithm. (a) Reassigned scalogram. (b) Magnitude image
I (t; f).

Fig. 17. Estimation and extraction of the energetic wave from the CGG data
set. (a) Initial profile. (b) j2DFT j of (a). (c) Estimated profile of the wave.
(d) j2DFT j of (c). (e) Profile after extraction. (f) j2DFT j of (e).

there are no problems due to propagation evolution between sen-

sors. Fig. 15(e) and (f) shows the profile after dispersion correc-

tion using our proposed method. These plots clearly show that

the dispersion is far more efficiently corrected than by using the

standard method. The shape variation along the wave that still

occurs in Fig. 15(e) is due to attenuation, which is not compen-

sated. On the first few sensors, the high-frequency content of the

wave has yet to disappear. This approximation does not disturb

the phase estimation as it is based on phase alignment. This ex-

ample demonstrates that our algorithm only needs two sensors

to estimate the propagation between two sensors.
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Fig. 18. Time-frequency description of two traces from the CGG data set.
(a) Scalogram of trace 5. (b) Reassigned scalogram of trace 5. (c) Scalogram
of trace 10. (d) Reassigned scalogram of trace 10.

In comparison, the standard 1-D method is not able to find

the phase between the sensors but only the group delay

between the source and the sensor. Using (2), we can find the

phase, but the estimation of the phase shift requires extra

processing. In order to compare the visual quality of the TFR re-

sulting from our approach with that of the 1-D methods, the reas-

signed scalogram of a trace is shown in Fig. 16, as is the resulting

magnitude image obtained using our algorithm. The results are

similar, but the reassigned scalogram is noisier, and our method

is more accurate. In addition, this also shows that the standard

1-D method is more sensitive to the noise than our method. As

noise increases, the 1-D methods can no longer be used as their

TFRs are no longer useful. Our proposed our method is still ef-

ficient as we can increase the size of the sliding window to stack

the traces so that the noise becomes negligible.

B. Second Real Data Set

We now consider a second real data set supplied by the Com-

pagnie Générale de Géophysique (CGG). The profile is shown

in Fig. 17(a) in the time-distance domain. The – space rep-

resentation in Fig. 17(b) shows an energetic wave at the coordi-

nates ( , 0.12). The analysis of scalograms and reassigned

scalograms in Fig. 18 enables us to observe an energetic wave

[located at the coordinates (40, 0.12)], as well as another pattern

to its right at coordinates (110, 0.07). However, this is not per-

fectly clear, the images are noisy, and the ridge of the wave on

the right does not enable to estimate its propagation.

Compared with magnitude images of the 1-D method, the

time-frequency images given by our method presented in Fig. 19

are better. The magnitude images have less noise. In addition,

the delay images show some coherence, which enables us to

localize more easily the waves and provide additional informa-

tion: its propagation. For instance, the wave located to the right

of the point (110, 0.08) is clearly detectable in both traces.

Fig. 19. Proposed description of the CGG data set. (a) Magnitude image
I (t; f) (trace 5). (b) Delay image I (t; f) (trace 5). (c) Magnitude image
I (t; f) (trace 10). (d) Delay image I (t; f) (trace 10).

We can ask why this wave does not appear in the – image

[see Fig. 17(b)]. To address this, we must estimate the energetic

wave and then extract it from the profile [see Fig. 17(c) and

(d)]. By looking at the residuals in Fig. 17(e) and (f), it appears

that the wave on the right was not visible in the – image

because both wave patterns overlap at the point ( , 0.08).

This explains the presence of some oscillations in Fig. 17(b) at

that point. We can conclude that – image does not allow us to

identify the wave on the right. This example serves to show us

that – images are not useful, whereas TFRs are, when waves

have similar velocities but different arrival times.

V. CONCLUSION

A new algorithm aimed at estimating the wave dispersion

from a linear array of sensors has been presented. The proposed

method is based on the construction, from multisignal data, of a

time-frequency representation of the propagating waves as they

appear on the last sensor. The advantage is that we can select

waves that propagate at a known velocity in this time-frequency

image. Thus, this algorithm allows for efficient estimation, even

when the different waves have similar velocities or nondisjoint

time support. This is an advantage when compared with stan-

dard methods, which fail in either one of these situations.

However, from a practical point of view, it is important to

underline that the application of our algorithm to large profiles

would be far more computationally expensive than the use of

classical methods. This is due to the fact that our method re-

quires that we find two corrections instead of one, as per the

classical ones. To reduce this problem, it will be necessary to

use a priori information and optimize the calculation for the re-

maining unknown parameters.
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