
HAL Id: hal-00096280
https://hal.science/hal-00096280

Preprint submitted on 19 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On differential interaction nets and the pi-calculus
Thomas Ehrhard, Olivier Laurent

To cite this version:
Thomas Ehrhard, Olivier Laurent. On differential interaction nets and the pi-calculus. 2006. �hal-
00096280�

https://hal.science/hal-00096280
https://hal.archives-ouvertes.fr

On Differential Interaction Nets and the Pi-Calculus

Thomas Ehrhard and Olivier Laurent

Preuves, Programmes & Systèmes

September 11, 2006

Abstract

We propose a translation of a finitary (that is, replication-free) version of the pi-calculus into promotion-
free differential interaction net structures, a linear logic version of the differential lambda-calculus (or,
more precisely, of a resource lambda-calculus).

For the sake of simplicity only, we restrict our attention to a monadic version of the pi-calculus, so
that the differential interaction net structures we consider need only to have exponential cells.

We prove that the nets obtained by this translation satisfy an acyclicity criterion weaker than the
standard Girard (or Danos-Regnier) acyclicity criterion, and we compare the operational semantics of the
pi-calculus, presented by means of an environment machine, and the reduction of differential interaction
nets.

Differential interaction net structures being of a logical nature, this work provides a Curry-Howard
interpretation of processes.

Introduction

Since the introduction of Linear Logic by Girard, it was clear to many logicians and computer scientists that
some deep connection between this new logical setting and concurrency should show up. Indeed, linear logic
proofs admit a proof net representation which has a very asynchronous and local reduction procedure. This
impression has been enforced by the introduction of interaction nets by Lafont in [Laf95], where this kind of
local and asynchronous interaction is generalized, showing that general recursion can be represented in such
a setting, thanks to the interaction combinators of [Laf95].

In the same line of ideas, many semantical investigations of linear logic have insisted on the parallel flavour
of the tensor connective of linear logic: one should mention here the Petri net interpretation of linear logic
by Engbberg and Winskel [EW97], and many other works such as the concurrent games of Abramsky and
Melliès [AM99] or the linear logic analyzis of processes by Beffara [Bef05]. The recent syntactic investigations
of Curien and Faggian [CF06] on L-nets are going in the same direction, proposing a wide spectrum of “degrees
of concurrency”, ranging from the extreme sequentiality of ludics [Gir00] to the asynchrony of proof nets.

We think however that all these attempts towards “concurrent” interpretations of linear logic missed a
crucial point of true concurrency, such as modelled by process calculi like Milner’s π-calculus (see [Mil93,
SW01]), namely its intrinsic non-determinism.

This failure is easily understandable since there is an apparent contradiction between non-determinism
and the Curry-Howard approach to computation consisting in identifying proofs and programs. Indeed, one
of the main properties that one expects from a well-behaved proof system is not only that it possesses a
cut-elimination procedure, but also that this procedure enjoys a confluence property similar to the Church-
Rosser property of the lambda-calculus. But confluence is a way of expressing determinism in a rewriting
setting: typically, it implies that a closed proof of boolean type cannot reduce to true and also to false.

For instance, it has been one of the main achievements of linear logic to allow representations of clas-
sical logic which have the same provability power as standard classical logic, but with a Church-Rosser
cut-elimination procedure, whereas the standard cut-elimination of classical Gentzen sequent calculus is

1

essentially non-deterministic (any two proofs of the same formula are identified by the corresponding equiv-
alence relation). Thanks to linear logic and also to Parigot’s lambda-mu calculus, classical logic is now
understood as the logical side of a Curry-Howard correspondence whose computer science side corresponds
to functional languages extended with call-cc like programming constructs.

But one can advocate that non-determinism is not an absolute concept, and that the non-determinism
of classical cut-elimination, where all the elements of the same type are identified, is an extreme situation
which is not desirable, even in concurrent settings.

In “static” – as opposed to game-theoretic – denotational semantics, determinism is modelled by means
of the notion of coherence, which can be a combinatorial graphical concept as in coherence spaces [Gir87]
or hypercoherences [Ehr93], or defined in terms of a norm on a vector space as in [Gir99, Gir04] (in that
case, a vector is “coherent” if its norm is less than 1). In both cases, the effect of coherence is to prevent the
formation of arbitrary unions (in the first case) or sums (in the second case).

But one knows since the introduction of powerdomains by Plotkin in [Plo76] that denotational seman-
tics can be extended with a reasonable amount of non-determinism, corresponding for instance to a non-
deterministic choice operator – non-deterministic extensions of the lambda-calculus and of PCF have been
designed, with this kind of operational features, and powerdomain-based denotational semantics. Even more
drastically, if one renounces to the domain-theoretic viewpoint on semantics, or more precisely, to the fact
that the domain interpreting the types should have some kind of built-in coherence, or compatibility notion,
then there are no obstacles to define models of lambda-calculi, or of linear logic, which admit non-determinism
under the guise of the possibility of defining arbitrary joins (or unions, or sums) of points.

Such a model of the lambda-calculus has been first designed by Girard: this is the quantitative semantics
of [Gir88], where types are interpreted by sets and a morphisms from a set S to a set T is a normal functor
from the category Set

S (Set being the category of sets and arbitrary functions) to the category Set
T , that is,

a functor preserving all directed limits and binary pullbacks. Such functors can be represented as powerseries
whose coefficients are sets (they turn out to be a special case of Joyal’s analytic functors, see [Has02]).

Using vector spaces [Ehr02, Ehr05], the first author designed finitary1 versions of quantitative semantics:
the corresponding algebraic constructions are very natural in linear logic which has, at least at an intuitive
level, strong connections with multilinear algebra. Types being interpreted as vector spaces, it becomes very
natural to add proofs and multiply them by scalars, since proofs are interpreted by vectors. Other operations,
which were absent from linear logic (and of course from classical and intuitionistic logic or lambda-calculus)
such as differentiation become quite natural as well, and strongly use the possibility of adding vectors, that
is, the non-determinism of the model: think of Leibniz laws (uv)′ = u′v + uv′.

Fortunately, this extended semantical framework has a nice proof-theoretic counterpart, which corre-
sponds to a simple extension of the rules that linear logic associates with the exponentials, recovering, at
the exponential level, a symmetry that linear logic possesses for its multiplicative and additive connectives.
In this differential setting, the weakening rule has a mirror image rule called coweakening, and similarly
for dereliction and for contraction, and the reduction rules have the corresponding mirror symmetry. The
corresponding formalism of differential interaction nets has been introduced in a joint work by the first
author and Regnier; see [ER04] where an intuitive explaination of the connection between these nets and
the elementary differential calculus is provided.

Cocontraction is a particularly interesting rule. Remember that, when representing the lambda-calculus
in proof-nets, following the most natural translation proposed by [Gir87], the argument of type A, say, of
an application has first to be promoted and turned into a net of type !A. This has the effect of making this
argument duplicable by the function which will use it. Now cocontraction allows to take two (or more) such
promoted arguments, and to put them together into a kind of compound argument, that the function will
use, picking non-deterministically one or the other of the various terms (or nets) which have been promoted
and then glued together by this operation. More precisely, this non-deterministic choice will occur when the
compound argument will arrive in head position, and it is the role of the dereliction rule of linear logic to
perform this choice, and then to open the “promotion box” of the branche of the cocontraction which will
have been chosen — in usual proof-nets, no such choice has to be performed, and the role of the dereliction

1Where coefficients are finite numbers, instead of being arbitrary sets.

2

rule is simply to open the box.
In a joint work with Kohei Honda [HL06], the second author proposed a translation of a version of

the π-calculus in proof-nets for a version of linear logic extended with the cocontraction rule. The basic
idea consists in interpreting the parallel composition as a cut between a contraction link (to which several
emitters are connected, through dereliction links) and a cocontraction link, to which several promoted
receivers are connected. Being promoted, these receivers are replicable, in the sense of the π-calculus. The
other fondamental idea of this translation consists in using linear logic polarities for making the difference
between emitters (negative) and receivers (positive), and of imposing a strict alternation between these
two polarities. This allows to recast in a polarized linear logic setting a typing system for the π-calculus
previously introduced by Berger, Honda and Yoshida in [BHY03].

This translation behaves quite well, in the sense that π-calculus reduction is faithfully simulated by
the reduction of linear logic proof-nets and therefore has to be considered as the first really convincing
Curry-Howard interpretation of processes. It has however two features which can be considered as slight
defects. First, it does not host very naturally linear receivers, since receivers must be promoted2 for getting
the right exponential type, and then they become indefinetely replicable. Second, this translation is not
really modular, in the sense for instance that the interpretation of the parallel composition of two processes
can hardly be described by connecting together the corresponding proof-nets through their conclusions (by
cut links): some surgery has to be performed on the nets for extending the arity of their contraction and
cocontraction trees.

Principle of our translation of processes to differential net structures

The purpose of the present paper is to continue this line of ideas, using more systematically the new structures
introduced by differential interaction nets. One should mention here that translations of the π-calculus into
nets of various kinds, subject to local reduction relations, have been provided by various authors (cf. the
work of Laneve, Parrow and Victor on solo diagrams [LPV01], of Beffara and Maurel [BM05], of Milner on
bigraphs [JM04], of Mazza [Maz05] on multiport interaction nets etc.). However these settings are not clearly
related to a “logical” interpretation, whereas differential interaction nets have a straightforward denotational
semantics3 and can also be seen as an asynchronous notation for a sequent calculus, just as the proof-nets
of linear logic.

The first key decision we made, guided by the structure of the typical cocontraction/contraction cut
intended to interpret parallel composition, was of associating to each free name of a process not one, but
two free ports in the corresponding differential interaction net. One of these ports will have a !-type and will
have to be considered as the input port of the corresponding name for this process, and the other will have
a ?-type and will be considered as an output port.

Therefore, for interpreting parallel composition, a simple cut implemented as a wire able to connect only
pairs of ports was no more sufficient. More complex structures, able to connect pairs of wires, and not only
wires, became necessary. We discovered such structures and called them broadcast areas : they are obtained
by combining in a completely symmetric way generalized4 cocontraction and contraction cells. There are
broadcast areas of any “arity” (number of pairs of wires connected to it): the broadcast area of arity 1 is
made of a coweakening cell and a weakening cell, the area of arity 2 is made of two wires.

The broadcast area of arity 3 can be pictured as an hexagon where each vertex is equipped with a
binary cocontraction or a contraction cell (in an alternated way), whose auxiliary ports are connected to
the auxiliary ports of its two neighbours. In the next picture, cocontraction cells are pictured as !-labelled
triangles and contraction cells as ?-labelled triangles.

2This promotion has also the effect, by putting the net corresponding to the receiver sub-process into a box, of preventing
this net to interact with the rest of the world before the box is opened by a dereliction corresponding to a process emitting on
the channel on which the receiver is listening. This trick allows to simulate the sequentiality of prefix nesting in the pi-calculus,
but one can advocate that replication has nothing to do with this sequentiality.

3The relational semantics of course, but also, in the simply typed case, algebraic semantics as the one of [Ehr05] or, also in
the “pure” case, the predicate transformer semantics of [Hyv04].

4Cocontraction and contraction cells are binary cells, but by combining them, we obtain n-ary cocontraction and contraction
cells called generalized (co)contraction cells.

3

!

? ?

?

! !

The ports corresponding to the same pairs are the principal ports of antipodic cells. The area of arity 4
admits a similar description, but the cocontraction and contraction cells are now of arity 3, and the structure
is drawn on a cube instead of an hexagon, etc.

The interpretation of the input and output prefix of the π-calculus is guided by polarities: input must be
positive and output negative. The main ingredient for interpreting an output prefix is therefore a dereliction
cell, since it turns a positive premise into a negative conclusion. Dually, the main ingredient for interpreting
an input prefix is a codereliction cell. It turns out that, when interacting, codereliction and dereliction
reduce to a simple wire connecting their auxiliary ports, which corresponds to the expected behaviour of the
interaction of an input and an output prefix having the same subject, in the π-calculus.

Another essential construction in process algebras is the restriction operation which allows to make a name
private to a process π, in such a way that other processes cannot communicate with π on the corresponding
channel. This construction is simply interpreted by plugging a coweakening cell and a weakening cell (that
is, a unary broadcast area) on the two ports corresponding to the name on which the restriction has to be
performed.

Content

We first introduce the finitary π-calculus and specify an operational semantics for this calculus by means
of an abstract machine similar to the well known Krivine’s machine for interpreting the λ-calculus. The
reason for this rather non standard choice is that in such an abstract machine, no substitution of names have
to be performed in processes during the reduction. Indeed, in differential interaction net structures, name
substitution is a rather critical operation involving the introduction of broadcast areas, see [EL06].

The operational semantics of this abstract machine is described by a transition system where nodes are
“canonical states” of the machine, and arrows correspond to interactions between input and output prefixes
of processes (and are labelled by the occurrences of these prefixes, specified by pairs of labels taken in a set
L; each prefix of our processes is labelled with an element of L, all these labels being distinct within a state).

Then we introduce differential interaction net structures. We first define a differential linear logic, which
is a propositional sequent calculus system having “ !” and “?” as only logical connectives (these are unary
connectives). This system could easily be extended with multiplicative connectives which would be necessary
for interpreting the polyadic π-calculus. Since this extension is straightfroward, we prefer to stay in the
purely exponential system. As in usual linear logic, there is a weakening and a dereliction rule (which
introduce the “?” connective) and a contraction rule, which has a geometry similar to that of the “par” rule
of multiplicative linear logic. But, whereas ordinary linear logic has only the promotion rule5 for introducing
the “ !” connective, differential linear logic has two finitary ways of introducing the “ !” connective: coweakening
and codereliction. It has also a binary rule, cocontraction, which has a geometry similar to that of the “tensor”
rule of multiplicative linear logic.

We also provide a relational denotational semantics for this sequent calculus and we introduce differential
interaction net structures: these are graphical structures, similar to proof nets, and built using six kinds of

5This rule is fundamentally infinitary since it allow for the promoted proof to be arbitrarily copied.

4

cells corresponding to the rules of differential linear logic. More precisely, these structures are called “simple”
and a net structure is a finite set of simple net structures, exactly as additive proof nets are sets of slices,
see [Gir96, vGH05].

We explain how to type these net structures (with formulae of differential linear logic), and how to
translate sequent calculus proofs as differential interaction net structures. A correctness criterion, analogous
to the Danos-Regnier criterion for multiplicative proof-nets, allows to characterize the differential interaction
net structures which represent sequent calculus proofs. This criterion however is too restrictive for our
purpose, since some well formed processes (or states of the abstract machine) will translate to differential
interaction net structures which will not satisfy the correctness criterion.

Then we define an equivalence relation on net structures, corresponding to the associativity and commu-
tativity of cocontraction and contraction. We shall consider net structures up to this equivalence relation.
We then define the reduction rules for these net structures. They split naturally in four categories.

• The communicating rule, which reduces a redex consisting of a codereliction and a dereliction cell
through their principal ports.

• The non-deterministic rules, which reduce redexes consiting of a dereliction cell connected to contrac-
tion or weakening cell, or dually.

• The structural rules, which reduce redexes consiting of a coweakening or cocontraction cell connected
to a weakening or contraction cell.

• And last, the neutrality rules (or Rétoré rules) which are not standard interaction net reduction rules6.
These rules express that weakening is the neutral element of contraction, and dually for coweakening
and cocontraction.

It has to be noticed that when reducing a non-deterministic redex in a simple net structure s, one does not
get a simple net structure, but a finite set of simple net structures {s1, . . . , sn} (or linear combination, if we
were working with coefficients, which is not the case in the present paper) of simple net structures. This
motivates the terminilogy of “non-deterministic reduction” since we can consider that, in this situation, s
reduces non-deterministically to one of the net structures s1,. . . , sn. We consider then the net structure
{s1, . . . , sn} as the non-deterministic superimposition of s1,. . . , sn.

We show that the rewriting system defined in that way is confluent, this is not completely trivial because
of the neutrality rules which create critical pairs.

We then introduce the notion of active net structure, which is a weakened version of the standard
correctness criterion, and we prove a normalisation result for the non-deterministic, structural and neutrality
reduction (called SND reduction) on the net structures enjoying this property. Since this SND reduction is
also confluent, this shows that any active net structure has a unique normal form for this SND reduction.

We therefore can describe the operational semantics of differential interaction net structures by another
transition system. The vertices of this transition system are the active differential interaction nets which are
normal for the SND reduction; the only redexes of such net structures are therefore communication redexes.
These differential net structures are moreover assumed to be labelled in the sense that each codereliction
and dereliction cell bears a label belonging to L (all these labels being distinct, in each simple net structure
belonging to the considered net structure). There is a transition from such an active, labelled and SND-
normal net structure to another one if one can pass from the first to the second by firing all the communication
redexes labelled by a given pair of labels (and then this transition is labelled by this pair of labels), and then
by applying SND reductions only.

Next, we present basic modules built with the various cells of differential interaction nets: broadcast
areas and input and output prefixes. We explain how these modules interact when one applies the SND
reduction rules:

• when connecting together broadcast areas, one gets larger broadcast areas;

6One of the nicest features of interaction nets is that redexes consist of pairs of cells connected through their principal ports;
in such a setting, critical pairs cannot appear and the reduction is trivially Church-Rosser.

5

• when connecting the principal port of an input or of an output prefix to one of the ports of a broadcast
area, one obtains the non deterministic superimposition of all the ways of transfering this prefix to one
of the other ports of the broadcast area: broadcast areas actually broadcast prefixes to the various
agents to which they are connected7;

• when connecting together prefixes by their principal ports, they can “cross eachother” or produce a
communication redex (more precisely, one gets the non-deterministic superimposition of these two
possibilities).

Using these modules, we translate processes (or more generally, states of our abstract machine) to differential
interaction net structures, applying the principle explained in the previous section. We show that the net
structures obtained in that way are active. Therefore, we can define a translation map Φ from the vertices of
the transition system of states to those of the transition system of SND-normal active differential interaction
net structures.

Last we show that the transitions of the transition system of process states are faithfully simulated by
the transitions of the differential net structure transition system. More precisely, we show that if there is a
transition labelled by (l, m) from a state E to a state F , then there is a transition labelled by (l, m) from
differential interaction net structure Φ(E) to the differential interaction net structure Φ(F), and converesely,
that if there is an (l, m)-transition from Φ(E) to some differential interaction net structure t, then t = Φ(F)
for a state F such that Φ(F) = t and such that there is an (l, m)-transition from E to F .

For obtaining the second part of this result, we need to endow the labels of differential interaction net
structures with an order relation and to restrict the communication reduction rule to fire only pairs of
codereliction/dereliction cells whose labels are minimal in this order relation: this allows to simulate in
differential interaction net structures the sequentiality which is due, in processes, to the fact that a prefix
which is below another prefix cannot interact with the outer world before the outer prefix is fired. In
differential net structures, the fact that two prefixes connected by their principal ports can cross eachother
means that, at least in the present translation of processes to net structures, this kind of communication
with “hidden” prefixes can occur.

This fact suggests to consider other process algebras, such as the calculus of solos [LPV01], where prefixing
of communication agents is not possible, but which has nevertheless essentially the same expressive power
as the π-calculus. This direction seems quite promising.

Contents

1 A finitary and monadic π-calculus 8

1.1 Processes: syntax and reduction . 8
1.2 An environment machine for the π-calculus . 9
1.3 An associated transition system . 10

2 Minimal differential linear logic 10

2.1 A polarized exponential linear logic . 10
2.1.1 Relational denotational semantics: interpreting formulae 11
2.1.2 A sequent calculus and its denotational semantics . 11
2.1.3 The pure system . 12

2.2 Differential interaction nets . 12
2.2.1 The cells . 13
2.2.2 Simple net structures and net structures . 13
2.2.3 Typed net structures and interfaces . 13

2.3 Net structure associated with a proof and correctness criterion 14

7In the sense of a replication-free broadcasting: non-deterministically, one of the connecteds agent will get the prefix and
the others will still wait for a communication.

6

2.3.1 From simple proofs to simple net structures . 14
2.3.2 Switching paths and correctness . 15
2.3.3 Active cycles and active net structures . 16

2.4 Experiments and the denotational semantics of net structures 16
2.5 Reduction rules for net structures . 17

2.5.1 The communication reduction rule . 17
2.5.2 The non-deterministic reduction rules . 17
2.5.3 The structural reduction rules . 17
2.5.4 Rétoré neutrality reduction rules . 18

2.6 Equivalence of net structures . 18
2.6.1 Associative and commutative equivalence . 18
2.6.2 Reducing non simple net structures . 19

2.7 Generalized reduction . 19
2.7.1 Cocontraction and contraction trees . 19
2.7.2 Generalized structural reduction . 20
2.7.3 Generalized non-deterministic reduction . 20

2.8 Confluence of the reduction of finite net structures . 20
2.8.1 A commutation property . 21
2.8.2 Confluence . 23
2.8.3 Duality of net structures . 24
2.8.4 Invariance properties . 25

2.9 Reduction of active net structures . 25
2.9.1 Confluence and normalization for finite active net structures 25
2.9.2 Purely Communicating Normal Form of an active net structure 26
2.9.3 Labelled nets . 26

3 From states to nets 28

3.1 Primitives . 28
3.1.1 Input and output prefixes. 28
3.1.2 Broadcast areas. 28
3.1.3 Combining broadcast areas. 29
3.1.4 Combining prefixes and broadcast areas. 30
3.1.5 Combining prefixes. 31

3.2 Interpretation of states . 31
3.2.1 Interpreting processes . 31
3.2.2 Interpreting closures . 33
3.2.3 Interpreting soups . 34
3.2.4 Interpreting states . 34

3.3 Activity of the net structure interpreting a state . 34
3.4 Examples of process interpretations . 35

3.4.1 Solos . 35
3.4.2 Competition . 35
3.4.3 Non localized process . 37
3.4.4 Cyclic process . 38
3.4.5 Non-terminating cyclic process . 38

3.5 The localized π-calculus . 39

4 Comparing the reductions 40

4.1 Persistency of prefixes . 40
4.2 A simulation theorem . 44

7

1 A finitary and monadic π-calculus

We restrict ourselves to this core process calculus (with a locality property, as we shall see in Section 3.5)
because it is sufficient for developping our translation. However, extending our constructions to the polyadic
case is easy, and requires simply to add the two multiplicative connectives of Linear Logic (tensor and par)
to our interaction nets (as in the differential interaction nets of [ER04]). Replicable input processes can be
interpreted as well, using exponential boxes, along the lines of [HL06].

Let N be a countable set of names.

1.1 Processes: syntax and reduction

General processes are defined as follows.

• ∗ is the empty process.

• π | π′ is the parallel composition of the two processes π and π′.

• νa · π is the process π where the name a has been made private. In this construction, the name a is
bound and this operation is called restriction.

• a(b) · π is the process π prefixed by the action which reads name b on channel a. The name b is bound
in this process and a is free and therefore a and b must be distinct. One says that a is the subject and
that b is the object of this input action. In such a process, a(b) is called an input prefix.

• a〈b〉 · π is the process π prefixed by the action which writes name b on channel a (a and b must be
distinct names8) – notice that the name b is not bound in this process. One says that a is the subject
and that b is the object of this output action. In such a process, a〈b〉 is a called an output prefix.

The set FV(π) of free names of a process π is defined in the obvious way (the only binders are the
restriction and the input prefix constructions).

General processes are considered up to α-equivalence and up to a structural congruence ∼ which is the
least one such that

∗ | π ∼ π

(π1 | π2) | π3 ∼ π1 | (π2 | π3)

π1 | π2 ∼ π2 | π1

νa · νb · π ∼ νb · νa · π

νa · (π1 | π2) ∼ (νa · π1) | π2 if a /∈ FV(π2); this rule is called scope extrusion.

We can now define the reduction relation on processes. There is only one reduction rule

a〈b〉 · π1 | a(c) · π2 ; π1 | (π2 [b/c])

which should be now extended to suitable contexts by means of the following deduction rules.

π ; π′

π | ρ ; π′ | ρ

π ; π′

νa · π ; νa · π′

π ∼ ρ ρ ; ρ′ ρ′ ∼ π′

π ; π′

But we prefer to obtain the same result by means of an environment machine for processes.

8This restriction is non standard from the process calculus viewpoint, and by the way, it is not preserved during process
reduction. In our presentation, the identification between the names a and b will be possible, by means of the environment
functions of our abstract machine.

8

1.2 An environment machine for the π-calculus

We introduce a simple environment machine for evaluating processes of our version of the π-calculus, which
is based on the ideas presented in [AC98]. It bears some similarities with Berry and Boudol’s Chemical
Abstract Machine [BB90]. This machine can easily be extended to larger fragments of the π-calculus.

A closure is a pair (π, e) where π is a process and e is a finite partial function from N to N , such that
FV(π) ⊆ Dom(e). This function e is called the environment of the closure; the environments of the various
closures of a soup (multiset of closures, see below) express the identifications to be performed between the free
names of the various processes of that soup: these indentifications determine the possible communications
between processes. The codomain Codom(c) of a closure (π, e) is the codomain of the function e.

A soup is a finite multiset [c1, . . . , cn] of closures. We use multiplicative notations for denoting multiset
operations on soups and we use “c” for denoting the soup whose only element is the closure c. So for instance
cS is the soup which has the same elements as the soup S, plus one instance of the closure c. The codomain
Codom(S) of the soup S = c1 . . . cn is the union of the codomains of the ci’s. The essential property of soups
is that there is no order on their elements: for any permutation f , the soups c1 . . . cn and cf(1) . . . cf(n) are
the same.

A state is a pair (S,P) where S is a soup and P is a finite set of names, called the set of private names
of the state S. States are identified up to α-conversion, that is, up to renaming of their private names.

The public names of (S,P) are the elements of Codom(S) \ P .
We define a non-deterministic reduction relation ; on states, and a sub-relation ;can of ;, as follows.

((∗, e)S,P) ;can (S,P)

((π1 | π2, e)S,P) ;can ((π1, e)(π2, e)S,P)

((νa · π, e)S,P) ;can ((π, e[a 7→ α])S,P ∪ {α}) with α ∈ N \ (Codom(S) ∪ Codom(e))

((a1〈b〉 · π1, e1)(a2(c) · π2, e2)S,P) ; ((π1, e1)(π2, e2[c 7→ e1(b)])S,P) if e1(a1) = e2(a2)

Remark 1 The right hand state of the third rule is uniquely defined, up to α-conversion of states, ie. re-
naming of private names.

Remark 2 The set of public names of states decreases or remains constant along the reduction (it can
decrease strictly because of the last rule). This is certainly an expected property, since it holds for free
names in processes, and it explains the importance of the set of private names in a state, although this set
plays no role for the reduction itself.

We say that a state is canonical if all the closures appearing in its soup are guarded, that is, are of the
shape (π, e) with the process π starting with an output or an input prefix (one says then that π is guarded).
This means that the state is normal for the relation ;can. Since this reduction relation is confluent9 and
(strongly) normalizing10 as easily checked, any state has a unique canonical form: its normal form for ;can.

Given a process π, we define a state St(π) = ((π, Id), FV(π)).

Remark 3 Observe that there is no reason why the codomains of environments should be subsets of N : it
suffices to have a infinite countable set as codomain of these functions. We shall use greek letters α, αi, β . . .
for ranging over these symbols.

Remark 4 In the soup S = (π1, e1) · · · (πp, ep) of a state (S,P), one can assume without loss of generality
that the domains of the environment partial functions ei (and thus the sets of free names of the processes
πi) are pairwise disjoint. We shall always make implicitely this assumption.

9There are no critical pairs for ;can, so it enjoys the diamond property.
10Indeed, ; itself is strongly normalizing, since the “size” of soups decreases along the reduction, but this is due to the fact

that we do not admit replication here. In a calculus with guarded replications, ;can would normalize nevertheless.

9

1.3 An associated transition system

Let L be an infinite set of labels ranged over by the letters l, l1, l
′, m A labelled state is a state where

each subject occurrence of each name (free or bound) has been individuated by means of a label taken in L.
We assume that all the labels occurring in a labelled state are pairwise distinct. When we want to specify
the label carried by a subject occurrence of a name, we put it as a superscript to this occurrence. We denote
by L(S) the set of all labels occurring in the state S.

We define the labelled transition system SL of states as follows.
The vertices of SL are the triples (S,P ,A) where (S,P) is a labelled canonical states and A is a set of

names, disjoint from P and wich contains all the free names of (S,P). This set A of names is here just for
technical reasons: it simplifies a bit the definition of the translation map from states to differential interaction
net structures.

There is a transition

(S,P ,A)
l/m
→ (T,Q,B)

in SL if the following conditions are satisfied:

• S is a canonical soup of the shape S = (al
1(b) · π1, e1)(am

2 〈c〉 · π2, e2)S
′ with e1(a1) = e2(a2)

• (T,Q) is the canonical form of the state ((π1, e1[b 7→ e2(c)])(π2, e2)S
′,P)

• and B = A.

Observe that the labels occurring in T are pairwise distinct since this property holds for S.

2 Minimal differential linear logic

We provide a short introduction to a purely exponential and finitary system of differential linear logic
(with a sequent calculus formalism), to the corresponding differential interaction nets and to their relational
denotational semantics.

2.1 A polarized exponential linear logic

We introduce a polarized linear logic where the only connectives are the exponentials. So the formulae are
given as follows, the atoms being ranged over ξ, ξ1 . . . and being assumed to be positive.

• A positive formula is an atom ξ, a formula !N where N is a negative formula, or the formula ι.

• A negative formula is a negated atom ξ⊥ or a formula ?P where P is a positive formula.

Linear negation is defined by means of the usual De Morgan laws. Moreover, formulae are considered up to
the equivalence relation generated by the following equation:

ι = !(ι⊥) .

Observe that this equation is compatible with polarities (it identifies two positive formulae).
We use o as a shorthand for ι⊥, so that o = ?ι and ι = !o.
The positive formula ι, subject to the recursive equation above, will allow to define net structures which

are “pure” in the sense of the “pure” (that is, untyped) lambda-calculus. It is similar to the type ι of the
pure nets of [DR99].

10

2.1.1 Relational denotational semantics: interpreting formulae

Together with this sequent calculus, we provide its denotational semantics in the well known relational
denotational model of linear logic, which is based on the star-autonomous category of sets and relations
(see [BE01] for a description of this model).

If E is a set, then Mfin(E) is the set of all finite multisets of elements of E.
Let D =

⋃∞
i=0 Di where D0 = ∅ and Di+1 = Mfin(Di) (D this is the set of all finitely branching unordered

trees, with unlabelled leaves), which is the least set satisfying D = Mfin(D).
A valuation is a map from atoms to sets.
Given a valuation I, one associates a set [A]I to each formula of our system by setting [ξ]I = [ξ⊥]I = I(ξ)

and [!A]I = [?A]I = Mfin([A]I), and by setting [ι]I = D (of course, this interpretation does not depend on
I), so that [ι]I = [!(ι⊥)]I .

The finite sequence Γ = (A1, . . . , An) of formulae will be interpreted as the cartesian product [Γ]I =
[A1]I × · · · × [An]I , to be understood as an n-ary par of linear logic.

2.1.2 A sequent calculus and its denotational semantics

We define a sequent calculus for this logic. As usual, sequents are expressions of the form ⊢ A1, . . . , An where
each Ai is a formula. A simple deduction is a tree whose leaves and nodes are built using the deduction rules
we describe now.

We also assume a valuation I to be given, and, simultaneously to the deduction system, we provide a
denotational semantics of proofs: the semantics of a proof π of a sequent ⊢ Γ will be a subset [π]I of [Γ]I .

The following one node tree is a proof π

⊢ A, A⊥

and one sets [π]I = {(x, x) | x ∈ [A]I}.
This axiom link cannot be restricted to hold in the case where A is an atom as one often does because

the present system does not contain the promotion rule of linear logic, and therefore does not validate
η-expansion for the exponentials: axioms cannot be η-expanded.

The cut rule is standard:
·
·
· λ

⊢ Γ1, A
⊥

·
·
· ρ

⊢ A, Γ2

⊢ Γ1, Γ2

and the semantics of this proof π is [π]I = {(~y, ~z) | ∃x ∈ [A]I (~y, x) ∈ [λ]I and (x, ~z) ∈ [ρ]I}.
The coweakening rule is similar to a “tensor unit” rule of MLL

⊢ !N

and the semantics of this proof π is [π]I = {[]}.
The weakening rule is standard:

·
·
· λ

⊢ Γ

⊢ Γ, ?P

and the semantics of this proof π is [π]I = {(~y, []) | ~y ∈ [λ]I}.
The cocontraction rule is similar to a tensor rule of MLL

·
·
·
λ

⊢ Γ1, !N

·
·
·
ρ

⊢ Γ2, !N

⊢ Γ1, Γ2, !N

11

and the semantics of this proof π is [π]I = {(~y, ~z, x+ x′) | (~y, x) ∈ [λ]I and (~z, x′) ∈ [ρ]I} where “+” denotes
the addtition of multisets.

The contraction rule is standard:
·
·
·
λ

⊢ Γ, ?P, ?P

⊢ Γ, ?P

and the semantics of this proof π is [π]I = {(~y, x + x′) | (~y, x, x′) ∈ [λ]I}.
The codereliction turns a negative formula into a positive one.

·
·
· λ

⊢ Γ, N

⊢ Γ, !N

and the semantics of this proof π is [π]I = {(~y, [x]) | (~y, x) ∈ [λ]I}.
The dereliction does the converse.

·
·
·
λ

⊢ Γ, P

⊢ Γ, ?P

and the semantics of this proof π is [π]I = {(~y, [x]) | (~y, x) ∈ [λ]I}.
Though not essential, we admit the mix rule of linear logic (see [Gir87]) because it simplifies the correct-

ness criterion for differential interaction nets.

·
·
·
λ

⊢ Γ1

·
·
·
ρ

⊢ Γ2

⊢ Γ1, Γ2

and the semantics of this proof π is [π]I = {(~y, ~z) | ~y ∈ [λ]I and ~z ∈ [ρ]I}.
We also admit the 0-ary case of the mix rule, namely

⊢

and the semantics of this proof π is [π]I = {∗} where ∗ is the unique element of the “empty cartesian product”
(the cartesian product of an empty list of sets, which is a singleton).

A proof of a sequent ⊢ Γ is a set of simple proofs of ⊢ Γ and the relational semantics of such a proof is
the union of the semantics of its elements. The elements of this set have to be considered as slices in the
sense of [Gir96].

One could define a cut elimination procedure, which transforms simple proofs into finite cut-free proofs
(and then proofs into cut-free proofs), but since this sequent calculus procedure is not essential to our purpose,
we prefer to define cut elimination on differential interaction nets only where it is simpler to describe.

2.1.3 The pure system

The subsystem of this sequent calculus where the only positive formula is ι is called the pure system. It
subsumes in some sense the general system, since, by replacing any atom ξ by ι in a proof, one gets a proof
of the pure system.

2.2 Differential interaction nets

Very much like terms are made of function symbols, interaction nets [Laf95] are made of cells. Each cell has
an arity n and has n + 1 ports, among which one principal port and n auxiliary ports. Cells are pictured as
triangles, and ports are drawn on the border of these triangles: the principal port is located on one of the
angles of the triangle, and the other ports, on the opposite side of the triangle.

12

2.2.1 The cells

In purely exponential finitary differential interaction nets that we consider here, there are six kinds of cells
that we give here with their typing rules (the types are formulae of the system of section 2.1):

• codereliction and dereliction, of arity 1

! ?N !N P ?P

• coweakening and weakening, of arity 0

! ?!N ?P

• cocontraction and contraction, of arity 2

! ? ?P!N

!N

!N ?P

?P

2.2.2 Simple net structures and net structures

A simple net structure is a combination of such cells, connected with each other by wires, as described
in [Laf95, ER04] (see these articles for a formal definition).

More precisely, any simple net structure has a finite set of free ports (which can be empty) and possesses
therefore a set of ports made of its free ports and of the ports of its cells (these sets of ports are assumed
to be pairwise disjoint). The wiring of the net structure can then be seen as a partition of this set of ports
into sets of cardinality 2 or 0 (these latter wires are loops, they can appear during the reduction of a net
structure, or when connecting two net structures).

We call unit net structure the net structure which has no cells and no free ports.
In this paper, a net structure is a set of simple net structures which have all the same set of free ports

(in general, it would be a linear combination, but we only consider qualitative aspects here).

2.2.3 Typed net structures and interfaces

A typing of a simple net structure t is a mapping from the oriented wires11 of t to the formulae of the linear
logic of section 2.1 in such a way that the constraints of section 2.2.1 (typing rules for cells) be satisfied and
in such a way that, if an oriented wire w is mapped to a formula A, then the oriented wire w′ obtained by
reversing the orientation of w be mapped to A⊥.

Let t be a typed simple net structure (that is, a simple net structure equipped with a typing). Each free
port of t is equipped with a type: the type associated to the wire connected to this port, this wire being
considered as oriented towards the port under consideration. If p1, . . . , pn are the free ports of t, when t is
typed, each port p has a type A and we call interface of t the corresponding mapping p 7→ A.

An interface will often be written as a list (p1 : A1, . . . , pn : An) where the pi’s are pairwise distinct.
Typing a net structure t consists in typing each of its elements, in such a way that all the elements of t

have the same interface, and then this common interface is called the interface of the net structure t.

Remark 5 For any given interface, there is an empty net structure having this interface. One should
absolutely avoid the confusion between the unit simple net structure, which has an empty interface, and
the empty net structure, which admits all possible interfaces. The first one is empty in the multiplicative
sense, the second one is empty in the additive sense; this is the same distinction as the between the neutral
elements for multiplication (1) and for addition (0) in a ring.

11An oriented wire is a wire equipped with an orientation, that is, an order between its ending ports.

13

A net structure which is typed using only the formulae ι and ?ι = o will be called a pure net structure.
Any typed net structure can be turned into a pure net structure by replacing all the propositional atoms by
ι.

Convention : All the net structures we consider from now on will be assumed to be typed. The point of this
convention is that, in any typed net structure, when two cells are connected by their principal ports, one
knows that one of these two cells is a !-cell and the other one is a ?-cell. This convention is not restrictive,
because recursive types are quite expressive.

2.3 Net structure associated with a proof and correctness criterion

2.3.1 From simple proofs to simple net structures

Given a simple proof π of a sequent ⊢ A1, . . . , An in the sequent calculus of section 2.1 and a repetition-free
list of ports ~p = (p1, . . . , pn), we define a simple net structure π∗

~p with free ports p1 : A1, . . . , pn : An. We
give the definition, by induction on π, sticking to the notations of section 2.1.2.

If π consists of an axiom, then π∗
p1,p2

is

A A⊥

p1 p2

If π ends with a cut rule, then π∗
~p,~q is

A⊥ A

pi qjp q

Ai Bj

λ∗
~p,p ρ∗q,~q

where we have set Γ1 = (A1, . . . , An), Γ2 = (B1, . . . , Bm) and where i ranges over {1, . . . , n} and j ranges
over {1, . . . , m}.

If π consists of a coweakening rule, then π∗
p is

p

!N

!

If π ends with a weakening rule, then π∗
~p,p is

p

?P

?

pi

Ai

λ∗
~p

If π ends with a cocontraction rule, then π∗
~p,~q,r is

14

λ∗
~p,p

pi qjp q

!NAi Bj

ρ∗~q,q

!

r

!N

!N

If π ends with a contraction rule, then π∗
~p,r is

λ∗
~p,p,q

pi

Ai ?P ?P

?P

?

r

p q

If π ends with a mix rule, then π∗
~p,~q is

pi qj

Ai Bj

λ∗
~p ρ∗~q

Last, if π consists of a 0-ary mix rule, then π∗
∅ is the unit net structure.

If π is a (not necessarily simple) proof of the sequent ⊢ Γ, then one defines π∗
~p = {λ∗

~p | λ ∈ π}, and the
obtained net structure is typed.

Just as in the case of multiplicative linear logic, one can characterize those net structures which are the
translations of sequent calculus proofs.

2.3.2 Switching paths and correctness

Given a simple net structure t, we define a switching path (or simply path) of this structure as a sequence
τ = (p1, . . . , pn) of ports of t such that

• i 6= j ⇒ pi 6= pj ;

• if |i − j| = 1 then pi is the principal port and pj is an auxiliary port of a cell of t, or conversely, or
{pi, pj} is a wire of t.

• τ does not contain the three ports of any contraction cell of t.

A switching cycle (or simply cycle) of t is a switching path (p1, . . . , pn) of t such that n ≥ 3 and
(pn, p1, . . . , pn−1) is also a switching path.

Theorem 6 Let t be a simple net structure with interface (p1 : A1, . . . , pn : An). The two following condi-
tions are equivalent.

• There is a proof π of the sequent ⊢ A1, . . . , An such that t = π∗
~p.

15

• There are no switching cycles in t.

The result extends obviously to (not necessarily simple) net structures. A simple net structure without
switching cycles is called a simple net. A net is a net structure all the elements of which are simple nets.

We do not give the proof of this theorem, as it is completely similar to the proof of the corresponding
result for MLL (see [BvdW95]), and can even easily be derived from that result (replace each contraction
cell by a par cell and each cocontraction cell by a tensor cell).

2.3.3 Active cycles and active net structures

As we shall see, the translation of processes gives rise to net structures which contain cycles. However, these
cycles will have the essential property of being active.

A cycle is active if it passes through a codereliction or dereliction cell. A net structure is active if all its
cycles are active.

2.4 Experiments and the denotational semantics of net structures

It is crucial to observe that the semantics of a proof depends only on the associated net. For this, we adapt
the concept of experiment of [Gir87] to the present setting. Let I be a valuation.

Let t be a net structure. An experiment for t is a mapping which associates to each (unoriented) wire w
of t an element of [A]I where A is the formula associated to w by the typing of t (for this to make sense,
one should mention an orientation for w, but observe that the set [A]I does not depend on this orientation,
since A becomes A⊥ when the orientation is reversed).

Just as for typing12, to each cell is associated a constraint on experiments. For codereliction and derelic-
tion:

! ?N !N P ?P

x x[x] [x]

For coweakening and weakening:

! ?!N ?P

[] []

And last, for cocontraction and contraction:

! ? ?P!N

!N ?P

!N ?P

x x

y y

x + y x + y

We denote by experI(t) the set of all the experiments of t for the valuation I.
Let (p1 : A1, . . . , pn : An) be the interface of the net structure t, then each experiment ε of t induces an

element res(ε) of [A1]I × · · · × [An]I (by restricting ε to the wires of t ending on one of the free ports of t).

We denote as [t]~pI the set of these restrictions and call this set the semantics of t. When t is not simple, one

defines [t]~pI as the union of the sets [s]~pI for s ∈ t.
Then the following result is easy to prove, by simple inspection of the definitions of experiments, of the

semantics of proofs and of the traduction of proofs into nets.

Theorem 7 Let t be a net with interface (p1 : A1, . . . , pn : An). Then for any proof π of the sequent

⊢ A1, . . . , An such that π∗
~p = t, the set [π]I coincides with [t]~pI .

12Experiments can actually be considered as a kind of typing discipline, the elements of the relational model being considered
as types in an intersection type system similar to those considered first by [CDCV80] and then by various authors.

16

2.5 Reduction rules for net structures

We introduce now the reduction rules for net structures. We refer to [ER04] for a simple mathematical
interpretation of these rules, in terms of elementary differential calculus.

As usual in interaction nets, a redex is a sub-net structure consisting of two cells connected by their
principal ports. Reducing a simple net structure consists in replacing this sub-net structure by a net structure
which has the same free ports.

The reduction relation on net structures is denoted as ;. We divide the rules into three groups.

2.5.1 The communication reduction rule

This rule corresponds to the interaction between a dereliction and a codereliction cell.

! ;c?

2.5.2 The non-deterministic reduction rules

They correspond to the interaction between codereliction (resp. dereliction) and weakening and contraction
(resp. coweakening and cocontraction). So there are four non-deterministic rules.

and ? ! ;nd 0! ? ;nd 0

In the present qualitative setting13, this means that whenever the left-hand pattern occurs within a simple
net structure, the whole simple net can be replaced by the empty net structure (that is, the empty set of
simple net structures), with the same free ports.

! ? +;nd !

!

!

!

In the present qualitative setting, this means that whenever the left-hand pattern occurs within a simple
net structure t, we can replace this simple net structure by the set of two simple net structures obtained by
replacing in t the pattern under consideration by each of the two nets of the right-hand sum above. And
symmetrically, we have

+;nd? ! ?

?

?

?

2.5.3 The structural reduction rules

They correspond to the interaction between the coweakening, cocontraction, weakening and contraction cells.
So there are four structural reduction rules.

! ? ;s

13Again, this means that, in the present paper, we interpret 0 as the empty set and addition as union.

17

where the right-hand side of this reduction rule is the unit net structure. This means that if one encounters
this coweakening/weakening redex in a simple net structure, one can simply erase it, without modifying the
rest of the net structure.

The cocontraction-weakening and contraction-coweakening rules read as follows.

! ?

?

?

;s ? !

!

!

;sand

And last the cocontraction-contraction reduction is the standard bialgebra rule.

! ? ;s

?

?

!

!

2.5.4 Rétoré neutrality reduction rules

These are not exactly standard interaction nets reduction rules. In the present setting, they express the
neutrality of coweakening and weakening for cocontraction and contraction respectively, on the left and on
the right.

!
!

;n ?
?

;n

and

! ;n

!
? ;n

?
;n

2.6 Equivalence of net structures

2.6.1 Associative and commutative equivalence

The last notion of equality of net structures we shall need corresponds to the fact that cocontraction and con-
traction are both associative and commutative operations. Associativity is absolutely crucial; commutativity
can probably be dropped, we assume it because it holds in the relational model as well as in process algebras
(corresponding to the fact that parallel composition is a commutative operation on processes). We denote
by ∼ac the corresponding equivalence relation on simple net structures (extended to arbitrary net structures
in the obvious way: u ∼ac u′ iff u = {s1, . . . , sn} and u′ = {s′1, . . . , s

′
n} with si ∼ac s′i for i = 1, . . . , n).

This equivalence is generated by the following basic equations:

∼ac!
!

!
!

∼ac?
?

?
?

and

∼ac! ! ∼ac? ?

The crucial property of this equivalence relation is that it does not interact with the above defined
rewriting relations: let R ∈ {;c, ;nd, ;s, ;n} and let s, s′ and u be net structures such that s ∼ac s′

(these two net structures being simple), and moreover s R u. Then there is a net structure u′ such that
s′ R u′ and u ∼ac u′. Therefore, as far as reduction is concerned, it is harmless to consider net structures
up to associativity and commutativity equivalence, what we shall do in the sequel.

18

2.6.2 Reducing non simple net structures

We have presented these reduction rules as a rewriting relations R from simple net structures to net struc-
tures. We extend these relations to relations from net structures to net structures, saying that t R t′ if there
is a non-empty family (si)i∈I of simple net structures, a family (s′i)i∈I of net structures such that si R s′i
for each i ∈ I, and a net structure u such that

t = u ∪ {si | i ∈ I} and t′ = u ∪
⋃

i∈I

s′i

Observe that, even on non simple net structures, R has still to be considered as a one step reduction relation,
although it can reduce redexes in many elements of the net structure. The point is that, within each element
of these simple net structures, only one redex can be reduced by this relation and that the non simple net
structure has to be considered as a non-deterministic superposition.

2.7 Generalized reduction

Using (co)contraction trees instead of (co)contraction and (co)weakenging cells, the reduction rules involving
these structural cells generalize in a natural way, as we explain now.

2.7.1 Cocontraction and contraction trees

We call contraction trees the simple net structures generated by the following inductive definition (we define
in the same induction the principal port and the auxiliary ports of a contraction tree).

• A weakening cell is a contraction tree, whose principal port is the principal port of the cell and which
has no auxiliary ports.

• A simple wire between two ports p and q typed by saying that the oriented wire (p, q) is of type o is
a contraction tree whose principal port is q and which has one auxiliary port q. Such a structural tree
will be said to be trivial.

• If t1 and t2 are contraction trees with disjoint sets of ports, and with principal ports p1 and p2

respectively, then the net obtained by plugging p1 and p2 to the auxiliary ports of a contraction cell
c is a contraction tree, whose principal port is the principal port of c, and whose auxiliary ports are
those of t1 and those of t2.

In a completely similar way, one defines the notion of cocontraction tree.
We use the term structural tree for refering to both notions.
Observe that, by applying ;n reductions only, any unary (co)contraction tree reduces to a wire. More

generally, any structural tree whose arity is larger than 1 reduces to a structural tree which has no cocon-
traction and no contraction cells by ;n reduction.

A contraction tree τ with auxiliary ports p1, . . . , pn will typically be pictured as follows.

?∗

pn

p1

...

Such a contraction tree will be said to be n-ary. We adopt similar conventions for cocontraction trees.

19

2.7.2 Generalized structural reduction

A generalized structural redex is a simple net structure of the following shape

pn

p1

... ?∗

q1

qm

...!∗

γ δ

where both structural trees are non trivial. An easy computations shows that it reduces in several steps of
structural reduction to the following simple net structure, with the same interface:

!∗ ?∗

!∗ ?∗

...
...

...
... qm

q1p1

pn

...
...

δ1

δn

γ1

γm

where the δi’s are cocontraction trees isomorphic to δ and the γj ’s are contraction trees isomorphic to γ.

2.7.3 Generalized non-deterministic reduction

Similarly, the following generalized non-deterministic redex

?

q1

qm

...!∗

(where the structural tree must be non trivial) reduces as easily checked, in several steps of non-deterministic
reduction, to the set (or the sum, if we were working with coefficients) of the following simple nets

...

q1
?

?

qm?

qi

...

for i = 1, . . . , m. A similar reduction occurs for a generalized redex consisting of a codereliction and a non
trivial generalized contraction tree, connected throught their principal ports.

2.8 Confluence of the reduction of finite net structures

Let ;snd be the union of the rewriting relations ;nd, ;s and let ; be the union of the rewriting relations
;c, ;nd, ;s.

Given a binary relation R, we denote by R∗ its transitive closure, by R− its “reflexive closure” (the union
of R and of the identity relation) and by R+ its “strict transitive closore”, that is, R∗ \ Id.

As in [ER04], one can show that both relations ;
∗
snd and ;

∗ are confluent on finite net structures. This
confluence follows easily from the next lemma, which states a slightly weakened form of “diamond property”.

20

Lemma 8 Let R1,R2 ∈ {;c, ;nd, ;s} and let t, t1 and t2 be finite net structures such that t R1 t1 and
t R2 t2. Then there is a finite net structure t′ such that t1 R−

2 t′ and t2 R−
1 t′. The same holds if R1 and

R2 are both the ;n reduction relation.

This lemma is essentially trivial: within any simple net structure, two communicating, non-deterministic or
structural redexes cannot have any cell in common. And the same holds for two neutrality redexes.

The ;n reduction is not a standard interaction net reduction relation (it involves two cells which are
not connected through their principal ports), and so critical pairs between this reduction and the other
standard interaction net reductions appear. We have to take them into account for proving confluence of
the reduction.

2.8.1 A commutation property

We first prove that the ;
∗
n reductions can always be postponed. This requires a few preliminary lemmas.

We call pre-path in a simple net structure u a sequence p1, . . . , pn of pairwise distinct ports such that, for
each i < n, pi and pi+1 are either principal and auxiliary ports of a cell of u, or the two ending ports of a wire
of u. We say that a simple net structure u is pre-connected if any two ports of u are related by a pre-path
in u. If u is not pre-connected, then it can be written in a unique way as a multiplicative juxtaposition of
pre-connected simple net structures.

Lemma 9 Let u be simple net structure and let p and q two free ports of u. If u ;n u′, then there is a
pre-path in u between p and q iff there is a pre-path in u′ between p and q.

The proof is straightforward.

Lemma 10 Let u be a simple net structure.

1. If u has two free ports p1 and p2 and reduces by a finite number of ;n steps to a wire w between p1

and p2 with the following typing:

p2p1

then there is a unary cocontraction tree t and a unary contraction tree t′ such that u ;
∗
s u′ where u′

is the following net structure:

?∗ !∗ p2p1

t′ t

2. If u has one free port p and reduces by a finite number of ;n steps to a coweakening cell connected to
p, then u reduces to a 0-ary cocontraction tree with free port p by a finite number of ;s steps.

3. If u has one free port p and reduces by a finite number of ;n steps to a weakening cell connected to p,
then u reduces to a 0-ary contraction tree with free port p by a finite number of ;s steps.

Proof. By induction on the number of cells of u. Observe that u cannot contain any codereliction or dereliction
cells, since these cells are never erased by ;n reduction.

Case 1. Assume first that u is of the shape

p2p1 !v

Then the ;n-normal form of v must be

21

or

!

!

and hence by Lemma 9, v must be of the shape

v0

v1

where v0 reduces to a coweakening cell and v1 reduces to a wire. We conclude by applying the inductive
hypothesis to v0 and v1. The reasoning is similar if p1 is connected to the principal port of a contraction cell.
We are left with the case where u is of the shape (up to commutativity of contraction and cocontraction)

p1
! v

p2
?

As above, v must be of the shape

v0

v1 v2

where v0 reduces to a wire, v1 to a coweakening cell and v2 to a weakening cell, by ;n reductions only. We
can apply the inductive hypothesis to each of these substructures and we conclude, using the generalized
structural reduction of Section 2.7.2.

Case 2 and case 3. Similar reasoning. 2

Lemma 11 Let R ∈ {;c, ;nd, ;s} and let t, t1 and t′ be finite net structures. If t ;
∗
n t1 R t′ then there

is a net structure t2 such that t S+ t2 ;
∗
n t′, where S = R∪ {;nd, ;s}.

Proof. It suffices to consider the case where t is simple (and therefore, t1 is also simple).
The only non trivial case is the situation where, in t, the R redex δ, γ is “frozen” by a subnet r which

reduces to a wire by a sequence of ;n reductions, in a configuration t0 of the shape14

δ

r

γ
...

...! ?

Applying Lemma 10, we first perform a series of ;s reductions to r, transforming it into a sub-net structure
r0 which is of the shape described at the end of Lemma 10, statement 1, so that t0 becomes the following
simple net structure t1.

δ
... !

γ
...??∗ !∗

14A priori, r could have more than 2 free ports, and have a ;n-normal form which contains a wire between its two free ports
connected to the principal ports of γ and δ. But by Lemma 9, it contains then a sub-structure which reduces to this wire.

22

Then we apply the generalized structural and non-deterministic reductions to these two generalized redexes;
assume for instance that δ is a codereliction cell and that γ is a contraction cell (so R is the ;nd reduction).
We get, after a finite number of ;snd steps, the following simple net structure t2

?∗ ! ?
δ γ

!∗

!∗

We conclude by firing the δ, γ redex, and then by reducing the unary (co)contraction trees to wires, using
only ;n reductions. The other cases are similar. 2

We can generalize this property to the transitive closures of the reduction relations, and we get a result
which states that ;n can always been postponed.

Theorem 12 Let R ∈ {;snd, ;} and let t, t1 and t′ be finite net structures such that t ;
∗
n t1 R∗ t′. Then

there is a finite net structure t2 such that t R∗ t2 ;
∗
n t′.

Moreover, if t is R-normal and if t ;n t1, then t1 is also R-normal.

Proof. The first statement is obtained by induction on the length of the R∗ reduction, applying Lemma 11
in the inductive step.

The second statement is obtained first by reduction to the case where t is simple and then by a case
analysis similar to that of Lemma 11. 2

2.8.2 Confluence

Let ;sndw the sub-reduction relation of ;snd where one fires only redexes involving coweakening and weak-
ening cells.

Lemma 13 Let R ∈ {;snd, ;}. Let t, t1 and t2 be finite net structures, and assume that t ;n t1 and that
t R t2. Then

• either there is a structure t′ such that t1 R t′ and t2 ;n t′

• or there is a structure t3 such that t2 ;sndw t3 ;
∗
n t1.

Proof. It suffices to consider the case where t is simple. The first case arises when the ;n redex and the R
redex are disjoint. The second case arises when these two redexes share a coconctraction or contraction cell.

2

Let ;nw be the union of the ;n and of the ;sndw reduction relations. One can summarize the two-fold
conclusion of Lemma 13 by saying that there exists a structure t′ such that t1 R− t′ and t2 ;

∗
nw t′. Therefore

we get the following result.

Lemma 14 Let R ∈ {;snd, ;}. Let t, t1 and t2 be finite net structures, and assume that t ;
∗
n t1 and that

t R∗ t2. Then there is a finite net structure t′ such that t1 R∗ t′ and t2 ;
∗
nw t′.

Proof. One first deal with the case where t R t2, using the diamond property of ;n and of ;
−
snd∪R−. Then

one concludes by induction on the length of the R reduction. 2

Lemma 15 The reduction relation ;nw is confluent on finite net structures.

23

Proof. Observe first that this reduction relation transforms simple net structures into simple or empty
net structures. So it suffices to prove the result for such net structures. But ;nw is locally confluent
(that is, if t ;nw t1 and t ;nw t2 then there exists t′ such that t1 ;

∗
nw t′ and t2 ;

∗
nw t′). Moreover,

;nw is strongly normalizing on simple or empty net structures: if t and t′ are simple and t ;nw t′, then
(f(t′), g(t′)) < (f(t), g(t)) for the lexicographic order (defined by (p, q) < (p′, q′) if p < p′ or p = p′ and
q < q′), where f(t) is the number of cocontraction and contraction cells in t and g(t) is the number of
coweakening and weakening cells in t. We conclude by Newmann’s lemma. 2

Theorem 16 Let R ∈ {;snd, ;}. Then the relation R∪ ;n is confluent on finite net structures.

Proof. Let S = R ∪ ;n and let t, t1 and t2 be finite net structures such that t S∗ t1 and t S∗ t2. By
Theorem 12, there are finite net structures u1 and u2 such that t R∗ ui ;

∗
n ti for i = 1, 2. By confluence of

R, there is a finite net structure u such that ui R∗ u for i = 1, 2. By Lemma 14, for i = 1, 2, there is a finite
net structure vi such that ti R∗ vi and u ;

∗
nw vi. By Lemma 15, there is a finite net structure t′ such that

vi ;
∗
nw t′ for i = 1, 2. For i = 1, 2, we have ti R∗ vi ;

∗
nw t′ and hence ti S∗ t′. 2

Just as in [ER04], one can prove that the ; reduction relation is normalizing on finite nets — that is,
net structures satisfying the acyclicity property — (the proof is not completely straightforward, because the
cocontraction/contraction redex reduces to a structure which is larger than the redex itself). But strong
normalization does not hold (if t ; t′, one has {t, t′} ; {t, t′}).

This normalization property is not essential for our purpose because the translation of processes produces
cyclic net structures, as we shall see.

2.8.3 Duality of net structures

There are many notions of duality one might want to define on net structures, following the ideas of Gi-
rard [Gir87, Gir01] or of Beffara [Bef05]. Here we introduce the most basic one, which is simply based on
types.

Let s and t be simple net structures. We shall say that s and t are in duality and write s ⊥ t if the
following properties hold: for any p which is a free port of s and of t, the type of p in the interface of s is
the orthogonal of the type of p in the interface of t. In that case, one can define a net structure s · t by
identifying the free ports of s and of t which have the same names15.

More generally, if s and t are (not necessarily simple) net structures, we say that s and t are in duality if
each element of s is in duality with each element of t. In that situation, one sets accordingly s · t = {s′ · t′ |
s′ ∈ s and t′ ∈ t}.

We just observe that computing the denotational semantics of a net structure is a “modular” operation.

Lemma 17 Let s and t be net structures with interfaces (p1 : A1, . . . , pl : Al, q1 : B1, . . . , qm : Bm) and
(q1 : B1

⊥, . . . , qm : Bm
⊥, pl+1 : Al+1, . . . , pn : An), with the pi’s pairwise distinct and assume that s and t

are in duality. Let I be a valuation.
Then [s · t]~pI is the set of all (x1, . . . , xn) ∈ [A1]I × · · · × [An]I such that there exists (y1, . . . , ym) ∈

[B1]I × · · · × [Bm]I with (x1, . . . , xl, y1, . . . , ym) ∈ [s]p1,...,pl,~q
I and (y1, . . . , ym, xl+1, . . . , xn) ∈ [t]

~q,pl+1,...,pn

I .

One proves first the result when s and t are assumed to be simple, and then it simply follows from the
definition of experiments. One gets the general result by observing that

[s · t]~pI =
⋃

s′∈s
t′∈t

[s′ · t′]~pI .

15This operation is not as simple as it seems: it can produce sequences of wires connected to eachother just like electric
extensions – and these sequences have to be turned in a single wire – and even loops.

24

2.8.4 Invariance properties

Typing, correctness and the denotational semantics of net structures are preserved under reduction.

Theorem 18 Let t be a net structure with interface (p1 : A1, . . . , pn : An), let t′ be a net structure and
assume that t ; t′ (here t′ is not assumed to be typed).

• t′ admits a typing with interface (p1 : A1, . . . , pn : An).

• If t is correct (that is, each of its elements satisfy the correctness criterion), then so is t′.

• For any valuation I, one has [t]~pI = [t′]~pI.

The first two statements are proven in [ER04].
The last statement is proven by observing first that it holds for the two-cells redex nets, and then by

applying Lemma 17.

2.9 Reduction of active net structures

Unfortunately, the translation of processes (or, more generally, states) into net structures gives rise to cyclic
structures, and such net structures can have infinite reductions. But we shall take benefit of the fact that the
net structures associated to states are active (that is, all their cycles pass through dereliction or codereliction
cells).

2.9.1 Confluence and normalization for finite active net structures

Let ;Can be the union of the ;n and of the ;snd reductions on finite net structures. We have seen that
this reduction relation is confluent.

Lemma 19 Let t and t′ be finite net structures and assume that t;Cant′. If t is active then t′ is active.

It suffices to prove the result for t simple, and it follows essentially from the fact that the ;Can reduction
never cancels codereliction or dereliction cells. The proof requires a study of each possible reductions from
t to t′, similar to that of [ER04], where it is shown that correctness is preserved by reduction (the only non
trivial case is that of a cocontraction/contraction reduction).

We want to prove that ;Can is weakly normalizing on active finite net structures. For this, by Theorem 12
and since ;n is weakly normalizing on arbitrary finite net structures, it suffices to prove that ;snd is weakly
normalizing on active finite net structures.

For this, we introduce a reduction strategy, reducing generalized redexes rather than basic ones.
Let t be a simple net structure. A maximal contraction tree of t is a sub-net structure u of t which is

a contraction tree such that no auxiliary port of u is connected to the principal port of a contraction or
weakening cell of t. One defines dually the notion of maximal cocontraction tree of t.

Let t be a simple net structure and t′ be a finite net structure, we write t;max
snd t′ if t reduces to t′ by

reduction of a generalized structural redex whose cocontraction and contraction trees are maximal (called
a maximal structural redex), or by reduction of a non-deterministic redex whose structural tree is maximal
(called a maximal structural redex).

If t = {t1, . . . , tn} is a finite net structure, we write t;max
snd t′ if t′ = t′1 ∪ · · · ∪ t′n where, for each i, either

ti is normal for the SND (structural and non-deterministic) reduction and t′i = {ti}, or ti;
max
snd t′i, and this

later situation occurs for at least one index i.
Given a simple net structure t, we denote by Nstr(t) the number of maximal structural redexes of t, and

by NND(t) its number of maximal non-deterministic redexes.

Lemma 20 Let t and t′ be simple net structures, and assume that t reduces to t′ by reducing a maximal
structural redex. If t is active, then Nstr(t

′) = Nstr(t) − 1.

25

Proof. Consider a maximal structural redex of t, as pictured in Section 2.7.2. None of the ports p1,. . . ,pn can
be identical (or directly connected) to one of the ports qj , since we know that each switching cycle of t must
pass through a codereliction or a dereliction cell. Therefore, after reduction of this generalized redex, none of
the ports pi can be directly connected to the principal port of a generalized contraction tree (otherwise this
contraction tree would have been present in t, and γ would not have been maximal). Similarly, none of the
ports qj can be directly connected to the principal port of a generalized cocontraction tree. Therefore, in t′,
the redex (γ, δ) vanishes and no new structural redex is created. Of course, new non-deterministic redexes
can appear. 2

Lemma 21 Let t be a simple net structure and let t′ = {t′1, . . . , t
′
n} be a net structure. If t reduces to

t′ by reduction of a maximal non-deterministic redex, then NND(t′i) = NND(t) − 1 for i = 1, . . . , n and
Nstr(t

′
i) = Nstr(t).

Proof. Consider a maximal non-deterministic redex of t, as pictured in Section 2.7.3. One simply observes
that none of the ports qj can be directly connected to the principal port of a cocontraction tree, by maximality
of the cocontraction tree of the generalized non-deterministic redex. 2

If t is a simple net structure, we set N(t) = (Nstr(t), NND(t)), and order these pairs under the lexicographic
order. If t = {t1, . . . , tn}, we define N(t) as the maximum of the pairs N(t1), . . . , N(tn), for the lexicographic
order. Combining Lemmas 19, 20 and 21, we get the following result.

Theorem 22 Let t and t′ be finite net structures. Assume that t is active and that t ;
max
snd t′. Then

N(t′) < N(t). There are no infinite sequences of net structures t1, t2, . . . such that t1 = t and ti ;
max
snd ti+1.

2.9.2 Purely Communicating Normal Form of an active net structure

Therefore, any finite active net structure t has a normal form t1 for the ;
max
snd reduction, which is also a

normal form for the ;snd reduction. This finite net structure t1 in turn has a normal form t′ for the ;n

reduction, which is also a normal form for the ;snd reduction (see Theorem 12, second statement).
By Theorem 12, this finite net structure t′ does not depend on the order in which the ;snd and ;n

reductions have been performed. We denote it as Com(t). It is a finite set of active simple net structures
whose only redexes are communication redexes (codereliction/dereliction redexes), that we call the purely
communicating normal form (PCNF) of t.

The following observation results again directly from Theorem 12, but since it will be used quite often,
we give it the status of a theorem.

Theorem 23 If t and t1 are finite net structures, if t is active and reduces to t1 by ;Can reduction steps,
then t1 is active and Com(t) = Com(t1).

2.9.3 Labelled nets

Just as we did for states of the π-calculus environment machine of Section 1.2, we need to introduce some
labelling of net structures, for being able to trace their reduction. We define then a labelled transition system
of labelled net structures.

A labelled simple net structure is a simple net structure u where all codereliction and dereliction cells
have been equipped with a label taken in L, all these labels being pairwise distinct. We denote by L(u) the
set of all labels occurring in u.

In a labelled simple net structure u, we assume moreover that the set of labels L(u) is equipped with a
partial order relation ≤.

26

A labelled net structure is a set of labelled simple net structures which have all the same interface and all
the same set of labels, equipped with the same order relation. Therefore we can speak of the partial order
L(u) of a non-empty16 labelled net structure u.

Remark 24 Let u be a labelled simple net structure. It is crucial to observe, by examining the ;snd and
;n reduction rules, that no codereliction or dereliction cells are created or suppressed during such reductions
applied to u. More precisely, assume that u reduces by ;Can reduction to a set of simple net structures
{u1, . . . , un}. Then for each i = 1, . . . , n, there is a canonical bijection between the codereliction cells of
ui and those of u, and between the dereliction cells of ui and those of u. Therefore, if u is active and has
Com(u) = {u1, . . . , un} as PCNF, we have L(ui) = L(u) for each i, and we extend this identification to the
order relation on labels, defining Com(u) as a labelled net structure.

Given two labels l, m ∈ L, we denote by ∆l,m the set of all simple net structures which contain a
communication redex whose codereliction cell is labelled by l and whose dereliction cell is labelled by m.

Let t be a finite labelled net structure which is in PCNF, and let l, m ∈ L(t). We say that t is (l, m)-
reducible if, for any element u of t ∩ ∆l,m, that is, which is of the shape

!

?

u′

l

m

u =

the labelled simple net structure

u′
redl,m(u) =

whose set of labels is L(u) \ {l, m} equipped with the restricted order, is active.
We define a transition system DL as follows.

• The vertices of DL are the finite labelled net structures which are in PCNF.

• Let s, t ∈ DL. There is a transition from s to t in DL labelled by l (as receiver) and m (as emitter),
written s →l/m t, if the following conditions are satisfied

1. l and m are minimal in the poset L(s);

2. s is (l, m)-reducible;

3. the set s ∩ ∆l,m is non-empty

4. and last
t =

⋃

u∈s∩∆l,m

Com(redl,m(u)) .

Observe that this transition system is deterministic in the sense that, for any s ∈ DL and any l, m ∈ L, there
is at most one transition s →l/m t to another t ∈ DL.

16Being pedantic, one can avoid this restriction by defining a labelled net structure as a pair (u, L) where u is a set of labelled
simple net structures which have all the same poset of labels, this poset being L if it is defined, that is if u is non-empty.

27

3 From states to nets

We define a translation of states as defined in section 1.2 to finite pure net structures. Remember that in
this system, there are only two types, which are ι and ?ι = ι⊥ (also denoted as o).

Convention : When drawing a pure net structure s we indicate the types of its wires simply by orienting
them, the type of these oriented wires being always o.

Quite often, such a pure net structure s will be a subnet of a larger structure and will be drawn as a box
with rounded corners or a disk.

3.1 Primitives

We define first the elementary simple net structures which will be used over and over when translating the
π-calculus to differential interaction nets. They are of two kinds: broadcast areas which account for the
parallel composition of processes, and prefixes which will be used for interpreting input and output prefixes
of the π-calculus.

3.1.1 Input and output prefixes.

We call input prefix a net of the shape

!!

and output prefix a net of the shape

??

3.1.2 Broadcast areas.

The simplest non trivial broadcast area is the following net.

?

! ?

!

?!

It will be used for interpreting the parallel composition operation. It will be usually pictured less symetrically,
but more conveniently, as

?

!

!

!

?

?

28

The picture above corresponds more precisely to the 3-ary broadcast area, denoted as Br1 for reasons
which will become clear soon. This net has three pairs of free ports.

One defines more generally Brn for each integer n ≥ −1. This net is made of n + 2 pairs of (n + 1)-ary
generalized cocontraction and contraction cells (γ+

1 , γ−
1), . . . , (γ+

n+1, γ
−
n+1), with, for each i and j such that

1 ≤ i < j ≤ n+2, a wire from an auxiliray port of γ+
i to an auxiliary port of γ−

j and a wire from an auxiliray

port of γ−
i to an auxiliary port of γ+

j .
So Br−1 is

? !

and Br0 is a pair of parallel wires

As a last example, here is Br2.

!

!

!

!

?

?

?

?

Broadcast areas will be pictured as disks, as for instance

3.1.3 Combining broadcast areas.

One can combine broadcast areas by connecting them through their free ports as follows:

Brp Brq

29

As easily checked, such a combination of broadcast areas reduces, using only ;s and ;n reductions, to the
broadcast area Brp+q. Observe by the way that the net above has (p− 1) + (q − 1) = p + q − 2 pairs of free
ports, which is exactly the number of pair of free ports of Brp+q (this explains our notation for broadcast
areas).

This crucial property will be called associativity of bradcast areas.
In particular, when one plugs a Br−1 net on a broadcast area Brp, one reduces its number of pairs of free

ports by 1, getting Brp−1. When p = −1, one gets the empty net which we could also consistently denote as
Br−2.

3.1.4 Combining prefixes and broadcast areas.

Another very important configuration occurs when a prefix is connected to one of the free ports of a broadcast
area, as follows (we have indexed the pairs of free ports of the broadcast area, from 0 to p + 1, deciding
conventionally that the input prefix is plugged on the negative wire of the pair numbered 0):

0 Brp! !

1

p + 1

i

An easy graphical computation shows that the net above reduces to the following sum of p simple nets whose
i-th term is

!
0!

p + 1

Brp i

1

using only ;snd and ;n reductions (that is, ;Can reductions).
There is of course a completely symmetric equation concerning an output prefix connected to a broadcast

area: the net

i0
? ?

1

p + 1

Brp

reduces to the sum of p terms whose i-th element is

?
0

1

p + 1

Brp i
?

using only ;Can reductions.

30

3.1.5 Combining prefixes.

The following combination of prefixes

?! ?!

reduces by ;Can reductions to the following sum

+
?

! ?

!

! ?

and the second term of this sum reduces to a pair of wires, by a dereliction/codereliction reduction.

Remark 25 The first term of this sum explains one of the main difference between π-calculus processes and
their translation into differential interaction net structures: in this latter setting, two prefixes communicating
on the same channel can cross each other without communicating (first term of the sum), or decide to establish
a communication between their object channels (second term of the sum).

3.2 Interpretation of states

3.2.1 Interpreting processes

Given a labelled process π and a finite set A of n names containing all the free names of π, we define a simple
labelled pure net structure [π]A with 2n free ports, and with the same set of labels: to each element a of the
list is associated a pair of free ports (a+, a−) (input port typed by ι and output port typed by o respectively,
in the interface of the pure net structure [π]A). Very often this set A will be considered as enumerated as a
list ~a = (a1, . . . , an) of pairwise distinct names and in that case we use indifferently A or ~a for denoting this
set of names.

The definition is by induction on processes. For representing the interpretation [ρ]A of a process ρ, we
use boxes with rounded corners (we keep angle corner boxes for the exponential boxes of linear logic) as
follows

an. . .

[π]a1,...,an

a1

Simultaneously to this inductive definition, one checks by induction that trivially L([π]A) = L(π) and that
the defined simple net structure is well typed in the pure type system.

[∗]A is the net structure

an. . .

Br−1 Br−1

a1

The set of labels of this net structure is empty.
[π | π′]~a is the net structure17

17This net structure seems to contain two occurrences of each of the ports a+

i
and a−

i
; these ports are assumed to be distinct

although we gave them the same names for the sake of readability.

31

an

[π]a1,...,an

. . . a1 . . .

[π′]a1,...,an

an

a1 an

Br1 Br1

. . .

a1

Observe that we introduce as many broadcast areas as there are free names under consideration. The set of
labels of this net structure is the union L([π]~a) ∪ L([π′]~a) which is a disjoint union by inductive hypothesis
(we know by inductive hypothesis that L([π]~a) = L(π) and L([π′]~a) = L(π′) and these sets are disjoint
because labels occurring in processes are pairwise distinct). The order relation we endow this disjoint union
with is the parallel composition of orders (l ≤ m if l and m belong to the same component of this union and
if l ≤ m holds in that component).

[νa · π]~a is the net structure

a

[π]a,a1,...,an

. . .
+

Br−1

ana1

This net structure has the same set of labels as [π]a,~a, and the same order relation on these labels.
For interpreting prefixed processes, we use crucially the hypothesis that a and b are distinct names.

[al(b) · π]a,~a is the net structure

!

[π]a,b,a1,...,an

. . .

!

a

?
l

a1 anba

The set of labels of this net structure is L([π]~a) + {l} (where, by inductive hypothesis, L([π]~a) = L(π) does
not contain the label l) and the order relation on this set is defined by setting l < m for all m ∈ L([π]~a).

Last, [al〈b〉 · π]a,b,~a is the net structure

32

[π]a,b,a1,...,an

b

Br2

a

ana1 . . .ba

?

!

?
l

or equivalently (leaving the types implicit)

an. . .ba

?

b

a1

?

?

!?

a

l

[π]a,b,a1,...,an

These two net structures are equivalent up to ;Can reduction rules, but the first expression is often more
convenient because of the general associativity property of broadcast areas.

The order on the set of labels of this net is defined as in the case above of an input prefix: l is taken as
new unique least element.

3.2.2 Interpreting closures

Remember that a closure is a pair c = (π, e) where π is a process and e is a finite function from N to N
whose domain contains all the free names of π. Given a finite set B of names which contains the codomain
of the function e, we define the net structure [c]B which has two free ports β+ and β− for each β ∈ B (these
are the only free ports of this simple net structure).

This net structure [c]B is built as follows. Let A be the domain of e. For each element β of B, let
a1, . . . , an be the elements of A which are mapped to β by e, we introduce a Brn−1 broadcast area with one
pair of free ports connected to (β+, β−), and the n other pairs connected to the pairs of free ports (a+

i , a−
i)

of the net structure [π]A.
Pictorially, this construction can be represented as

[π]A

Brnk−1

βk

ak

1
ak

nk
. . .

. . .

Brn1−1

β1

a1
1

a1
n1

. . .

. . .

. . .

33

where β1, . . . , βk are the elements of B and, for each j = 1, . . . , k, aj
1, . . . , a

j
nj

are the elements of A which
are mapped to βj by e.

The poset of labels of this net structure is that of [π]A.

3.2.3 Interpreting soups

Remember that a soup is a finite multiset of closures, S = c1 . . . cN . Given a finite subset B of N which
contains the codomain of all the environments of the closures c1, . . . , cN , we define a simple net structure
[S]B which has two free ports β+ and β− for each β ∈ B (these are the only free ports of this simple net
structure).

The simple nets [c1]B,. . . ,[cN]B are combined as in an N -ary parallel composition of processes, using
again broadcast areas. Pictorially, denoting by β1,. . . ,βk the elements of B, this gives

[c1]B [cN]B. . .

BrN−1

β1

. . .

BrN−1

. . .

βk

β1 β1βk βk.

3.2.4 Interpreting states

Let (S,P) be a state and let A be a finite set of names containing all the free names of (S,P) (we assume
that A ∩P = ∅, if this is not the case, perform first an α-conversion on (S,P)). Let B = A ∪ P .

Then the interpretation [S,P]A of (S,P) is obtained by plugging Br−1 broadcast areas on the pair of free
ports of [S]B corresponding to the elements of P .

Lemma 26 Let (S,P) and (S′,P ′) be states and let A be a set of names containing all the free names of
(S,P). If (S,P) ;can (S′,P ′) then [S,P]A ;

∗
Can [S′,P ′]A (actually, one needs to use only ;s and ;n

reductions).
In particular, if (S′,P ′) is the canonical form of (S,P), one has Com([S,P]A) = Com([S′,P ′]A).

The proof is straightforward.

3.3 Activity of the net structure interpreting a state

As already mentioned, when translating processes, one obtains net structures which contain switching cycles,
but fortunately, these net structures are active.

Lemma 27 Let (S,P) be a state and let A be a finite set of names containing all the free names of (S,P).
Then the finite net structure [S,P]A is active.

Proof. We give just a sketch of the proof, because the result is quite clear, but the details are rather tedious.
One observes first that, in a broadcast area Brn with pairs of free ports (p+

1 , p−1),. . . , (p+
n+2, p

−
n+2), there

is no switching path between p+
i and p−i , for any i = 1, . . . , n + 2.

Then one shows by induction on the process π that for any free ports p and q of the finite net structure
[π]A interpreting π, any switching path from p to q in [π]A passes through a codereliction or a dereliction
cell (the most interesting case is of course the situation where π starts with an output prefix).

34

Last, by the first observation, any switching cycle of [S,P]A must pass through the interpretation of a
process of the soup S, and therefore must contain a codereliction or dereliction cell. 2

3.4 Examples of process interpretations

Before starting to explore the operational properties of this interpretation, we have to study a few examples
in order to get some intuition about it.

3.4.1 Solos

As a first example, consider the “emitting solo18” a〈b〉 · ∗, also written a〈b〉.

b

!

!?

a

The process νa · a〈b〉 is equal to

!

!

?

b

!

?

and therefore reduces to 0. This “0” value can be seen as a kind of error as it means that the emission action
that the prefix wants to perform is impossible, because the name a has no access to the outer world, because
of the ν binding.

Let π be a process (for simplifying the notations, assume that it has no other free names but a and b).
Then the net [a〈b〉 | π]a,b reduces to the following sum:

b
! !

Br2?

a

[π]a,b

ba

Br2

a

[π]a,b+

a b

?
?

?

b

where the first term is identical to [a〈b〉 · π]a,b and the second term corresponds to the possibility that π
perform a reception of name b on channel a.

3.4.2 Competition

Let us now consider a situation where we have a competition between two emitters for one receiver on
channel a, as in the following process: π = a〈b〉 | a(c1) · π1 | a(c2) · π2. The processes π1 and π2 can have
other free names than the ones mentioned above, but we don’t mention them (the corresponding wires are
simply connected to broadcast areas as explained above).

18Actually, the interpretation of the calculi of solos will use a more sophisticated interpretation of solos.

35

?

!
!

!

!

!

! ?
Br2

[π1]a,c1

[π2]a,c2

?

Upon applying the prefix/broadcast interaction principle of Section 3.1.4, one obtains a sum made of the
following three nets. The two first nets are symmetric of each other:

?

?

?

!
!

!

!

! ?

[π1]a,c1

[π2]a,c2

!
!

!

!

! ?

[π1]a,c1

[π2]a,c2

?

Br1

Br1

?

?

and the last one is

36

!
!

!

!

! ?

[π1]a,c1

[π2]a,c2

Br1

?

??

This latter net corresponds to the situation where the output solo a〈b〉 will communicate with the outer
world, the two first nets correspond to the case where the prefix communicate with the two input prefixed
processes.

Let us consider the first simple net structure. It reduces to the following sum of two simple net structures.

?

?

?

?

!

?

!

!

!

[π1]a,c1

[π2]a,c2

Br1

!

!

!

! ?

[π1]a,c1

[π2]a,c2

Br1

The first net structure corresponds to the reduction where the name b is passed to the process π1 as c1,
whereas the second net corresponds to the passing of the name b to the process π1 through channel a; such
reduction could not occur in the standard π-calculus, unless the external input prefix of a(c1) · π1 were
reduced by reception of another name through channel a. Such synchonization is not required by differential
interaction nets, but we shall see how it is implemented by the order relation with which we have endowed
the label sets of processes.

3.4.3 Non localized process

Next, consider the process a(b) · b(c) · π where the object of the outermost input prefix is the subject of the
innermost input prefix. Here is the interpretation of this process (again we do not mention the other names,
but there can be some).

37

!
! ?

?

!
!

[π]a,b,c

So this process reduces to 0, due to the interaction between codereliction and weakening. This explains why
we shall restrict to the localized π-calculus.

3.4.4 Cyclic process

The interpretation of the process a(b) · a〈b〉 · ∗ reduces (using only structural reduction rules) to

?

!
a

and so the interpretation of νa · (a(b) · a〈b〉 · ∗ | a(b) · a〈b〉 · ∗) reduces (using only structural reduction rules)
to

?

!

!

?

which, by reducing the two communication redexes, leads to the following loop:

3.4.5 Non-terminating cyclic process

The above process was cyclic but had nevertheless a finite reduction. But some processes can lead to cyclic
net structures which have a non-terminating reduction. Consider the process

π = νa · (a(b) · a〈b〉 · c〈b〉 · ∗ | a(b) · a〈b〉 · b(d) · ∗) .

The sub-process a(b) · a〈b〉 · c〈b〉 · ∗ translates to (up to structural reductions)

?

!
a

!

c
? ?

and the sub-process a(b) · a〈b〉 · b(d) · ∗ translates to

?

!
a

! ! ?

and therefore, π translates to

38

?

!

! ! ?!

?

??

!
c

which, after reducing the two communication redexes, leads to the following net structure.

??

!
c

! ! ?

Reducing the cocontraction/contraction redex in that structure leads to a larger net structure which contains
again a cocontraction/contraction redex, as easily checked.

3.5 The localized π-calculus

A π-term is localized if for any sub-term of π of the shape a(b) · ρ, the name b does not occur in ρ as the
subject of an input prefix. See [SW01] for more informations on this concept.

Lemma 28 Let b,~a be a repetition-free sequence of names containing all the free names of a process π. If
the name b does not occur in the process π as the subject of an input prefix, then there is a simple net u with
free ports b−, a1

+, a1
−, . . . , an

+, an
−, such that [π]b,~a satisfies (up to ;s and ;n reductions)

!

b an. . . b a1 an. . .

=[π]b,~a u

a1

and hence (still up to ;s and ;n reductions)

b a1 an. . . b a1 an. . .

=[π]b,~a [π]b,~a

b

?

!

Proof. Simple induction on the structure of π, the most interesting case being the one where π = ai〈b〉 · ρ.
Without loss of generality, we assume i = 1. Applying the inductive hypothesis, [π]b,~a can be written

!

u

an

??

b

b
+ −

a1

?

which reduces to
u

an

a1

?

!

?Br1

b

b a1

a1 a1

!

by ;s and ;n reductions. The right hand net has the required shape. The other cases are simpler and left
to the reader. 2

39

4 Comparing the reductions

We define a map Φ from the vertices of the LTS SL to the vertices of the LTS DL:

Φ(S,P ,A) = Com([S,P]A)

which is well defined by Theorem 22 since we know that [S,P]A is an active labelled net structure by
Lemma 27.

4.1 Persistency of prefixes

Lemma 29 Let u be an active simple net structure which contains a subnet of the shape

or!
l

?
l

?
m

!∗ !
m

?∗

We call (l, m)-garded input prefix any net of the first kind and (l, m)-garded output prefix any net structure
of the second kind.

Then any element of Com(u) contains an (l, m)-garded input prefix in the first case and (l, m)-garded
output prefix in the second case.

Proof. The hypothesis that u is active is used only for ensuring that Com(u) is well defined.
We consider the first subnet (call it u0), the other one being dual. It suffices to show that, if u is a pure

net structure which contains u0 as a subnet, and if u ;snd u′ or u ;n u′, then any element of u′ contains
an (l, m)-guarded input prefix as a subnet. The case of a ;n reduction is straightforward.

So choose a structural or non-deterministic redex in u and let u′ be the net obtained by reducing this
redex. If this redex does not contain the dereliction cell labelled by m, each element of u′ will clearly contain
the subnet under consideration. Otherwise, we are in one of the two following situations: either

!
l

?
m

!!∗vu =

and then Com(u) = ∅ and there is nothing to say, or

!
l

!

!∗

u = v
?

m

and in that case, Com(u) = Com(u1) ∪ Com(u2) where

!
l

!
l

u1 = v

?

?
m

!∗

?

?
m

!∗

and u2 = v

but both u1 and u2 contain the subnet under consideration. 2

From this lemma, we deduce the following property which expresses that a prefix which enters a process
will never exit from this process, if we only perform structural and non-determininstic reductions.

40

Lemma 30 Let (S,P) be a state and let A be a set of names containing all the free names of (S,P). Let
α ∈ A and let l ∈ L which does not occur in S. Let u1 and u2 be the following net structures (where we only
mention the ports associated to the name α)

[S,P]Au1 = u2 = [S,P]Aand

?

?
l

α

!

!

α

l

q p p q

Then any element of Com(u1) contains a communication redex where the codereliction cell is labelled by l
and the dereliction cell is labelled by some m ∈ L(S), or an (l, m)-guarded input prefix, with m ∈ L(S).
Similarly, any element of Com(u2) contains a communication redex where the dereliction cell is labelled by l
and the codereliction cell is labelled by some m ∈ L(S), or an (l, m)-guarded output prefix with m ∈ L(S).

Proof. In view of the definition of the interpretation of a state (S,P) in Section 3.2.4, we are reduced to
proving the same statement for the interpretation of a soup.

Using the definition of the interpretation of a soup in Section 3.2.3 as well as the prefix/broadcast
reduction of Section 3.1.4, we are reduced to proving the same statement for the interpretation of a closure.
We use the fact that this prefix/broadcast reduction uses only ;Can steps, and we also use Theorem 23 for
arguing that these reduction steps can be performed immediately.

By the same argument, we are reduced to proving the statements of the theorem for the interpretation of
a process [π]A of a process π (we use a instead of α and A instead of A to be consistent with our notational
conventions).

We proceed by induction on π.

Case 1. Assume first that π = ∗. Then Com(u1) = Com(u2) = ∅ and there is nothing to prove.

Case 2. Assume next that π = ρ | ρ′. Then, mentioning the free ports associated to a and to a generic
element b of A, u1 has the following structure, where we have made explicit the label l of the codereliction
cell of the input prefix under consideration:

[ρ]A [ρ′]A

!
!

a a

b b

a+

l

a−

Then, applying the prefix/broadcast equation of section 3.1.4, which uses only structural and non-deterministic
reductions, we get the net structure {u1,1, u1,2} where

41

[ρ]A [ρ′]A
a a

b b

!u1,1 = [ρ]A [ρ′]A
a a

b b

!

!

!

u1,2 =

l l

and we have Com(u1) = Com(u1,1) ∪ Com(u1,2).
Let us consider the simple net structure u1,1. In this net structure, consider the subnet structure v which

consists of [ρ]A together with the input prefix attached to its output port a−, whose codereliction cell bears
label l. This net structure v is active since [ρ]A is active. Let {v1, . . . , vp} be Com(v) and let uj

1,1 be the net
structure u1,1 where the subnet structure v has been replaced by vj (for j = 1, . . . , p). By Theorem 23, we
know that

Com(u1,1) =

p⋃

j=1

Com(uj
1,1) .

By inductive hypothesis, for each j = 1, . . . , p, two situations may occur.

• Either vj contains a communication redex whose codereliction cell is labelled by l, and in that case,

we know that this redex will be present in each element of Com(uj
1,1) since the structural and non-

deterministic reduction does not affect such redexes.

• Or vj contains an (l, m)-garded input prefix and then, by Lemma 29, this guarded input prefix will

still appear in each element of Com(uj
1,1).

The same holds of course for u1,2 by symmetry. The statement of the lemma concerning u2 (still in the case
where π = ρ | ρ′) is proven similarly, using the equation of section 3.1.4 in the case of an output prefix now.

The case π = νb · ρ is similar and simpler.
Now we must consider the situations where π starts with an input or output prefix. If none of the names

involved by these prefixes is equal to a, the inductive hypothesis applies simply (with the help of Lemma 29).
So the remaining situations we must consider are the following ones.

Case 3: π = a(c) ·ρ. Let us first consider u1. In this simple net structure, the input prefix whose dereliction
cell is labelled by l is directly connected to the port a− of [ρ]A∪{c}. Consider the subnet of u1 which consists
of [ρ]A∪{c} together with the input prefix whose dereliction cell is labelled by l connected to its port a−. Let

{v1, . . . , vp} be Com(v) and let uj
2 be the net u2 where the subnet v has been replaced by vj (for j = 1, . . . , p),

so that uj
1 is the following simple net

vj

b

a+
!

c
!

? q

p

where we have specified the “free ports” p and q of the input prefix, as in the statement of the lemma we
are proving. We conclude as before, since by inductive hypothesis Com(vj) contains a communication redex
involving l or a guarded input prefix whose codereliction cell bears the label l. This will still be the case of
Com(uj

1) (apply Lemma 29).
Now let us consider u2, which is

42

?

b

c

a

!

!
?

l[ρ]A∪{c}

?

Applying the prefix/prefix reduction of section 3.1.5, which uses only ;Can reductions, we get the net
structure {u2,1, u2,2} where

[ρ]A∪{c}

b

c

a
[ρ]A∪{c}

b

c

a
u2,1 = u2,2 =

!

?

? !

l
?

!

?
?

l

and therefore Com(u2) = Com(u2,1) ∪ Com(u2,2). But u2,1 contains a communication redex involving l
and this redex will not be affected by the structural and non-deterministic reduction, so each element of
Com(u2,1) will contain the same redex. On the other hand, let v be the subnet of u2,2 which consists of
[ρ]A∪{c} together with the output prefix whose dereliction cell is labelled by l connected to the port a+. Let

{v1, . . . , vp} be Com(v) and let uj
2,2 be the net structure u2,2 where the subnet v has been replaced by vj

(for j = 1, . . . , p). By inductive hypothesis, either vj contains a communication redex whose dereliction cell

is labelled by l, and this redex will still be present in each element of Com(uj
2,2), or it will contain a guarded

output prefix whose dereliction cell is labelled by l, and this guarded output prefix will still be present in
each element of Com(uj

2,2) by Lemma 29. We conclude for this case because

Com(u2,2) =

p⋃

j=1

Com(uj
2,2)

by Theorem 23.

Case 4: π = a〈c〉 · ρ. Observe that we have c ∈ A since the name c is free in π. In that case, u2 is handeled
exactly as u1 in the previous case, so let us consider only u1, which is

[ρ]A

b

?
?

!

!
!

l

a

Br1

+
c

By ;Can reductions, this simple net structure reduces to {u1,1, u1,2} where

b

a

[ρ]A

! ?

!

l
u1,2 =[ρ]A

b

a

−

!

l
u1,1 = ?

! !
c

?

c

Br1 Br1

The first of these simple net structures contains a communication redex whose codereliction cell is labelled
by l, and this redex will still be present in Com(u1,1). As to the second of these nets, we first apply the
inductive hypothesis to the subnet consisting of [ρ]A together with the input prefix whose codereliction cell
is labelled by l connected to the port a−, and then apply Lemma 29 as in the previous case.

43

Case 5: π = c〈a〉 · ρ. In that case, u1 is the following simple net.

[ρ]A

b

c

a

?
?

!

!
!

l

Br1

Applying the prefix/broadcast reduction of Section 3.1.4, which uses only ;Can reductions, we get the net
structure {u1,1, u1,2} where

!

[ρ]A

b

?
?

c

a
!

Br1

!

l

u1,1 = [ρ]A

b

?
?

c

a
!

!

l

u1,2 =

Br1

!

m m

Concerning u1,1, we can proceed as before, applying the inductive hypothesis to [ρ]A combined with the
input prefix under consideration, and then Lemma 29. As to u1,2, we see that it contains a guarded input
prefix whose codereliction cell is labelled by l and whose dereliction cell is labelled by some m ∈ L(π). By
Lemma 29, this guarded input prefix will still be present in all the elements of Com(u1,2) (we do not need
the lemma in the present situation, indeed).

Last, we consider u2, which is the following simple net structure.

?
?

!

Br1 ?
?

l
[ρ]A

b

c

a

Applying again the prefix/broadcast reduction of Section 3.1.4, which uses only ;Can reductions, we get the
net structure {u2,1, u2,2} where

[ρ]A

b

?
?

c

a

Br1

?
l?

!

b

?c

a ?
l!?

?
[ρ]Au2,2 =u2,1 =

Br1

We conclude the proof of this lemma by observing that Com(u2,1) = ∅ and by applying the same reasoning
as before to u2,2. 2

4.2 A simulation theorem

Theorem 31 Let (S,P ,A) ∈ SL (so that (S,P) is a canonical state) and l, m be two labels.

44

1. Let (T,Q,B) ∈ SL, and assume that (S,P ,A) →l/m (T,Q,B) (so that B = A). Then Φ(S,P ,A) →l/m

Φ(T,Q,B).

2. Let t be a net structure in PCNF and assume that Φ(S,P ,A) →l/m t. Then there is a canonical state
(T,Q) such that Φ(T,Q,A) = t and (S,P ,A) →l/m (T,Q,A).

Proof.

First statement. Since (S,P ,A) →l/m (T,Q,B), we have A = B (remember that we assume that A∩P = ∅
and B ∩ Q = ∅, which is possible by α-conversion),

S = (al
1(b) · π1, e1)(am

2 〈c〉 · π2, e2)S
′ (1)

with e1(a1) = e2(a2) = α ∈ N , for some processes π1 and π2 and some soup S′, and with these notations,
(T,Q) is the canonical form of the state (T ′,P) where

T ′ = (π1, e1[b 7→ e2(c)])(π2, e2)S
′ . (2)

We set γ = e2(c). Notice that one could possibly have γ = α.
Therefore, Com(S,P ,A) is the PCNF of the following net structure:

!

!

?

!

??

α γ

δ

l

m

[π2]B2

~c2

~d2
~d1

~a1 a1
b

δ
γα

[π1]B1~c1

[S′]C

~a2

ca2

ϕ

where we have adopted the following notations and conventions:

• B1 is the domain of e1 and B2 is the domain if e2;

• for i = 1, 2, ~ai is a repetition-free list of all the elements of Bi different from ai and mapped to α by ei;

• ~c1 is a repetition-free list of all the elements of B1 mapped to γ by e1;

• ~c2 is a repetition-free list of all the elements of B2 different from c and mapped to γ by e2;

• δ is a generic element of P ∪A and ~di is a repetition-free list of the elements of Bi mapped to δ by ei;

• the broadcast areas introduced in the interpretation of closures and soups (see Section 3.2) are decorated
with the corresponding names;

45

• C = P ∪ A contains all the free names of the soup S′;

• the dashed pairs of wires are absent if the corresponding names belong to P (and then these names
are bound in the state), and present otherwise;

• if γ 6= α, the dashed-dotted pair of wires is absent and the dotted line is present (in that case, α and
γ correspond to two different pairs of free ports of [S′]C) and conversely if α = γ (in that case, there
is exactly one pair of free ports corresponding to γ = α in [S′]C). If α = γ, the list ~c1 is empty, as well
as the list ~c2, but we must require that all the elements of ~a2 be different from c as well.

We can now apply the prefix/broadcast area interaction of Section 3.1.4, for instance to the input prefix
whose codereliction cell is labelled by l.

Assume first that α 6= γ, so that the dashed-dotted pair of wires is absent and the dotted pair of wires
is present.

We obtain that Φ(S,P ,A) can be written as a union of finite net structures

Φ(S,P ,A) = Com(v) ∪
N⋃

i=1

Com(ui)

where, in each of the ui’s, the principal port of the input prefix consisting of the codereliction cell labelled
by l and the cocontraction cell ϕ (that is, the principal port of ϕ) is connected to one of the free ports of
[π1]B1

, [π2]B2
or [S′]C , or to one of the dashed outputs of α, if present. By Lemma 30, in each of the net

structures Com(ui),

• either the codereliction cell l is part of a communication redex whose label m′ belongs to L(π1), L(π2)
or L(S′), and so m′ 6= m,

• or the input prefix (l, ϕ) is guarded in ui by some dereliction cell whose label m′ belongs to L(π1),
L(π2) or L(S′).

In both cases, it is clear that none of the elements of Com(ui) can belong to ∆l,m. The net structure v is

!

?

!

??

α γ

δ

l

m

[π2]B2

~c2

~d2~d1

~a1 a1
b

δ
γα

[π1]B1~c1

[S′]C

~a2

ca2

ϕ

!

and therefore, applying the prefix/prefix reduction (using only the ;Can reduction), we have Com(v) =
Com(v1) ∪ Com(v2) where v1 is

46

!

?

!

?

α γ

δ

l

m

[π2]B2

~c2

~d2
~d1

~a1 a1
b

δ
γα

[π1]B1~c1

[S′]C

~a2

ca2

and v2 is

!

α γ

δ

[π2]B2

~c2

~d2
~d1

~a1 a1
b

δ
γα

[π1]B1~c1

[S′]C

~a2

ca2?

!

!

?

?

l

m

ϕ

None of the elements of Com(v2) can belong to ∆l,m, by the same argument that we applied to the ui’s, and
clearly Com(v1) ⊆ ∆l,m. So we have shown that

Φ(S,P ,A) ∩ ∆l,m = Com(v1) .

But on the other hand, by Equation (2), the net structure Φ(T,Q,B) is the PCNF of the following net
structure

47

α γ

δ

[π2]B2

~c2

~d2
~d1

~a1 a1
b

δ
γα

~c1

[S′]C

~a2

ca2

[π1]B1

Remember that all the processes under consideration are assumed to be localized, and therefore, by Lemma 28,
Φ(T,Q,B) is equal to Com(v1) (indeed, b cannot occur in π1 as the subject of an input prefix). So we have
a transition Φ(S,P ,A) →l/m Φ(T,Q,B) as announced.

Assume then that α = γ, so that the dashed-dotted pair of wires is present and the dotted pair of wires is
absent (there is exactly one pair of free ports of [S′]P corresponding to α = γ). The reasoning is essentially
the same as above. The main difference is that now

Φ(S,P ,A) = Com(v) ∪ Com(w) ∪
N⋃

i=1

Com(ui)

where v and the ui’s are similar to the homonymous net structures in the case γ 6= α, and w is the following
net structure

!

?

!

?

α γ

δ

l
[π2]B2

~d2
~d1

~a1 a1
b

δα

[π1]B1

[S′]C

~a2

ca2

?

!

m

ϕ

48

In w, the cells labelled by l and m constitute, together with the cocontraction cell ϕ, a guarded input prefix
which, by Lemma 29, will be present is each of the elements of Com(w). Therefore, Com(w) ∩∆l,m = ∅ and
we conclude as in the case γ 6= α.

Second statement. Using the same notations as above, l and m must be the labels in [S,P]A of a codereliction
cell and of a dereliction cell respectively and moreover l and m must be minimal in the order relation on
L([S,P]A). An inspection of the definition of this poset shows that S must be of the shape given by
Equation (1) and then the first statement of the theorem provides a proof of the second statement for the
canonical form (T,Q) of (T ′,P) where T ′ is given by Equation (2), because the LTS DL is deterministic.

2

References

[AC98] Roberto Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

[AM99] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In Pro-
ceedings of the 14th Annual IEEE Symposium on Logic in Computer Science. IEEE, 1999.

[BB90] Gérard Berry and Gérard Boudol. The chemical abstract machine. In Proceedings of the 17h
ACM Symposium on Principles of Programming Languages (POPL), pages 81–94. ACM Press,
January 1990.

[BE01] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics: the
exponentials. Annals of Pure and Applied Logic, 109(3):205–241, 2001.

[Bef05] Emmanuel Beffara. Logique, Réalisabilité et Concurrence. PhD thesis, Université Denis Diderot,
2005.

[BHY03] Martin Berger, Kohei Honda, and Nobuko Yoshida. Strong normalisability in the pi-calculus.
Information and Computation, 2003. To appear.

[BM05] Emmanuel Beffara and François Maurel. Concurrent nets: a study of prefixing in process calculi.
Theoretical Computer Science, 356, 2005.

[BvdW95] Gianluigi Bellin and Jacques van de Wiele. Subnets of proofnets in MLL. In Jean-Yves Girard,
Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume 222 of London
Mathematical Society Lecture Note Series, pages 249–270. Cambridge University Press, 1995.

[CDCV80] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and lambda-calculus
semantics. In J. R. Hindley and J. P. Seldin, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism. Academic Press, 1980.

[CF06] Pierre-Louis Curien and Claudia Faggian. An approach to innocent strategies as graphs. Technical
report, Preuves, Programmes et Systèmes, 2006. Submitted for publication.

[DR99] Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal lambda-machines.
Theoretical Computer Science, 227(1-2):273–291, 1999.

[Ehr93] Thomas Ehrhard. Hypercoherences: a strongly stable model of linear logic. Mathematical Struc-
tures in Computer Science, 3:365–385, 1993.

[Ehr02] Thomas Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in Com-
puter Science, 12:579–623, 2002.

49

[Ehr05] Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–
646, 2005.

[EL06] Thomas Ehrhard and Olivier Laurent. Embedding the finitary pi-calculus in differential interac-
tion nets. In Proceedings of the Higher Order Rewriting workshop (HOR 2006), 2006. Electronic
publication.

[ER04] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. In Proceedings of WoL-
LIC’04, volume 103 of Electronic Notes in Theoretical Computer Science, pages 35–74. Elsevier
Science, 2004.

[EW97] Uffe Engberg and Glynn Winskel. Completeness results for linear logic on petri nets. Annals of
Pure and Applied Logic, 86(2):101–135, 1997.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir88] Jean-Yves Girard. Normal functors, power series and the λ-calculus. Annals of Pure and Applied
Logic, 37:129–177, 1988.

[Gir96] Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In P. Agliano and A. Ursini,
editors, Logic and Algebra, pages 97–124. Marcel Dekker, New York, 1996.

[Gir99] Jean-Yves Girard. Coherent Banach spaces: a continuous denotational semantics. Theoretical
Computer Science, 227:275–297, 1999.

[Gir00] Jean-Yves Girard. On the meaning of logical rules II: multiplicative/additive case. In F. L. Bauer
and R. Steinbrüggen, editors, Foundation of Secure Computation, Amsterdam, 2000. IOS Press.
NATO series F 175.

[Gir01] Jean-Yves Girard. Locus Solum. Mathematical Structures in Computer Science, 11(3):301–506,
2001.

[Gir04] Jean-Yves Girard. Between logic and quantic: a tract. In Thomas Ehrhard, Jean-Yves Girard,
Paul Ruet, and Philip Scott, editors, Linear Logic in Computer Science, volume 316 of London
Mathematical Society Lecture Note Series, pages 346–381. Cambridge University Press, 2004.

[Has02] Ryu Hasegawa. Two applications of analytic functors. Theoretical Computer Science, 272(1-
2):113–175, 2002.

[HL06] Kohei Honda and Olivier Laurent. Processes and polarized proof-nets. Technical report, Preuves,
Programmes et Systèmes, 2006.

[Hyv04] Pierre Hyvernat. Predicate transformers and linear logic: yet another denotational model. In
Jerzy Marcinkowski and Andrzej Tarlecki, editors, Proceedings of the 18th Annual Conference of
the European Association for Computer Science Logic (CSL’04), volume 3210 of Lecture Notes
in Computer Science, pages 115–129. Springer-Verlag, September 2004.

[JM04] Ole Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical report, Cam-
bridge University Computer Laboratory, 2004.

[Laf95] Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont, and L. Regnier,
editors, Advances in Linear Logic, pages 225–247. Cambridge University Press, 1995. Proceedings
of the Workshop on Linear Logic, Ithaca, New York, June 1993.

[LPV01] Cosimo Laneve, Joachim Parrow, and Björn Victor. Solo diagrams. In Proceedings of the 4th
conference on Theoretical Aspects of Computer Science, TACS’01, number 2215 in Lecture Notes
in Computer Science. Springer-Verlag, 2001.

50

[Maz05] Damiano Mazza. Multiport interaction nets and concurrency. In Proceedings of CONCUR 2005,
number 3653 in Lecture Notes in Computer Science, pages 21–35. Springer-Verlag, 2005.

[Mil93] Robin Milner. The polyadic pi-calculus: a tutorial. In Logic and Algebra of Specification, pages
203–246. Springer-Verlag, 1993.

[Plo76] Gordon Plotkin. A powerdomain construction. SIAM Journal of Computing, 5(3):452–487, 1976.

[SW01] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[vGH05] Rob van Glabbeek and Dominic Hughes. Proof nets for unit-free multiplicative additive linear
logic. In ACM transactions on computational logic, pages 784–842. ACM Press, 2005.

51

