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Dynamic Load Balancing and Efficient Load
Estimators for Asynchronous Iterative Algorithms

Jacques M. Bahi,Member, IEEE,Sylvain Contassot-Vivier,Member, IEEE,
and Raphaël Couturier,Member, IEEE

Abstract— In a previous paper [1], we have shown the very
high power of asynchronism for parallel iterative algorithms in
a global context of grid computing. In this article, we study
the interest of coupling load balancing with asynchronism in
such algorithms. After proposing a non-centralized version of
dynamic load balancing which is best suited to asynchronism,
we verify its efficiency by some experiments on a general Partial
Differential Equation (PDE) problem. Finally, we give some
general conditions for the use of load balancing to obtain good
results with this kind of algorithms and discuss the choice of the
residual as an efficient load estimator.

Index Terms— Parallel iterative algorithms, asynchronism,
load-balancing.

I. I NTRODUCTION

I N the context of scientific computations, iterative algo-
rithms are very well suited to a large class of problems

(see for example [2]–[7]). In many cases, they are preferred
to direct methods and sometimes they are even the single
way to solve the problem (e.g. root polynomial problems).
Direct algorithms give the exact solution of a problem within
a finite number of operations whereas iterative algorithms
provide an approximation of it. We say that they converge
(asymptotically) towards the solution. When dealing with
very large-sized problems, iterative algorithms are preferred
especially if they give a good approximation within a small
number of iterations.

The latter properties have led to a good expansion of
parallel iterative algorithms (PIAs). Nevertheless, mostof
those parallel versions are synchronous. We have shown in [1]
all the interest of using asynchronism in such parallel iterative
algorithms especially in a global context of grid computing.
Moreover, we have also shown in [8] that static load balancing
can sharply improve the performances of our algorithms.

In this article, we discuss the general interest of using
dynamic load balancing in asynchronous iterative algorithms
and we empirically show its major efficiency in the global
context of grid computing.

Due to the nature of PIAs, a centralized version of load
balancing would not be well suited in a global context of
grid computing. Hence, the technique used in this study
works locally between neighboring processors. In our case,the
neighborhood is determined by the communications between
processors. Two nodes are defined as neighbors if they have
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to exchange data to perform their job. We evaluate the gain
of the load balancing in some experiments on a representative
chemical test problem which is described by a Partial Differ-
ential Equation (PDE). Finally, we study the impact of the
load estimator on the performances in the particular case of
PIAs and propose to use the residual instead of the classical
amount of data to evaluate the load. The residual is defined by
the max norm of the difference between data values from two
consecutive iterations. In fact, choosing such a load estimator
takes into account the actual progress of the iterative process.

The following section recalls the principles of asynchronous
iterative algorithms and replaces them in the context of PIAs.
Then, Section III presents a small discussion about the moti-
vations of using load balancing in such algorithms. A brief
overview of related works concerning non-centralized load
balancing techniques is given in Section IV. An example
of application is exhibited with a chemical reaction problem
detailed in Section V. The corresponding algorithm and the
insertion of load balancing are then detailed in Section VI.
Experimental results are given and interpreted together with a
discussion about the best conditions of use in Section VII.
Finally, we study the impact of the load estimator on the
performances of load balancing in Section VII-B.

II. W HAT ARE ASYNCHRONOUS ITERATIVE ALGORITHMS?

A. Iterative algorithms: background

Iterative algorithms have the following structure

xk+1 = f(xk), k = 0, 1, ... with x0 given (1)

where eachxk is an n - dimensional vector, andf is some
function fromR

n into itself. If the sequence
{

xk
}

generated
by the above iteration converges to somex∗ and if f is
continuous then we havex∗ = f(x∗), we say thatx∗ is a
fixed point off.

Let xk be partitioned into m block-components
Xk

i , i ∈ {1, ..., m}, and f be partitioned in a compatible
way into m block-componentsFi, then equation (1) can be
written as

Xk+1
i = Fi

(

Xk
1 , ..., Xk

m

)

i = 1, ..., m, with X0 given
(2)

and the iterative algorithm can be parallelized by letting each
of them processors updates a different block-component ofx

according to (2) (see [9], [10]). At each stage, theith processor
knows the value of all components ofXk on which Fi

depends, computes the new valuesXk+1
i , and communicates
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those on which other processors depend to make their own
iterations.

Considering fully asynchronous iterative algorithms, the
model is as follows:

• the block nodes of the network may be updated in a
random order and moreover it is possible that some nodes
may not be updated at some times. Nevertheless, no block
is permanently idle.

• at each timet, each node updates its own state using
the last received version of its dependencies rather than
waiting for their version computed at timet − 1.

Fully asynchronous networks including overlapping updat-
ing were characterized by Herz and Marcus in [11].

In the classical definition of fully asynchronous networks,
we denote byJ(t) the set of nodes updated at timet and

by X
si

j(t)

j the state of the groupj of nodes available for the
group i at time t. si

j(t) is the iteration number of the data
from group j available on groupi at time t. It is defined
by si

j(t) = t − ri
j(t) ≤ t, whereri

j(t) denotes the delay of
the group of nodesj with respect to the groupi. Moreover
limt→∞ si

j (t) = ∞, which means that although the delays are
unbounded, they follow the evolution of the system. Finally, it
can be noticed that the groupsXl may be reduced to a single
nodexil

.
Then, the fully asynchronous dynamic of then-nodes

network associated to the given transition functionF and
to the activation setJ , and with the initial configuration
X0 =

(

X0
1 , ..., X0

m

)

, is described by Algorithm 1.

Algorithm 1 Asynchronous iteration

Given an initial stateX0 = (X0
1 , ..., X0

m)
for each time stept = 0, 1, ... do

for each block-componentsi = 1, ..., m do
if i ∈ J(t) then

Xt+1
i = Fi(X

si
1
(t)

1 , ..., X
si

m(t)
m )

else
Xt+1

i = Xt
i

end if
end for

end for

It is interesting to note that this model is the most general
form of PIA. This implies that if an algorithm converges in
this context, it will also converge in more synchronous ones.

In this model, the residual of blocki is defined by the max
norm of the difference between its values from two consecutive
iterations:

residualti = ||Xt
i − Xt−1

i ||∞ = maxj |X
t
i,j − Xt−1

i,j |

whereXt
i,j is the jth component of the block-vectorXt

i .

B. A categorization of parallel iterative algorithms

Since this article deals with what we commonly call
asynchronous iterative algorithms, it appears necessary,
to make it clear, to detail the class of parallel iterative
algorithms. In this part, we present classes of algorithms

which can actually be implemented and used. The main
difference with fully asynchronous algorithms lies in the
delays which are bounded in the practical case. So, this class
can be decomposed into three main parts:

Synchronous Iterations - Synchronous Communications
(SISC) algorithms: all processors begin the same iteration
at the same time since data exchanges are performed at the
end of each iteration by synchronous global communications.
After parallelization of the problem, these algorithms have
exactly the same behavior as the sequential version in terms
of the iterations performed. Hence, their convergence is
directly deducible from the initial algorithm. Unfortunately,
the synchronous communications strongly penalize the
performances of these algorithms. As can be seen in
Figure 1, there may be a lot of idle times (white spaces)
between iterations (grey blocks) depending on the speed of
communications.

 time

Processor 2

Processor 1

Fig. 1. Execution flow of a SISC algorithm with two processors.

Synchronous Iterations - Asynchronous Communica-
tions (SIAC) algorithms: all processors also wait for the
receptions of needed data updated at the previous iterationto
begin the next one. Nevertheless, each data (or group of data)
required on another processor is sent asynchronously as soon
as it has been updated, so that the remaining computations of
the current iteration overlap its communication. This scheme
lies on the probability that data will be received on the
destination processor before the end of its current iteration,
and then will be directly available for the next iteration.
Hence, this partial overlapping of communications with
computations during each iteration implies shorter idle times
and thus better performances. Since each processor begins its
next iteration as soon as it has received all the needed data
updated from the previous iteration, all the processors may
not begin their iterations at the same time. Nonetheless, in
terms of iterations, the notion of synchronism still holds in
this scheme since at any timet, it is not possible to have two
processors performing different iterations. In fact, at each time
t, the processors are either computing the same iteration or
idle (waiting for data). Hence, from the algorithmic point of
view, this category of algorithms, like the SISC one, performs
the same iterations as the sequential version. Thus, they have
the same convergence properties. Unfortunately, this scheme
does not completely eliminate idle times between iterations,
as shown in Figure 2. In fact, some communications may be
longer than the computation of the current iteration and the
sending of the last updated data on the latest processor can
not be overlapped with computations. It can also be seen on



3

that figure that the order of the communications may not be
respected.

 time

Processor 2

Processor 1

Fig. 2. Execution flow of a SIAC algorithm with two processors. In this
example, the first half of data is sent as soon as updated and the second half
is sent at the end of the iteration.

Asynchronous Iterations - Asynchronous Communica-
tion (AIAC) algorithms: all processors perform their iterations
without taking care of the progression of the other processors.
They do not wait for any reception of needed data coming from
other processors but they keep on computing, trying to solve
the given problem with the current version of data available
at that time. Since the processors do not wait for communica-
tions, there are no more idle times between the iterations as
can be seen in Figure 3. Although widely theoretically studied
(see for example [9], [12]–[14]), very few implementations
and experimental analyses have been carried out, especially
in the context of grid computing. In the literature, there is
a major algorithmic model corresponding to these algorithms
expressed in two main theoretical results, the Bertsekas and
Tsitsiklis theorem [13] and the El Tarazi’s theorem [12]. The
former is based on nested sets whereas the latter uses contrac-
tion properties. Nevertheless, several variants can be deduced
from these models depending on when the communications are
performed and when the received data are incorporated into
the computations, see e.g. [3], [15]. Figure 3 depicts a general
version of an AIAC algorithm with a data decomposition in
two halves for the asynchronous sendings. This type of algo-
rithms requires a meticulous study to ensure their convergence
because, even if a sequential iterative algorithm converges to
the right solution, its asynchronous parallel counterpartmay
not converge. It is then needed to develop new converging
algorithms and several problems appear such as choosing the
right criterion for convergence detection and the right halting
procedure. There are also some implementation problems due
to the asynchronous communications which imply the use of
an adequate programming environment. Nevertheless, despite
all these obstacles, these algorithms are quite convenientto
implement and are the most efficient ones especially in a
global context of grid computing as we have already shown
in [1]. This comes from the fact that they allow communication
delays to be substantial and unpredictable which is a typical
situation in large networks of heterogeneous machines.

III. W HY USING LOAD BALANCING IN THE AIAC MODEL ?

The scope of this paper is to study the interest of using
dynamic load balancing in the AIAC model. One of our
goals is to show that, contrary to a generally accepted idea,
asynchronism does not exempt from distributing the workload

 time

Processor 2

Processor 1

Fig. 3. Execution flow of an AIAC algorithm with two processors. Dashed
lines represent the communications of the first half of data,and solid lines
are for the second half.

efficiently. Indeed, load balancing can efficiently take into
account the heterogeneity of the machines involved in the
parallel iterative computation. This heterogeneity can befound
at the hardware level when using machines with different
speeds but also at the user level if the machines are used
in multi-users or multi-tasks contexts. All these cases are
especially encountered when dealing with grid computing.

In numerous problems resolved by iterative algorithms,
the progression towards the solution is not the same for
all the components of the system and some of them reach
their partial fixed point faster than others. By performing an
appropriate load balancing with some criteria based on this
progression (the residual for example) instead of the classical
load estimator (amount of data), it is then possible to enhance
the distribution of the actually evolving computations over
the processors. Thus, even in a homogeneous context, this
coupling has the great advantage to deal with the evolution
of the computation during the iterative process.

Hence, there are two main ideas motivating the coupling of
load balancing and AIAC algorithms:

• when the workload is efficiently distributed on the sys-
tem, asynchronism allows us to efficiently overlap com-
munications with computations, especially on networks
with very fluctuating latencies and/or bandwidths.

• even if AIAC algorithms are potentially more efficient
than the other models, they do not take into account the
workload distribution over the processors. If this is well
managed, it can reasonably make us expect yet better
performances.

The great advantage of AIAC algorithms in this context is
that they are far more flexible than synchronous ones. Indeed,
it is less imperative to have at all times exactly the same
amount of work on each processor. The goal here is thus to
avoid too large differences of progression between processors.
A non-centralized strategy of load balancing appears to be
necessary since it avoids global communications which would
synchronize the processors.

IV. EXISTING NON-CENTRALIZED LOAD BALANCING

MODELS AND RELATED WORKS

The load balancing problem has been widely studied from
different perspectives and in different contexts [16]. A cate-
gorization of the various techniques for load balancing can
be found in [17] based on criteria like centralized/distributed,
static/dynamic, and synchronous/asynchronous. To be concise,
we present here the few techniques which are the most suited
to AIAC algorithms.
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In the context of parallel iterative computations, the load-
balancing scheme must be non-centralized and iterative by
nature. Local iterative load balancing algorithms were first
proposed by Cybenko in [18]. These algorithms iteratively
balance the load of a node with its neighbors until the whole
network is globally balanced. There are mainly two iterative
load balancing algorithms: diffusion algorithms [18]–[20] and
dimension exchange algorithms [17]–[19], [21]. Diffusion
algorithms assume that a processor simultaneously exchanges
load with its neighbors, whereas dimension exchange algo-
rithms assume that a processor exchanges load with only one
neighbor (along each dimension or link) at each time step.
All these works took place in the context of a homogeneous
system. The problem of load balancing in a heterogeneous
system has been addressed by Elsasser et al in [22].

Unfortunately, these techniques are all synchronous whichis
not convenient for the AIAC class of algorithms. Bertsekas and
Tsitsiklis have proposed in [13] an asynchronous model for
iterative non-centralized load balancing. The principle is that
each processor has an evaluation of its load and those of all
its neighbors. Then, at some given times, this processor looks
for its neighbors which are less loaded than itself. Finally, it
distributes a part of its load to all these processors. Neverthe-
less, the authors have focused their work on proving that this
iterative load balancing asymptotically leads to a homogeneous
distribution of the work. In our work, the asynchronism occurs
both in the numerical application and in the load balancing.In
addition, we describe how to efficiently perform the coupling
of asynchronous load balancing and asynchronous iterative
algorithms.

A variant evoked by the authors is to send a part of the work
only to the lightest-loaded neighbor. This last variant hasbeen
chosen for implementation in our AIAC algorithms since it
has the most suited properties: it maintains the asynchronism
in the system with only local communications between two
neighboring nodes.

In the following section, we describe a typical problem of
Partial Differential Equations (PDEs) which has been chosen
for our experimentations.

V. TEST PROBLEM

To perform our experiments, a classical example of non-
linear problem has been chosen since iterative algorithms are
mostly used for this kind of problems.

Our test problem is known as the Brusselator problem.
It models a chemical reaction mechanism which leads to
an oscillating reaction. It deals with the conversion of two
elementsA andB into two othersC andD by the following
series of steps:

A → X

2X + Y → 3Y

B + X → Y + C

X → D

(3)

There is an autocatalysis and when the concentrations of A
and B are maintained constant, the concentrations ofX andY

oscillate with time. For any initial concentrations ofX andY ,
the reaction converges towards what is called the limit cycle of

the reaction. This is the graph representing the concentration
of X against those ofY and it corresponds in this case to a
closed loop.

The desired results are the evolutions of the concentrations
u andv of both elementsX andY along the discretized space
in function of time. If the discretization is made withN points,
the evolution of theui andvi for i = 1, ..., N is given by the
following differential system:

u′

i = 1 + u2
i vi − 4ui + α(N + 1)2(ui−1 − 2ui + ui+1)

v′i = 3ui − u2
i vi + α(N + 1)2(vi−1 − 2vi + vi+1)

(4)
The boundary conditions are:

u0(t) = uN+1(t) = α(N + 1)2

v0(t) = vN+1(t) = 3

and the initial conditions are, for eachi ∈ {1, ..., N}:

ui(0) = 1 + sin(2πxi) with xi =
i

N + 1
vi(0) = 3

Here, we fix the time interval to[0, 10] andα = 1
50 . N is a

parameter of the problem.
This problem corresponds to a large stiff system of PDEs

formulated as an IVP (Initial Value Problem) which is very
common in many scientific domains. It is well-known (see for
example [4], [23], [24]) that the use of implicit methods is
required and then, large systems of nonlinear equations have
to be solved at each iteration. Further information about this
problem and its formulation can be found in [5].

VI. AIAC ALGORITHM AND LOAD BALANCING

In this section, we consider the use of a network of
workstations composed ofNbProcs machines (processors,
nodes...) numbered from0 to NbProcs − 1. Each processor
can send and receive data from any other one.

It must be noticed that the principle of AIAC algorithms
is generic and can be adapted to every iterative process
under convergence hypotheses which are satisfied for a large
class of problems. In most cases, the adaptation comes from
the data dependencies, the function to approximate and the
methods used for intermediate computations. By this way,
these algorithms can be used to solve either linear or non-
linear systems which can be stationary or not.

In the case of our non-linear problem, theui andvi of the
system are represented in a single vector as follows:

y = (u1, v1, ..., uN , vN )

with ui = y2i−1 andvi = y2i, i ∈ {1, ..., N}. The denomina-
tion y, used in the classical formulation of the Brusselator
problem, is equivalent in our context to thex vector in
equation (1).

Theyj functions,j ∈ {1, ..., 2N} thereby defined will also
be referred to as spatial components in the remaining of the
article.
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A. Unbalanced AIAC algorithm

To solve the system (4), we use a two-stage iterative
algorithm:

• At each iteration:
– use of the implicit Euler algorithm to approximate

the derivative,
– use of the Newton algorithm to solve the resulting

nonlinear system.
The inner procedure will be calledSolve in our algorithm. In
order to exploit the parallelism, theyj functions are initially
homogeneously distributed over the processors. Since these
functions are represented in a one-dimensional space (the
state vectory), we have chosen to logically organize our
processors in a linear way and map the spatial components
(yj functions) on them. This organization is directly deduced
from the data dependencies of the problem in order to exploit
as much parallelism as possible. Hence, each processor applies
the Newton method to its local components using the needed
data from other processors involved in its computations. From
the problem formulation given in Section V, it arises that the
processing of componentsyp to yq also depends on the two
spatial components beforeyp and the two spatial components
after yq. Hence, if we consider that each processor owns at
least two functionsyj , the non-local data needed by each
processor to perform its iterations only come from the previous
processor and the following one in the logical organization. In
practical cases, there will be much more than two functions
on each node.

In Algorithm 2, the core of the AIAC algorithm without load
balancing is presented. Since the convergence detection and
halting procedure are not directly involved in the modifications
brought by the load balancing, only the iterative computations
and corresponding communications are detailed.

In this algorithm, the arraysYnew andYold have always
the same organization which consists in the following ordered
contents: the last two components of the left neighbor, the local
components of the current node and the first two components
of the right neighbor. This organization is depicted in Figure 4
where data (in grey levels) have been drawn on two separated
lines (to be clearer) whereas they should all be representedon
the same line. Hence, two vertical instances of data with the
same abscissa actually represent the same data.

EndCStartC

local data of proc i

data dependencies of proc i 

contents of Ynew and Yold arrays on proc i

Proc i

Proc i−1 Proc i+1

Fig. 4. Contents of data arrays Ynew and Yold on processor i.

This structure will have to be maintained even when per-
forming load balancing. TheStartC and EndC variables
are used to indicate the beginning and the end of the local
components actually computed by the node as shown in
Figure 4. Finally, theδt variable represents the precision of the
time discretization needed to compute the evolution of spatial
components in time.

In order to facilitate and enhance the implementation of
asynchronous communications, we have chosen to use the
PM2 multi-threaded programming environment [25]. This kind
of environment allows us to make the sending and receiving
operations in additional threads rather than in the main pro-
gram. This is why the receptions of data do not directly appear
in our algorithms. In fact, they are localized in functions
called by a thread created at the beginning of the program
and dealing with incoming messages. Thus, when a sending
operation is performed on a given processor, the function
which will manage the message on the destination node must
be specified. In the same way, the asynchronous sending
operations appearing in our algorithms actually correspond
to the creation of a communication thread calling the related
sending function. According to the linear organization of the
processors explained above, each node has a left and a right
neighbor, except for the first node which only has a right
neighbor and the last one which only has a left neighbor.
Hence, sending operations towards the left (/right) neighbor
are referred to as left (/right) communications in Algorithm 2.

Algorithm 2 Unbalanced AIAC algorithm
Initialize the communication interface

NbProcs =Number of processors
MyRank = Rank of the processor
Yold, Ynew = Arrays of local spatial components
StartC, EndC =Indices of the first and last local spatial

components
ReT = Range of evolution time of the spatial components
StartT, EndT =First (0) and last (ReT/δt) values of time

Initialization of local data
repeat

for j=StartC to EndCdo
for t=StartT to EndT do

Ynew[j,t] = Solve(Yold[j,t])
end for
if j=StartC+2and MyRank > 0 then

if there is no left communication in progressthen
Send asynchronously the first two local compo-
nents to left processor

end if
end if

end for
if MyRank < NbProcs-1then

if there is no right communication in progressthen
Send asynchronously the last two local components
to right processor

end if
end if
Copy Ynew in Yold

until Global convergence is achieved
Display or save local components
Halt the communication system

Data reception functions only consist in receiving two
components from the corresponding neighbor (left or right)
and in putting them at the right place, before or after the
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local components, in array Ynew. It can be noticed that all
the variables in Algorithm 2 can be directly accessed by the
reception functions since they are in threads which share the
same memory space.

For each communication function (sending or receiving),
a mutual exclusion system is used to avoid simultaneous
threads to perform the same kind of communication with
different data which could lead to incoherent situations and
also to a useless overloading of the network. This also has
the advantage to generate fewer communications. Hence, the
AIAC variant used here and detailed in Figure 5 is slightly
different from the general case given in Figure 3.

 time

Processor 2

Processor 1

Fig. 5. Execution flow of our AIAC variant with two processors. Dashed lines
represent communications which are not actually performeddue to mutual
exclusion. Solid lines starting during iterations correspond to left sendings
whereas those at the end of iterations are for right ones.

B. Load-balanced AIAC algorithm

As evoked in Section IV, Bertsekas and Tsitsiklis [13] have
proposed a theoretical algorithm to perform load balancing
asynchronously and have proved its convergence. We have
used this model to design our load balancing algorithm adapted
to parallel iterative algorithms and particularly to AIAC algo-
rithms on the grid.

An additional contribution of our study is to explicitly
describe the implementation of the load balancing scheme and
to give very efficient load estimators to be used with AIACs.

Our load balancing scheme of the AIAC algorithm is given
in Figure 6. In order to provide a general and uniform version
of this scheme, all the sendings in this Figure are performed
at the end of the iterations. According to the treated problem,
these sendings may appear sooner in the iterations (as shownin
Figure 5 for the Brusselator problem). However, these possible
variants do not affect the load balancing scheme.

In this scheme, each processor periodically tests if it has to
balance its load with one of its neighbors, the left or the right
one here. If needed, it sends a given amount of data to its
lightest loaded neighbor. This step corresponds to the balloon
(1) in Figure 6.

Concerning the load balancing process itself, most of the
additional parts take place at the beginning of the main loop
of the iterative algorithm. At each iteration, we test if a load
balancing process has been performed. This may be a load
reception (as indicated by balloon (2) in the figure) or a
load sending. In these cases, data arrays have to be resized
at the end of the iteration during which the load balancing
was performed, in order to contain just the local components
affected to the node. Hence, a second test is performed to find
the nature of the load balancing on the node (load reception
or sending). In the former case, the arrays have to be enlarged

in order to receive the additional data which then have to be
copied in this new array. This step is indicated by balloon
(3a) in the figure. In the latter case, arrays have to be reduced
and no data copying is necessary. This is indicated by the
balloon (3b) of the figure. Once the arrays have been correctly
updated, the computations can be performed and the overall
iterative process resumes as if nothing special had happened.
The only difference being the data distribution (which has
changed) between the two processors.

If no load balancing has been performed, two tests have
to be done to eventually perform a load balancing towards
the left or right processor. The first one allows us to try
load balancing periodically everyk iterations. This is useful
to tune the frequency of load balancing during the iterative
process which directly depends on the considered problem.
In some cases, a high frequency will be efficient whereas in
other cases lower frequencies will be recommended since too
much load balancing could take most of the computation time
of the process according to the iterations, especially withlow
bandwidth networks.

The second test detects if a communication from a previous
load balancing is not finished yet. In this case, the trial is
delayed till the next iteration and so on until the previous com-
munication is achieved. In the other case, the corresponding
function is called.

It can be noticed that according to the current organization
of these tests, the left load balancing is tested before the right
one, which could seem to give an advantage to it. In fact, this
is not actually the case and this does not alter the generality of
our algorithm. This has only been done to avoid simultaneous
load balancings of a processor with its two neighbors, which
would not correspond to the model used.

Finally, the last point in the main algorithm concerns the
data sendings performed at each iteration. Since the arrays
may change from an iteration to another, we have to ensure
that the received data correspond to the local data before
(/after) the current arrays and that they can thus be safely put
before (/after) them. This is why the global position of the
first (/last) two components are joined to the data. Moreover,
in order to decide whether or not to balance the load, the
local load evaluations are used and then sent together with the
components.

In Algorithm 3 is presented the load-balanced version of
the AIAC algorithm given in Section VI-A. To be clearer,
implementation details which are related to the programming
environment used are not shown.

In Algorithm 4 is detailed the function to balance the
load with the left neighbor. Obviously, this function has its
symmetrical version for the right neighbor. Its first step is
to test if a balancing is actually needed by computing the
ratio of the workloads on the two processors and comparing
it to a given threshold. If satisfied, the number of data to be
sent is then computed and another test is done to verify that
the number of remaining data on the processor will be large
enough. This is done to avoid the famine phenomenon on
slowest processors. Finally, the first (/last) data whose number
has been previously computed are asynchronously sent with
two more components which will represent the dependencies
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Fig. 6. Execution flow of our load balancing scheme

of the left (/right) processor. These two additional data will
continue to be computed by the current processor but their
values will be sent to the left (/right) processor to allow itto
perform its own computations with updated values of its data
dependencies. In the same way, the two components before
(/after) those two ones will be kept on the current processor
and become its new data dependencies related to the left
(/right) neighbor.

Concerning the reception functions, the first type, exhibited
in Algorithm 5, is related to the load balancing whereas the
second type, given in Algorithm 6, deals with the classical
data exchanges induced by dependencies. The former function
consists in placing additional data into a temporary array until
they are copied in the resized array Yold, then the temporary
array is destroyed. Once the reception is done, the flags
indicating the completion of a load balancing communication
and its nature are set. The latter function corresponds to the
data reception function used in Algorithm 2. Nonetheless,
some modifications appear in this version, the global position
of the received data must be confronted to the expected one
before stocking them in the array. Besides, another additional
information to be received is the load evaluation obtained on
the source node.

Concerning the behavior of this load-balanced version, since
the iterative process is not modified in itself, we can guar-
antee that the load-balancing will not affect the convergence
property. Thus, any converging non-balanced asynchronous
algorithm will also converge with our load-balancing scheme
and will provide a similar result according to the accuracy
threshold.

It can be noticed that under the specified accuracy threshold,

it is not possible to ensure exactly the same values for the
result. This is not properly due to the load-balancing scheme
but mainly to the non-deterministic nature of asynchronous
algorithms. Indeed, this fact even holds for asynchronous
algorithms without load-balancing since the delays may be
different from an execution to another. It comes that the local
computations on each processor (the series of iterates) may
not exactly be the same and thus the final result too. The only
thing which is ensured with our initial assumptions is that
the algorithm will converge in a small space around the exact
solution according to the specified accuracy.

VII. E XPERIMENTS

In order to perform our experiments, we have used the
PM2 (Parallel Multi-threaded Machine) environment [25]. Its
first goal is to efficiently support irregular parallel applica-
tions on distributed architectures. We have already shown
in [1] how convenient this kind of environment is to program
asynchronous iterative algorithms in a global context of grid
computing.

The context of our experiments is as follows: the space is
discretized in 60000 points, the time interval is from 0 to 10
by steps of 0.05 and the required accuracy is7e − 4.

A. Balancing vs not balancing

The evaluation of the gain obtained by coupling load
balancing with asynchronism is obtained by comparing the
balanced and non-balanced versions of our AIAC algorithm in
two different contexts. The first is a local homogeneous cluster
of PIII-733Mhz with a 100Mb/s network and the second is
a collection of heterogeneous machines scattered on distant
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Algorithm 3 Load-balanced AIAC algorithm
Initialize the communication interface

Variables from Algorithm 2
LBDone =boolean indicating if LB has just been performed
LBReception =boolean indicating if additional data from

LB have been received
OkToTryLB = integer allowing to periodically test for

performing LB. Initially set to 20

Initialization of local data
repeat

if LBDone=true then
if LBReception=true then

Resize Ynew,Yold arrays after reception of addi-
tional data
Complete new Yold array with additional data from
temporary array
LBReception=false

else
Resize Ynew,Yold arrays after the sending of trans-
ferred data

end if
LBDone=false

else
if OkToTryLB=0 then

if there is no left LB communication in progress
then

TryLeftLB()
else

if there is no right LB communication in progress
then

TryRightLB()
end if

end if
else

OkToTryLB=OkToTryLB-1
end if

end if
for j=StartC to EndCdo

... /* The ... indicate a same part as in Algorithm 2 */
Send asynchronously the first two local components
together with their global position and the load
evaluation of previous iteration to left processor

...
end for
...

Send asynchronously the last two local components
together with their global position and the load
evaluation of current iteration to right processor

...
until Global convergence is achieved
...

Algorithm 4 function TryLeftLB()
/* symmetrical for TryRightLB() */

Ratio = Ratio of load evaluations between local node and
its left neighbor

NbLocal = Number of local data
NbToSend =Number of data to send to perform the

load-balancing

Ratio=local load evaluation / left load evaluation
if Ratio>ThresholdRatiothen

Compute the number of data to send NbToSend
if NbLocal-NbToSend>ThresholdDatathen

Send asynchronously the first NbToSend+2 data to left
processor /* +2 is added for data dependencies */
OkToTryLB=20
LBDone=true

end if
end if

Algorithm 5 function RecvDataFromLeftLB()
/* symmetrical for RecvDataFromRightLB() */

Receive the number of additional data sent
Receive these data and put them in a temporary array
LBReception=true
LBDone=true

sites linked together with a 10Mb/s network. Since different
configurations have been used, the heterogeneous context is
described for each experiment. In all our experiments, the
given results correspond to an average of a series of 20
executions.

Figure 7 shows the evolution of execution times in func-
tion of the number of processors on a local homogeneous
cluster. The residual is used as the load estimator in the
balanced version. It can be seen that both versions have
a very good scalability. This is quite an important point
since load balancing usually introduces sensitive overheads in
parallel algorithms leading to quite moderate scalabilities. This
good result mainly comes from the non-centralized nature of
the balancing used in our algorithm. Nevertheless, the most
interesting point is the large vertical offset between the curves

Algorithm 6 function RecvDataFromLeft()
/* symmetrical for RecvDataFromRight() */

if not accessing data arraythen
Receive the global position and the two components from
left node
if global position corresponds to the two left data needed
on local nodethen

Put these data before local components in array Yold
else

Do not stock these data in array Yold
/* array Yold is being resized */

end if
Receive the load evaluation obtained on the left node

end if
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which denotes a high gain in performances. In fact, the ratio
of execution times between the non-balanced and balanced
versions varies from 6.2 to 7.4 with an average of 6.8. These
results show all the efficiency of coupling load balancing with
AIAC algorithms on a local cluster of homogeneous machines.
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Fig. 7. Execution times (in seconds) on a homogeneous cluster

Concerning the heterogeneous cluster, fifteen machines have
been used over three sites in France: Belfort, Montbéliard
and Grenoble, between which the speed of the network may
sharply vary. The organization of the system has been chosen
irregular in order to get a grid computing context which is not
favorable to load balancing. The machine types vary from a
PII 400Mhz to an Athlon 1.6Ghz. In this cluster, no direct
neighbors are similar in terms of power. Again, the load
estimator used in the balanced version is the residual.

The results obtained in this context are given in Table I.
Here also, the balancing brings a potential enhancement of the

version not-balanced balanced ratio
execution time 515.3 105.5 4.88

TABLE I

EXECUTION TIMES (IN SECONDS) ON A HETEROGENEOUS SYSTEM

performances of the initial AIAC algorithm. In this case, the
ratio is smaller than in the local case because of the larger cost
of communications and thus of data migrations. Although this
ratio remains very satisfying, this remark would imply a closer
study concerning the tuning of the load balancing frequency
during the iterative process. This is not within the scope ofthis
article but it will probably be the subject of a future work.

Despite this, the load balancing is more interesting in this
context than in local clustering. This comes from the fact
that in the homogeneous context, as was shown in [1], the
synchronous and asynchronous iterative algorithms almost
have the same behavior and performances whereas in the
global context of grid computing, the asynchronous version
reveals all its interest by providing far better results. Hence, we
can reasonably deduce that load balancing AIAC algorithms
with a load estimator based on the amount of data in a

local homogeneous context would only produce slightly better
results than their SISC counterparts. On the opposite, in the
global context, the difference between SISC and AIAC load-
balanced versions will be much larger. In fact, this last version
will obtain the very best performances.

As explained in Section III and pointed out by these
experiments, load balancing and asynchronism are thus not
incompatible and can actually lead to very efficient parallel
iterative algorithms.

The attainment of this efficiency lies on the way this
coupling is performed and the context in which it is used.
The first point has already been discussed and the important
role played by the non-centralized nature of the balancing
technique has been shown. Concerning the second point, there
are also some conditions which should be verified on the
treated problem to ensure good performances.

According to our experiments, at least four conditions
required to get an efficient load balancing on asynchronous
iterative algorithms have arisen. The first one concerns the
number of iterations which must be large enough to make it
worth performing load balancing. In the same way, the average
time to perform one iteration must be long enough to have a
reasonable ratio of computations over communications. In the
opposite case, the load balancing will not sensibly influence
the performances and will have the drawback to overload the
network. Another important point is the frequency of load
balancing operations which must neither be too high (to avoid
an overloading of the system) nor too low (to avoid too large
an imbalance in the system). It is then important to design a
good measure of the need to load balance, that is to say a
measure which gives a quite precise idea of the unbalance of
the system. It is important to perform just the right number
of load balancings. Finally, the last point is the accuracy of
the load balancing which depends on the network load. If the
network is heavily loaded (or slow) it may be preferable to
perform a coarse load balancing with less data migration. On
the other hand, an accurate load balancing will tend to speed
up the global convergence. The tricky work is then to find the
good trade-off between those two constraints.

B. Residual vs classical load evaluation

In this section, we focus our attention on two different load
estimators which can be chosen to perform load balancing in
AIAC algorithms.

The most classical estimator consists in computing the
processing time of a given amount of data (a component of
the problem here) and then in distributing the data in order to
obtain merely the same computation times for an iteration on
all the processors in the system. Unfortunately, this definition
of the load is not very efficient in our context of PIAs and
more particularly of AIAC algorithms. This is due to the fact
that in these algorithms, the critical point for efficiency is that
all the processors reach local convergence merely at the same
time. However, using this estimator only tends to equalize the
processing times of each iteration on all the processors.

The load estimator we propose to use is thus the residual on
each processor which allows to take into account the relative
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progression of the processors during the iterative process. It
may seem surprising to use the residual as a load estimator but
this choice is very well adapted to this kind of computation
as was briefly exposed in Section III. If a processor has a low
residual, all its components are not evolving so far and its
computations are not so useful for the overall progression of
the algorithm. Hence, it can receive more components to treat
in order to potentially increase its usefulness and also to allow
its neighbor to progress faster.

In this context, several variants could be used. For example,
we could use one residual per data and move those data
independently. However, this strategy may break the data order
and then the dependencies between processors too, leading
to a sharp increase of the number of communications and
to a modification of the communication graph (all-to-all in
the worst case). Thus, our choice is to maintain the logical
organization of the data in order to always use the same
communication graph. Hence, each processor only has one
residual which consists of the maximum norm of all its local
components. Moreover, the data are moved while maintaining
their global logical organization.

Since the residual on each processor is computed for all the
components on this processor, it is not possible to precisely
identify data which have the highest residuals. Thus, during a
load balancing, nothing can ensure us that the moved data are
actually the ones with the highest residuals. Nevertheless, our
method has the great advantage of enhancing the progression
in all cases. If the moved data have a high residual, then the
processor with a lower residual will become in charge of a
larger residual as initially expected. If the moved data do not
have the highest residual (see Figure 8), then the residual
of the receiving processor may not change much but the
processor which has sent the data will have fewer components
to manage. So, it will perform its iterations faster and thenwill
tend to evolve faster, its residual will decrease faster andit will
eventually overtake its initial lag.

Moreover, although in most cases the error will not follow a
monotonous decrease, convergence conditions ensure us that it
will globally decrease during the entire process until reaching
the desired accuracy. Hence, this estimator actually givesa
good indication of the distribution of the remaining work in
the iterative process.

This scheme is exhibited in Figure 8 where a load transfer
takes place between two processors according to their relative
residuals. This figure is a detailed version of Figure 6 with
computational errors of the components and residuals exhib-
ited. The grey rectangles on both sides of the figure represent
the flow of consecutive iterations on each processor with their
length proportional to their duration. At the first iteration
shown at the top of the figure, both processors have merely
the same amount of data but their residuals are sufficiently
different to detect the necessity of a load balancing. Hence, at
the following iteration, the left processor sends a given part of
its components to its right neighbor. We recall that the trans-
fered components are always chosen to maintain the global
order of the components which, in turn, maintains the global
organization of the processors and thus the communication
graph between them. Once the load transfer is completed, the
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Fig. 8. Load transfer between two processors based on the residual

array rearrangements can be performed on both processors
at the end of their current iteration. Then, both processors
continue their computations with the new load distribution. A
small break can be seen in the error curve of the right processor
after the rearrangement. This is due to the fact that during
the load transfer, components already on the right processor
continue to evolve and their residual decreases whereas it
is obviously not the case for the transferred components
whose error stays the same as at their sending time. After
the balancing, the left processor computes its iterations faster
since it has fewer components whereas the right processor is
slowed down by its increased number of components. Hence,
the left processor tends to catch up with the right one and
after some iterations, both processors have approximatelythe
same residuals. The process can be repeated as soon as the
difference between the residuals becomes too large again.

To show the impact of the load estimator on the over-
all performances of the algorithm, we have compared the
execution times of our load-balanced AIAC with those two
estimators in function of the final accuracy. This experiment
has been realized using ten heterogeneous machines (from a
PII 450Mhz to a PIV 2.4Ghz) scattered over three geographical
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sites (Belfort, Besançon and Montbéliard). The results are
given in Figure 9.
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Fig. 9. Execution times (in seconds) with two different loadestimators

Obviously, it can be seen that using the residual leads to far
better performances especially for higher accuracies where a
larger number of iterations is necessary. This comes from the
fact that with the classical load estimator, the probability to
have some processors which do not perform actually useful
iterations drastically increases with the number of iterations.
This is not the case with the residual with which there is a
continuous attention to have all processors performing useful
iterations.

VIII. C ONCLUSION

The general interest of load balancing parallel iterative
algorithms has been discussed and its major efficiency in the
context of grid computing has been experimentally shown.

A comparison has been presented between a non-balanced
and a balanced asynchronous iterative algorithm. The complete
load balancing scheme has been detailed. Experiments have
been done on a PDE problem using the PM2 multi-threaded
environment. It has been tested in two representative contexts
of grid computing. The first one is a local homogeneous cluster
and the second one corresponds to a global context of grid
computing.

The results of these experiments clearly show that the
coupling of load balancing and asynchronism is fully justified
since it gives far better performances than asynchronism
alone which is itself better than synchronous algorithms. The
efficiency of this coupling comes from the fact that those
two techniques individually optimize two different aspects of
parallel iterative algorithms. Asynchronism brings a natural
and automatic overlapping of communications with compu-
tations and load balancing, as its name implies, provides a
better distribution of the work over the processors. Moreover,
the advantage induced by the non-centralized nature of the
balancing technique has also been pointed out. Avoiding global
synchronizations leads to less overheads and thus to a better
scalability.

Finally, the required conditions for an efficient use of
this coupling have been discussed as well as the choice
of an efficient load estimator. Among the most interesting
possibilities, the residual seems to be the most convenient
load estimator as it does not try to balance the computation
time at the level of one iteration but at the global level of
the complete set of iterations needed in the process. Hence,
it tends to make all the processors reach local convergence
at the same time. Moreover, although we have obtained good
results with our residual based load balancing algorithm, we
think that some optimizations could be brought leading to yet
better performances. This will probably be the subject of a
future work.

In conclusion, a residual based load balancing whose fre-
quency is tuned in function of the network speed is recom-
mended in AIAC algorithms to obtain the best performances
in both local and global contexts of grid computing.
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Nancy, France, in January 2000. In September 2000,
he joined the computer science laboratory of the
University of Franche-Comté where he is an assis-
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