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CHANGING THE BRANCHING MECHANISM OF A CONTINUOUS

STATE BRANCHING PROCESS USING IMMIGRATION

ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Abstract. We construct a continuous state branching process with immigration (CBI)
whose immigration depends on the CBI itself and we recover a continuous state branching
process (CB). This provides a dual construction of the pruning at nodes of CB introduced
by the authors in a previous paper [1]. This construction is a natural way to model neutral
mutation. Using exponential formula, we compute the probability of extinction of the orig-
inal type population in a critical or sub-critical quadratic branching, conditionally on the
non extinction of the total population.

1. Introduction

We consider an initial Eve-population whose size evolves as a continuous state branching
process (CB), Y 0 = (Y 0

t , t ≥ 0), with branching mechanism ψ defined by formula (1) (see [6]
for a definition of CB as limit of Galton-Watson processes). We assume this population gives
birth to a population of (irreversible) mutants. The new mutants population can be seen as
an immigration process with rate proportional to the size of the Eve-population. This second
population also evolves according to the same branching mechanism as the Eve-population
(i.e. the mutations are neutral). This population of mutants gives birth to a population of
other (irreversible) mutants, with rate proportional to its size. And so on. We are interested
in the law of the total population size X = (Xt, t ≥ 0), which is a CB with immigration (CBI)
proportional to its own size. If the mutations are neutral, we expect X to be a CB. We give
in Theorem 3.2 the law of the CBI X. Then we check, Corollary 4.1, that under some natural
condition on the immigration process, the CBI X is indeed a CB whose branching mechanism
is given by a shift of the branching mechanism of the Eve-population: more precisely, the
branching mechanism of X is

ψ−θ(λ) = ψ(λ− θ) − ψ(−θ), λ > 0,

for some θ > 0. This corresponds in some sense, see Corollary 4.2, to the dual of the pruning
at nodes introduced in [1] for critical or sub-critical CB.

Then we use this model to compute the joint law of the Eve-population and the whole
population at given time: (Y 0

t ,Xt). In particular, we compute P(Y 0
t = 0|Xt > 0), the

probability for the Eve-type to have disappeared at time t, conditionally on the survival of
the total population at time t, see Remark 5.3, as well as lims→∞ P(Y 0

t = 0|Xs > 0), the
probability for the Eve-type to have disappeared, conditionally on the population to never
be extinct, see Proposition 5.5.

In the particular case of CB with quadratic branching mechanism (ψ(u) = βu2, β > 0),
similar results are given in [10] (using genealogical structure for CB) and in [11] (using
a decomposition of Feller diffusion and [9]). In the critical (ψ′(0+) = 0) or sub-critical
(ψ′(0+) > 0) case one could have used the genealogical process associated to CB introduced
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by [7] and to CBI developed by [5] to prove the present result. This presentation would have
been more natural in view of the pruning method used in [1]. Our choice not to rely on this
presentation was motivated by the possibility to consider super-critical cases (ψ′(0+) < 0).

The paper is organized as follows: In Section 2, we recall some well known facts on contin-
uous state branching processes (CB) and continuous state branching processes with immigra-
tion (CBI). In Section 3, we built a CBI X whose branching mechanism is ψ and immigration
rate at time t proportional to Xt. We prove in Section 4 this process is, under some condition
on the immigration process, again a CB and we give some link with the pruning at nodes of
CB introduced in [1]. Eventually, we compute the joint law of the Eve-population and the
whole population in Section 5, as well as some related quantities.

2. CB and CB with immigration

The results from this section can be found in [4] (see also [8] for a survey on CB and CBI,
and the references therein). Let ψ be a branching mechanism of a CB: for λ ≥ 0,

(1) ψ(λ) = α0λ+ βλ2 +

∫

(0,∞)
π(dℓ)

[

e−λℓ −1 + λℓ1{ℓ≤1}

]

,

where α0 ∈ R, β ≥ 0 and π is a Radon measure on (0,∞) such that
∫

(0,∞)(1∧ ℓ
2) π(dℓ) <∞.

Notice ψ is smooth on (0,∞) and convex. We have ψ′(0+) ∈ [−∞,+∞), and ψ′(0+) = −∞
if and only if

∫

(1,∞) ℓ π(dℓ) = ∞. In order to consider only conservative CB, we shall also

assume that for all ε > 0 small enough

(2)

∫ ε

0

1

|ψ(u)|
du = ∞.

2.1. CB. Let Px be the law of a CB Z = (Zt, t ≥ 0) started at x ≥ 0 and with branching
mechanism ψ. The process Z is a Feller process and thus càdlàg. Thanks to (2), the process
is conservative, that is a.s. for all t ≥ 0, Zt < +∞. For every λ > 0, for every t ≥ 0, we have

(3) Ex

[

e−λZt

]

= e−xu(t,λ)

where the function u is the unique non-negative solution of

(4) u(t, λ) +

∫ t

0
ψ
(

u(s, λ)
)

ds = λ, λ ≥ 0, t ≥ 0.

This equation is equivalent to

(5)

∫ λ

u(t,λ)

dr

ψ(r)
= t λ ≥ 0, t ≥ 0.

The process Z is infinitely divisible. Let Q be its canonical measure. In particular, under Px,
Z is distributed as

∑

i∈I Z
i, where

∑

i∈I δZi is a Poisson measure with intensity xQ(dZ).
The CB is called critical (resp. super-critical, resp. sub-critical) if ψ′(0+) = 0 (resp.

ψ′(0+) < 0, resp. ψ′(0+) > 0).
We shall need inhomogeneous notation. For t < 0, we set Zt = 0. Let Px,t denote the law

of (Zs−t, s ∈ R) under Px, and let Qt be the distribution of (Zs−t, s ∈ R) under Q.
For µ a positive measure on R, we set Hµ = sup{r ∈ R;µ([r,∞)) > 0} the maximal

element of its support.
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Proposition 2.1. Let µ be a finite positive measure on R with support bounded from above
(i.e. Hµ is finite). Then we have for all s ∈ R, x ≥ 0,

(6) Ex

[

e−
∫

Zr−s µ(dr)
]

= e−xw(s),

where the function w is a measurable locally bounded non-negative solution of the equation

(7) w(s) +

∫ ∞

s
ψ(w(r))dr =

∫

[s,∞)
µ(dr), s ≤ Hµ and w(s) = 0, s > Hµ.

If ψ′(0+) > −∞ or if µ({Hµ}) > 0, then (7) has a unique measurable locally bounded non-
negative solution.

Proof. Let n ≥ 1. We set Z
(n),s
t = Z i+1

2n −s for t ∈ [i/2n, (i+1)/2n). Using that Z is càdlàg, we

get a.s. lim
n→∞

Z
(n),s
t = Zt−s for all t, s ∈ R. Since the process Z is finite, we get by dominated

convergence theorem a.s. for all s ∈ R
∫

[−s,Hµ]
Zr−s µ(dr) = lim

n→∞

∫

[−s,Hµ]
Z(n),s

r µ(dr).

Using the Markov property of Z, we get that

Ex

[

e−
∫

Z
(n),s
r µ(dr)

]

= e−xw(n)(s),

where w(n) is the unique non-negative solution of

w(n)(s) +

∫ ([Hµ2n]+1)/2n

s
ψ(w(n)(r)) dr =

∫

[k/2n,∞)
µ(dr),

with k s.t. k/2n < s ≤ (k + 1)/2n.

Let T > Hµ + 1. Notice that for all s ∈ [−T, T ], we have
∫

Z
(n),s
r µ(dr) ≤ sup{Zt, t ∈

[0, 2T ]}µ([−T,Hµ]) < ∞ a.s. Let C be defined by e−C = Ex[e
− sup{Zt,t∈[0,2T ]}µ([−T,Hµ])].

Notice C <∞. This implies that for all n ≥ 1, s ∈ [−T, T ],

0 ≤ w(n)(s) ≤ C <∞.

By dominated convergence theorem, w(n)(s) converges to w(s) = − log
(

E1[e
−
∫

Zr−sµ(dr)]
)

,

which lies in [0, C], for all s ∈ [−T, T ]. By dominated convergence theorem, we deduce that w
solves (7). Since T is arbitrary, the Proposition is proved but for the uniqueness of solutions
of (7).

If ψ′(0+) > −∞, then ψ is locally Lipschitz. This implies there exists a unique locally
bounded non-negative solution of (7).

If ψ′(0+) = −∞, and µ({Hµ}) > 0, we get that
∫

Zr−s µ(dr) ≥ aZHµ−s, where a =
µ({Hµ}) > 0. This implies that w(s) ≥ u(Hµ − s, a) > 0 for s ∈ R. The function u(·, a) is
strictly positive on R+ because of condition (2) and equation (5). Since ψ is locally Lipschitz
on (0,∞), we deduce there exists a unique locally bounded non-negative solution of (7). �

2.2. CBI. Let x > 0, α ≥ 0, ν be a Radon measure on (0,∞) such that
∫

(0,∞)(1∧x) ν(dx) <

∞. Let B+ denote the set of non-negative measurable functions defined on R. Let h ∈ B+

be locally bounded. We consider the following independent processes.

•
∑

i∈I δti,xi,Zi , a Poisson measure with intensity h(t)1{t≥0}dt ν(dx) Px,t(dZ).

• Z̃, distributed according to Px.
•
∑

j∈J δtj ,Ẑj , a Poisson measure with intensity αh(t)1{t≥0}dt Qt(dZ).
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For t ∈ R, let Yt = Z̃t+
∑

i∈I Z
i
t +
∑

j∈J Ẑ
j
t ∈ [0,∞]. We say Y = (Yt, t ≥ 0) is a continuous

state branching process with immigration (CBI) started at x, whose branching mechanism
is ψ and immigration is characterized with (h, φ) where the immigration mechanism, φ, is
defined by

φ(λ) = αλ+

∫

(0,∞)
ν(dx)(1 − e−λx), λ ≥ 0.

One gets Y is a conservative Hunt process when h is constant, see [4]. Notice that Y is a
non-homogeneous Markov processes. We also have Y0 = x, and Yt = 0 for t < 0.

Using Poisson measure property, one can construct on the same probability space two
CBI, Y 1 and Y 2, with same branching process ψ, same starting point and immigration
characterized by (h1, φ) and (h2, φ) such that Y 1

t ≤ Y 2
t for all t ≤ T as soon as h1(t) ≤ h2(t)

for all t ≤ T . We can apply this with h1 = h and h2(t) = sup{h(s); s ∈ [0, T ]} for t ∈ R and
some T > 0, and use that Y 2 is conservative (see [4]) to get that Y 1 has a locally bounded
version over [0, T ]. Since T is arbitrary, this implies that any CBI has a locally bounded
version. We shall work with this version.

The following Lemma is a direct consequence of the exponential formula for Poisson mea-
sure.

Lemma 2.2. Let µ be a finite positive measure on R with support bounded from above (i.e.
Hµ is finite). We have for s ∈ R:

(8) E

[

e−
∫

Yr−s µ(dr)
]

= e−xw(s)−
∫

∞

0
h(t)φ(w(s+t))dt,

where the function w is defined by (6).

3. State dependent immigration

3.1. Induction formula. Let (xk)k∈N a sequence of non-negative real numbers. Let Y 0 be
a CB with branching mechanism ψ starting at x0. We construct by induction Y n, n ≥ 1,
as the CBI started at xn, with branching mechanism ψ and immigration characterized by
(Y n−1, φ).

Lemma 3.1. Let (µk, k ∈ N) be a family of finite measures on R with support bounded from
above. We have for all n ∈ N, s ∈ R,

E

[

e−
∑n

k=0

∫

Y k
r−s µk(dr)

]

= e−
∑n

k=0 xn−kw
(n)
k

(s),

where w
(n)
0 is defined by (6) with µ replaced by µn, and for k ≥ 1, w

(n)
k is defined by (6) with

µ replaced by µn−k(dr) + φ(wk−1(r)) dr. In particular, wk is a locally bounded non-negative
solution of the equation

(9) w(s) +

∫ ∞

s
ψ(w(r))dr =

∫

[s,∞)
µn−k(dr) +

∫ ∞

s
φ(w

(n)
k−1(r)) dr, s ∈ R.

(Notice wk(s) = 0 for s > max{Hµk′ , k′ ∈ {0, . . . , k}}.)

Proof. This is a consequence of the computation of E

[

e−
∑n

k=0

∫

Y k
r−s µk(dr)

∣

∣

∣
Y 0, . . . , Y n−1

]

,

using Proposition 2.1. This also implies that (9) holds. Then, by induction, one deduces
from (9) that wk is locally bounded. �
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3.2. Convergence towards a total mass process. We consider the sequence (Y n, n ≥ 0)
defined in the previous section with x0 = x ≥ 0 and xn = 0 for n ≥ 1. We set Xn

t =
∑n

k=0 Y
k
t

for t ∈ R. Let Xt be the increasing limit of Xn = (Xn
t , n ≥ 0) for all t ∈ R. We have

Xt ∈ [0,+∞]. We call X = (Xt, t ∈ R) a CBI with branching mechanism ψ and immigration
process (X,φ).

The process Y 0 describes the size process of the Eve-population, Y 1 the size process of
the population of mutants born from the Eve-population Y 0, Y 2 the size process of the
population of mutants born from mutant population Y 1, and so on. The size process of the
total population is given by X =

∑

k≥0 Y
k. In neutral mutation case, it is natural to assume

that all the processes Y k have the same branching mechanism. Since we assume xk = 0 for
all k ≥ 1, this means only the Eve-population is present at time 0.

Theorem 3.2. The process X, which is a CBI with branching mechanism ψ and immigration
process (X,φ), is a CB with branching mechanism ψ − φ.

Remark 3.3. For λ ≥ 0, we have

ψ(λ)− φ(λ) =
(

α0 −α−

∫

(0,1]
ℓ ν(dℓ)

)

λ+ βλ2 +

∫

(0,∞)
(π(dℓ) + ν(dℓ))

[

e−λℓ −1 + λℓ1{ℓ≤1}

]

,

which shows that ψ − φ is a branching mechanism.

Remark 3.4. As a consequence of Theorem 3.2, X is a Markov processes. Notice that
(Y 0, . . . , Y n) is also Markov but not Xn

t for n ≥ 1.

Proof. Let µ be a finite measure on R with support bounded from above (i.e. Hµ <∞). We
shall assume that µ({Hµ}) = a > 0.

We keep the notations of Lemma 3.1, with µk = µ. In particular we see from (9) that w
(n)
k

does not depend on n. We shall denote it by wk. By monotone convergence, we have

E

[

e−
∫

Xr−s µ(dr)
]

= lim
n→∞

E

[

e−
∑n

k=0

∫

Y k
r−s µ(dr)

]

= lim
n→∞

e−xwn(s),

where the limits are non-increasing. This implies that (wn, n ≥ 0) increases to a non-negative

function w∞. By monotone convergence theorem (for
∫ Hµ

s ψ(w(r))1{wn(r)>0} dr and the

integral with φ) and dominated convergence theorem (for
∫ Hµ

s ψ(w(r))1{wn(r)≤0} dr), we
deduce from (9), that w∞ solves w(s) = 0 for s > Hµ and

(10) w(s) +

∫ Hµ

s
ψ(w(r))dr =

∫

[s,∞)
µ(dr) +

∫ Hµ

s
φ(w(r)) dr, s ≤ Hµ.

Notice that w∞(s) ∈ [0,∞] and the two sides of the previous equality may be infinite.
Thanks to Proposition 2.1, and since ψ − φ is a branching mechanism (see Remark 3.3),

there exists a unique locally bounded non-negative solution of (10), which we shall call w̄.
Therefore to prove that w∞ = w̄, it is enough to check that w∞ is locally bounded. This will
be the case if we check that w∞ ≤ w̄. In particular, we get w∞ = w̄, if we can prove that
wn ≤ w̄ for all n ∈ N. We shall prove this by induction.

We consider the measure µ0(dr) = µ(dr) + φ(w̄(r))1{r≤Hµ} dr. Notice Hµ0 = Hµ and

µ0({Hµ0
}) = µ({Hµ}) = a > 0. We define w̄0 by

e−xw̄0(s) = E

[

e−
∫

Y 0
r−s µ0(dr)

]

.
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The function w̄0 is a locally bounded non-negative function which solves

w(s) +

∫ Hµ

s
ψ(w(r))dr =

∫

[s,∞)
µ(dr) +

∫ Hµ

s
φ(w̄(r)) dr, s ≤ Hµ.

Thanks to Proposition 2.1, w̄0 is unique. Since w̄ solves the same equation, we deduce that
w̄0 = w̄. We also have

e−xw0(s) = E

[

e−
∫

Y 0
r−s µ(dr)

]

≥ E

[

e−
∫

Y 0
r−s µ0(dr)

]

.

This implies that w0 ≤ w̄0 = w̄.
Assume we proved that wn−1 ≤ w̄ for some n ≥ 1. Then we can consider the measure

µn(dr) = µ(dr) + [φ(w̄(r)) − φ(wn−1(r))]1{r≤Hµ} dr. Notice Hµn

= Hµ and µn({Hµn

}) =
a > 0. Recall x = x0 ≥ 0 and xk = 0 for k ≥ 1. We define w̄n by

e−xw̄n(s) = E

[

e−
∫

Y n
r−s µn(dr)

]

.

The function w̄n is a locally bounded non-negative function which solves for s ≤ Hµ

w(s) +

∫ Hµ

s
ψ(w(r))dr =

∫

[s,∞)
µn(dr) +

∫ Hµ

s
φ(wn−1(r)) dr

=

∫

[s,∞)
µ(dr) +

∫ Hµ

s
φ(w̄(r)) dr.

Thanks to Proposition 2.1, w̄n is unique. Since w̄ solves the same equation, we deduce
that w̄n = w̄. We also have

e−xwn(s) = E

[

e−
∫

Y n
r−s µ(dr)

]

≥ E

[

e−
∫

Y n
r−s µn(dr)

]

.

This implies that wn ≤ w̄. Therefore, this holds for all n ≥ 0, which according to our previous
remark entails that w∞ = w̄.

By taking µ(dr) =
∑K

k=1 λkδtk(dr) for K ∈ N
∗, λ1, . . . , λK ∈ [0,∞) and 0 ≤ t1 ≤ . . . ≤

tK , we deduce that X has the same finite marginals distribution as a CB with branching
mechanism ψ − φ. Hence X is a CB with branching mechanism ψ − φ.

�

4. The dual to the pruning at node

For θ ∈ R, we consider the group of operators (Tθ, θ ∈ R) on the set of real measurable
functions defined by

Tθ(f)(·) = f(θ + ·) − f(θ).

In [1], see Theorem 6.1, a pruning with intensity θ > 0, for the continuous random tree
(CRT), with branching mechanism ψ is introduced and gives a CRT with branching mecha-
nism ψθ = Tθ(ψ).

Recall the local time of the height process of the CRT is a (sub-critical or critical) CB
process with branching mechanism ψ (see [3]). The above pruning procedure gives a natural
construction of a CB process of branching mechanism ψθ, which we shall called a pruned CB
with intensity θ > 0, from a CB process of branching mechanism ψ. Notice this construction
was done under the assumption that β = 0 (see also [2] when β > 0 and π = 0). The
case β > 0 and π 6= 0 could certainly be handled in a similar way. Intuitively, the pruning
correspond to removing all the descendants of an individual with a probability e−θ∆, where
∆ correspond to the “number” of its children.
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Using the previous Section, we can give a probabilistic interpretation to Tθ(ψ) as a branch-
ing mechanism for some negative values of θ.

Let θ0 = sup{θ ≥ 0;
∫

(1,∞) eθℓ π(dℓ) < ∞}. Notice that θ0 = 0 if ψ′(0+) = −∞,

as ψ′(0+) = −∞ is equivalent to
∫

(1,∞) ℓ π(dℓ) = +∞. We assume θ0 > 0. and we set

Θ = (0, θ0] if
∫

(1,∞) eθ0ℓ π(dℓ) < ∞ and Θ = (0, θ0) otherwise. Let θ ∈ Θ. Recall the Lévy

measure π in the definition (1) of ψ. We define

φθ(λ) = 2βθλ+

∫

(0,∞)
(eθx −1)(1 − e−λx) π(dx)

and ψ−θ = ψ − φθ. It is straightforward to check that φθ can be seen as an immigration
mechanism and that ψ−θ = T−θ(ψ). The next Corollary is a direct consequence of the
previous Section.

Corollary 4.1. Let θ ∈ Θ. A CBI process Y with branching mechanism ψ and immigration
(Y, φθ) is a CB with branching mechanism T−θ(ψ).

In a certain sense the immigration is the dual to the pruning at node. In particular, to
build a CB process of branching mechanism ψ from a CB process of branching mechanism
ψθ = Tθ(ψ), with θ > 0, one can add an immigration at time t which rate is proportional to

the size of the population at time t and immigration mechanism φ̃θ defined by:

φ̃θ(λ) = ψθ(λ) − ψ(λ) = 2βθλ+

∫

(0,∞)
(1 − e−θx)(1 − e−λx) π(dx), for λ ≥ 0.

can be seen as an immigration mechanism.
In conclusion, we get the following result, whose first part comes from Theorem 6.1 in [1].

As in [1], we assume only for the next Corollary that β = 0 and
∫

(0,1) ℓ π(dℓ) > 0.

Corollary 4.2. Let X be a critical or sub-critical CB process with branching mechanism ψ.
Let X(θ) be the pruned CB of X with intensity θ > 0 : X(θ) is a CB process with branching
mechanism ψθ. The CBI process, Y , with branching mechanism ψθ and immigration (Y, ψθ −
ψ) is distributed as X.

5. Application : law of the initial process

We consider a population whose size evolves as X = (Xt, t ≥ 0), a CB with branching
mechanism ψ. We assume ψ satisfies the hypothesis of Section 2. This population undergoes
some irreversible mutations with constant rate. Each mutation produce a new type of indi-
vidual. The mutation is described by the pruning at node, with rate θ > 0, given in [1] if
β = 0 or in [2] if π = 0. In the quadratic case (π = 0) this corresponds to the limit of the
Wright-Fisher model, but for the fact that the “size” of the population is not constant but
is distributed as a CB. In the case β = 0, intuitively a mutation occurs to an individual with
probability 1 − e−θ∆, where ∆ is its “number” of children.

We assume the population at time 0 has the same original Eve-type. We are interested in
the law of Y 0 = (Y 0

t , t ≥ 0), the “size” of the sub-population with the original type knowing
the size of the whole population. In particular, we shall compute P(Y 0

t = 0|Xt > 0), the
probability for the Eve-type to have disappeared, conditionally on the survival of the total
population at time t.

We keep the notation of the previous Sections. Following the idea of Corollary 4.2, we
shall assume Y 0 is a CB with branching mechanism ψθ = Tθ(ψ), where θ > 0, and X the CBI
with immigration (X,ψθ −ψ) considered in Section 3.2. Thus, we model the mutations by an
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immigration process with rate proportional to the size of the population. This interpretation
may be more natural than the a posteriori pruning.

The joint law of (Xt, Y
0
t ) can be easily characterized by the following Lemma.

Lemma 5.1. Let t ≥ 0, λ1, λ2 ∈ R+. We assume X0 = Y 0
0 = x ≥ 0. We have

E

[

e−λ1Xt−λ2Y 0
t

]

= e−xw(0),

where (w,w∗) is the unique measurable non-negative solution on (−∞, t] of

w(s) +

∫ t

s
ψ
(

w(r)
)

dr = λ1 + λ2 +

∫ t

s
φ
(

w∗(r)
)

dr,(11)

w∗(s) +

∫ t

s
ψ
(

w∗(r)
)

dr = λ1 +

∫ t

s
φ
(

w∗(r)
)

dr.(12)

Proof. Recall notation of Section 3.2. In particular x0 = x and xn = 0 for all n ≥ 1. Let us
apply Lemma 3.1 with

µ0(dr) = (λ1 + λ2)δt(dr),

µk(dr) = λ1δt(dr) for k ≥ 1.

We get

E

[

e−(λ1Xn
t +λ2Y 0

t )
]

= e−xw
(n)
n (0),

where for s ≤ t,

w
(n)
0 (s) +

∫ t

s
ψ
(

w
(n)
0 (r)

)

dr = λ1,

w
(n)
k (s) +

∫ t

s
ψ
(

w
(n)
k (r)

)

dr = λ1 +

∫ t

s
φ
(

w
(n)
k−1(r)

)

dr for 1 ≤ k ≤ n− 1,

w(n)
n (s) +

∫ t

s
ψ
(

w(n)
n (r)

)

dr = λ1 + λ2 +

∫ t

s
φ
(

w
(n)
n−1(r)

)

dr.

We let n goes to infinity and use similar arguments as in the proof of Theorem 3.2 to get the
result. �

Some more explicit computations can be made in the case of quadratic branching mecha-
nism (see also [11] when α0 = 0). Let α0 ≥ 0 and θ > 0 and set

ψ(u) = α0u+ u2, ψθ(u) = (α0 + 2θ)u+ u2.

The CB which models the total population is critical (α0 = 0) or sub-critical (α0 > 0). The
immigration mechanism is ψθ(u) − ψ(u) = 2θu.

We set b = (α0 + 2θ) and for t ≥ 0,

(13) h(t) =

{

1 + λ1
1−e−α0t

α0
if α0 > 0,

1 + λ1t if α0 = 0.

Proposition 5.2. Let t ≥ 0, λ1, λ2 ∈ R+. We have

E

[

e−λ1Xt−λ2Y 0
t

]

= e−xv0(t),

where

v0(t) = e−bt h(t)−2

(

1

λ2
+

∫ t

0
e−br h(r)−2dr

)−1

+ λ1 e−α0t h(t)−1.
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Proof. By the previous lemma, we have

(14) E

[

e−λ1Xt−λ2Y 0
t

]

= e−xw(0)

where for s ≤ t,

w(s) +

∫ t

s
w(r)

(

w(r) + b
)

dr = λ1 + λ2 + 2θ

∫ t

s
w∗(r)dr,(15)

w∗(s) +

∫ t

s
w∗(r)

(

w∗(r) + α0

)

dr = λ1.

The last equation is equivalent to

(16) (w∗)′ −w∗(w∗ + α0) = 0 on (−∞, t], w∗(t) = λ1.

The function z∗ :=
1

w∗
is thus the unique solution of

(z∗)′ + α0z
∗ + 1 = 0 on (−∞, t], z∗(t) =

1

λ1
.

If α0 > 0, this leads to

z∗(s) =
1

α0

(

eα0(t−s) −1
)

+
1

λ1
eα0(t−s) .

If α0 = 0, we have z∗(s) = t− s+
1

λ1
. We get

(17) w∗(s) = h′(t− s)h(t− s)−1 = λ1 e−α0(t−s) h(t− s)−1.

Equation (15) is equivalent to

w′ − w(w + b) = −2θw∗ on (−∞, t], w(t) = λ1 + λ2.

Set y = w − w∗ and use the differential equation (16), to get that y solves

y′ − y2 − y(2w∗ + b) = 0 on (−∞, t], y(t) = λ2.

Then the function z := 1/y is the unique solution of

z′ + (2w∗ + b)z + 1 = 0 on (−∞, t], z(t) =
1

λ2
.

One solution of the homogeneous differential equation z′0 = −(2w∗+b)z0 is z0(s) = eb(t−s) h(t−
s)2. Looking for solutions of the form z(s) = C(s)z0(s) gives

z(s) = z0(s)

(

1

λ2
+

∫ t

s
z0(u)

−1du

)

.

We conclude using (14) and w = w∗ + z−1. �

Remark 5.3. We can compute the conditional probability of the non extinction of the Eve-
population: P(Y 0

t > 0|Xt > 0). However, this computation can be done without the joint
law of (Xt, Y

0
t ) as

P(Y 0
t > 0|Xt > 0) =

P(Y 0
t > 0,Xt > 0)

P(Xt > 0)
=

P(Y 0
t > 0)

P(Xt > 0)
=

1 − P(Y 0
t = 0)

1 − P(Xt = 0)
,
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with P(Xt = 0) = lim
λ1→∞

E[e−λ1Xt ] = e−xg(α0,t)−1
and P(Y 0

t = 0) = lim
λ2→∞

E[e−λ2Y 0
t ] =

e−xg(b,t)−1
, where

(18) g(a, t) =

{

eat −1
a if a > 0,

t if a = 0.

The same kind of computation allows also to compute the joint law at different times.

Proposition 5.4. Let 0 ≤ u < t, λ1, λ2 ∈ R+. We have

E

[

e−λ1Xt−λ2Y 0
u

]

= e−xv1(u,t),

where

v1(u, t) = e−bt h(t)−2

(

e−b(t−u) h(t− u)−2

λ2
+

∫ t

t−u
e−br h(r)−2dr

)−1

+ λ1 e−α0t h(t)−1.

Proof. Recall notation of Section 3.2. In particular x0 = x and xn = 0 for all n ≥ 1. Let us
apply Lemma 3.1 with

µ0 = λ1δt + λ2δu,

µk = λ1δt for k ≥ 1.

Let n goes to infinity as in the proof of Lemma 5.1 to get that

(19) E

[

e−λ1Xt−λ2Y 0
u

]

= e−xw(0),

where (w,w∗) is the unique non-negative solution on (−∞, t] of

w(s) +

∫ t

s
ψ
(

w(r)
)

dr = λ1 + λ21{s≤u} +

∫ t

s
φ
(

w∗(r)
)

dr,(20)

w∗(s) +

∫ t

s
ψ
(

w∗(r)
)

dr = λ1 +

∫ t

s
φ
(

w∗(r)
)

dr.

Notice w∗ is still given by (17). For s > u, we have w(s) = w∗(s) and, for s ≤ u, Equation
(20) is equivalent to

w′ −w(w + b) = −2θw∗ on (−∞, u], w(t) = w∗(u) + λ2.

From the proof of Proposition 5.2, we get

1

w(s) − w∗(s)
= eb(t−s) h(t− s)2

(

e−b(t−u) h(t− u)−2

λ2
+

∫ u

s
e−b(t−r) h(t− r)−2dr

)

.

We conclude using (19). �

At this stage, we can give the joint distribution of the extinction time of X, τ = inf{t >
0;Xt = 0}, and of Y 0, σ = inf{t > 0;Y 0

t = 0}. For u ≤ t, we have P(τ ≤ t, σ ≤ u) =
limλ1→∞, λ2→∞ v1(u, t) that is

P(τ ≤ t, σ ≤ u) = exp−x

(

e−bt(

∫ t

t−u
e−br g(α0, t)

2g(α0, r)
−2 dr)−1 + g(α0, t)

−1

)

.

We can compute the probability of the Eve-population to live up to time τ conditionally on
the value of τ :

P(σ = τ |τ = t) = 1 −
limu↑t ∂tP(σ ≤ u, τ ≤ t)

∂tP(τ ≤ t)
= e−2(α0+θ)t .
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See also proposition 5 in [11], where α0 = 0.
We can deduce from the latter Proposition the law of Y 0

u conditionally on the non-extinction
of the whole population. We set

A(b, u) =
1

λ2
ebu +g(b, u).

Proposition 5.5. Let u ≥ 0, λ2 ∈ R+. We have

lim
t→+∞

E

[

e−λ2Y 0
u

∣

∣

∣
Xt > 0

]

= e−xA(b,u)−1 (

1 −A(b, u)−2G(α0, u)
)

,

where

G(a, u) =
2

λ2
ebu g(α0, u) +

{

2g(b+α0,u)−g(b,u)
α0

if a > 0,

2∂1g(b, u) if a = 0.

Proof. We have

E

[

e−λ2Y 0
u

∣

∣

∣

∣

Xt > 0

]

=
E

[

e−λ2Y 0
u

]

− E

[

e−λ2Y 0
u 1{Xt=0}

]

P(Xt > 0)
·

Using Proposition 5.4

E

[

e−λ2Y 0
u 1{Xt=0}

]

= lim
λ1→+∞

E

[

e−λ2Y 0
u −λ1Xt

]

= e−xv̄1(u,t),

with v̄1(u, t) = limλ1→+∞ v1(u, t).
Definition (18) implies

v̄1(u, t) =

(

ebu g(α0, t)
2

λ2g(α0, t− u)2
+ ebt

∫ t

t−u
e−br g(α0, t)

2

g(α0, r)2
dr

)−1

+ e−α0t g(α0, t)
−1.

Performing an asymptotic expansion of v̄1 as t goes to ∞ leads to the result. �
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Probab., 26:213–252, 1998.
[8] Z.-H. LI. Branching processes with immigration and related topics. Front. Math. China, 1:73–97, 2006.
[9] J. PITMAN and M. YOR. A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete, 59(4):425–457,

1982.
[10] L. SERLET. Creation or deletion of a drift on a brownian trajectory. Submitted, 2006.
[11] J. WARREN. Branching processes, the Ray-Knight theorem, and sticky Brownian motion. In Séminaire
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