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SEQUENTIAL MONTE CARLO SMOOTHING

WITH APPLICATION TO PARAMETER ESTIMATION

IN NON-LINEAR STATE SPACE MODELS

JIMMY OLSSON, OLIVIER CAPPÉ, RANDAL DOUC, AND ÉRIC MOULINES

Abstract. This paper concerns the use of Sequential Monte Carlo methods

(SMC) for smoothing in general state space models. A well known problem when

applying the standard SMC technique in the smoothing mode is that the resam-

pling mechanism introduces degeneracy of the approximation in the path-space.

However, when performing maximum likelihood estimation via the EM algorithm,

all involved functionals will be of additive form for a large subclass of models. To

cope with the problem in this case, a modification, relying on forgetting properties

of the filtering dynamics, of the standard method is proposed. In this setting, the

quality of the produced estimates is investigated both theoretically and through

simulations.

1. Introduction

This paper is devoted to the study of sequential Monte Carlo methods for smooth-

ing in non-linear state space models. We consider a bivariate process {(Xk, Yk);

k ≥ 0}, where {Xk} is a Markov chain on a state space X. Conditional on {Xk},
{Yk} is a sequence of independent random variables on the space Y such that the

distribution of Yk is governed by Xk only. In this framework, {Xk} is not observed,

and measurements on the system have to be made through the observed process

{Yk}. Put, for i ≤ j, Y i:j , (Yi, . . . , Yj); similar vector notation will be used for

other quantities. In the following, assume that we are given a set y0:n of observa-

tions of Y 0:n. Operating on state space models, a constantly recurring problem is

to compute expectation values of form E[tn(X0:n)|Y 0:n], where tn is a real-valued,

measurable function. In this report we focus on the case of tn being an additive

functional tn given by

tn(x0:n) =

n−1∑

k=0

sk(xk:k+1) , (1.1)

where {sk; k ≥ 0} is a sequence of measurable functions (which may depend on the

observed values y0:n).

Key words and phrases. EM algorithm, exponential family, particle filters, sequential Monte

Carlo methods, state space models, stochastic volatility model.
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As an example of when smoothing of such additive functionals is important, con-

sider the case of maximum likelihood estimation via the EM algorithm. Let pθ be

a generic symbol for densities, where the index θ is a parameter vector. Then, the

complete data log-likelihood function is given by

log pθ(x0:n,y0:n) =

n−1∑

k=0

log pθ(xk+1|xk) +

n∑

k=0

log pθ(yk|xk) + log pθ(x0) ,

yielding the following intermediate quantity of the EM algorithm:

Q(θ; θ′) , Eθ′ [ log pθ(X0:n,Y 0:n)|Y 0:n]

= Eθ′

[
n−1∑

k=0

log pθ(Xk+1|Xk)

∣∣∣∣∣Y 0:n

]

+ Eθ′

[
n∑

k=0

log pθ(Yk|Xk)

∣∣∣∣∣Y 0:n

]

+ Eθ′ [ log pθ(X0)|Y 0:n] ,

where Eθ′ denotes expectation under θ′.

Having an initial estimate θ′ of the parameter vector at hand, an improved es-

timate is obtained by means of computation and maximization of Q(θ; θ′) with

respect to θ. This procedure is recursively repeated in order to obtain convergence

to a stationary point θ⋆ of the log-likelihood function ℓn(θ) , pθ(y0:n).

The computation of smoothed sum functionals of the form above will also be the

crucial matter when considering direct maximum likelihood estimation via the score

function log∇θℓn(θ). Under appropriate differentiability assumptions, the Fisher

identity (see Louis, 1982) states that

∇θℓn(θ) = Eθ

[
n−1∑

k=0

∇θ log pθ(Xk+1|Xk)

∣∣∣∣∣Y 0:n

]
+ Eθ

[
n∑

k=0

∇θ log pθ(Yk|Xk)

∣∣∣∣∣Y 0:n

]

+ Eθ [∇θ log pθ(X0)|Y 0:n] ,

(1.2)

yielding an expression which is closely related to that of the intermediate quantity

of EM.

By applying Bayes’ formula it is (see, e.g., Cappé et al., 2005) straightforward

to derive recursive formulas not only for the smoothing and filter densities, that

is, pθ(x0:k|y0:k) and pθ(xk|y0:k), respectively, but also for expectations of the form

Eθ

[
tk(X0:k)

∣∣Y 0:k

]
discussed above. However, tractable closed form solutions are

available only if the state space X is finite or the model is linear and Gaussian. Par-

ticle filtering methods (often alternatively termed sequential Monte Carlo methods)

constitute a class of algorithms that are well suited for providing approximative so-

lutions of the smoothing and filtering recursions. In recent years, sequential Monte

Carlo methods have been put in use, sometimes very successfully in many different

fields (see Doucet et al. (2001b) and Ristic et al. (2004) and the references therein).

For shorter introductions we refer to the articles by Doucet et al. (2001a) and Künsch
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(2001). In particle filter algorithms, a set of weighted simulations, the particles, is

recursively updated using importance sampling and resampling techniques. An esti-

mate of the joint smoothing distribution is given by the empirical measure associated

with the particle trajectories.

A well known problem when applying sequential Monte Carlo methods to sample

the joint smoothing distribution is that the resampling mechanism of the particle fil-

ter introduces degeneracy of the approximation. To cope with the situation, Doucet

et al. (2004) suggest a nonlinear, non-Gaussian counterpart of the forward-filtering

backward-smoothing procedure used for linear Gaussian state-space models. After a

standard forward particle filtering pass, a new set of weighted trajectories, based on

particles originating from the first run, are generated through a series of multinomial

resampling steps in the time-reversed direction. In this way the degeneracy of the

particle paths is avoided, providing a robustification of the particle smoothing ap-

proximation. Since the method requires an additional backward simulation sweep,

this is obtained at the cost of computational work. Thus, the algorithm is well fitted

to sample from the joint smoothing distribution. Nevertheless, it appears (perhaps

unnecessarily) complex to approximate the smoothing functionals of the form (1.1).

In this contribution, we study a SMC technique to smooth additive functionals

initially advocated in Kitagawa and Sato (2001). The method exploits the forgetting

properties of the conditional hidden chain and is not affected by the degeneracy of

the particle trajectories. Compared to Doucet et al. (2004), it is computationally

efficient. Furthermore, we perform, under suitable regularity assumptions of the

latent chain, a theoretical analysis of the behavior of the obtained estimates. It

turns out that the Lp error is roughly O(N−1/2n logn) and the bias O(N−1n logn),

where N denotes the number of particles and n the number of observations.

For a comparison, applying the results of Del Moral and Doucet (2003, Theorem

4) to a functional of type (1.1) provides an O(N−1/2n2) bound of the Lp error for the

standard trajectory-based particle filtering smoother. Finally, we apply, for a noisily

observed autoregressive model and the stochastic volatility model proposed by Hull

and White (1987), the technique to the Monte Carlo EM (MCEM) algorithm (Wei

and Tanner, 1991). In this setting we investigate, both theoretically and through

simulations, the quality of the produced estimates.

The paper is organized as follows. In Section 2 we describe the state space frame-

work and introduce basic notation and assumptions. Some important concepts,

such as the smoothing recursion, are also recalled. In Section 3, particle filtering

is briefly described, and a method, based on forgetting ideas, for approximating

additive functionals is presented. In the theoretical part, Section 4, a number of

results describing the convergence of the approximations to the exact quantities are

derived. The first results are valid for any fixed sequence of observed values, but are

easily, under additional assumptions on the model, extended to randomly varying
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observations. As a preparation for this section, we recall the uniform forgetting

property of the conditional hidden Markov chain. In Section 5 we use the proposed

method for estimating parameters in a noisily observed autoregressive model and a

stochastic volatility model via the EM algorithm. This is done in the light of the

theory developed in Section 4.

2. Basic notation and concepts

2.1. Model description. Let the hidden process X , {Xk; k ≥ 0} be a homo-

geneous discrete time Markov chain taking values in a state space (X,X ). Let

(Qθ, θ ∈ Θ ⊆ R
d) and ν denote the Markov transition kernel and the initial dis-

tribution of X, respectively. The family {Qθ(x, ·), x ∈ X, θ ∈ Θ}, is assumed

to be dominated by the probability measure µ on X and we denote by qθ(x, ·),
the corresponding Radon-Nikodým derivatives. The observations {Yk; k ≥ 0} are

random variables taking values in a measurable space (Y,Y). These variables are

conditionally independent given the sequence {Xk; k ≥ 0} of hidden states, and the

conditional distribution of Yk depends on Xk only. Furthermore, there exists, for all

x ∈ X and θ ∈ Θ, a density function y 7→ g(x, y; θ) and a measure λ on (Y,Y) such

that, for k ≥ 0,

Pθ (Yk ∈ A|Xk = x) =

∫

A

g(x, y; θ)λ(dy) , for all A ∈ Y .

We denote by Pθ,ν the joint distribution of X and Y , which is indexed by both the

parameter θ and the initial distribution ν; however, many conditional probabilities

and expectations in this paper (like the one of the previous display) do not depend

on the initial distribution, and in those cases ν is expunged from the notation. In

addition, denote by Gk the σ-algebra generated by the observed process from time

0 to k.

2.2. The smoothing recursion. The joint smoothing distribution φν,0:n|n is the

probability defined, for A ∈ X⊗(n+1), by

φν,0:n|n[y0:n](A; θ) , Pθ,ν ((X0, . . . , Xn) ∈ A|Y 0:n = y0:n) .

Under the assumptions above, the joint smoothing distribution has a density (for

which we will use the same symbol) with respect to µ⊗(n+1) satisfying the recursion

φν,0:k+1|k+1[y0:k+1](x0:k+1; θ)

=
Lν,k(θ;y0:k)

Lν,k+1(θ;y0:k+1)
qθ(xk, xk+1)gk+1(xk+1, yk+1; θ)φν,0:k|k[y0:k](x0:k; θ) , (2.1)

where Lν,k(θ;y0:k) is the likelihood function given by

Lν,k(θ;y0:k) ,

∫

X

· · ·
∫

X

g0(x0, y0; θ)ν(x0)
k∏

l=1

qθ(xl−1, xl)gl(xl, yl; θ)µ
⊗(k+1)(dx0:k) .
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For notational conciseness, we will in the following omit the explicit dependence

on the observations y0:k of the quantities defined above from the notation, and

we replace φν,0:k|k(· ; θ), gk(· ; θ), and Lν,k(θ) for φν,0:k|k[y0:k](· ; θ), g(·, yk; θ), and

Lν,k(θ;y0:k), respectively. By integrating (2.1) with respect to the first k coordi-

nates, a similar iterative formula for the filtering distributions, that is, the marginals

φν,k(· ; θ) , Pθ,ν(Xk ∈ · |Gk), is obtained. A recursive formula for the expected value

of additive functionals {tn} of the form given in (1.1) follows as a direct conse-

quence of (2.1): For a fixed functional such that all expectations Eθ,ν [|tn(X0:n)||Gn]

are finite, define a family of signed measures {τn;n ≥ 0} on (X,X ) by

τn(f) ,

∫

X

· · ·
∫

X

f(xn)tn(x0:n)φν,0:n|n(dx0:n; θ) ,

for f ∈ Bb(X), where for any integerm, Bb(X
m) denotes the Banach space of bounded

measurable functions on X
m furnished with the sup norm ‖f‖

Xm,∞ , sup
x∈Xm |f(x)|.

Plugging this formula into the recursion (2.1) and rewriting, again using Bayes’

formula, the ratio of the likelihood functions yields, for k ≥ 0,

τk+1(f) =
1

φν,k(Qθgk+1; θ)

∫

X

∫

X

f(xk+1)Qθ(xk, dxk+1)gk+1(xk+1; θ)

× [τk(dxk) + φν,k(dxk; θ)sk(xk:k+1)] , (2.2)

where sk is given by (1.1). The procedure is initialized by

τ0(f) =
1

νg0

∫

X

f(x0)t0(x0)g0(x0; θ)ν(dx0) ,

and at each time index k, the expected value Eθ,ν [tk(X0:k)|Gk] may be obtained by

evaluating τk(X). Since the previous formula contains the filter distribution φν,k,

the usage of (2.2) requires that the filtering equations are computed in a parallel

manner.

However, as mentioned in the introduction, the simplicity of the smoothing re-

cursion above is treacherous, since we cannot achieve closed form solutions of the

likelihood function Lν,k(θ) and the starting distribution φν,0(x0; θ) if the model con-

tains nonlinear/non-Gaussian model elements.

3. Particle Approximation of Additive Functionals

Particle filtering, in its most basic form, consists of approximating the exact

smoothing relations by propagating particle trajectories in the state space of the

hidden chain. Given a fixed sequence of observations, this is done by following the

scheme below. In order to keep the notation simple, we fix the model parameters

and omit θ from the notation.

At time 0, a number N of particles {ξN,i
0 (0); 1 ≤ i ≤ N} are drawn from a

common probability measure ς such that ν ≪ ς. These initial particles are as-

signed the importance weights ωN,i
0 , W0[ξ

N,i
0 (0)], i = 1, . . . , N , where, for
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x ∈ X, W0(x) , g0(x) dν/dς(x), providing
∑N

i=1 ω
N,i
0 f [ξN,i

0 (0)]/
∑N

i=1 ω
N,i
0 as an im-

portance sampling estimate of φν,0f , for f ∈ Bb(X). We define the σ-algebra FN
0 ,

σ[ξN,1
0 (0), . . . , ξN,N

0 (0)]. Henceforth, the particle paths ξN,i
m , [ξN,i

m (0), . . . , ξN,i
m (m)],

1 ≤ i ≤ N , are recursively updated according to the following procedure. Assume

that we at time k have at hand a set {(ξN,i
k , ωN,i

k ); 1 ≤ i ≤ N} of weighted particles

approximating φν,0:k|k, in the sense that

1

ΩN
k

N∑

i=1

ωN,i
k f(ξN,i

k ) ,

with ΩN
k ,

∑N
i=1 ω

N,i
k and f ∈ Bb(X

k+1), is an estimate of the expectation φν,0:k|kf .

Then, an updated weighted sample {(ξN,i
k+1, ω

N,i
k+1); 1 ≤ i ≤ N}, approximating the

distribution φν,0:k+1|k+1, is obtained by, firstly, simulating ξN,i
k+1 ∼ Rp

k(ξ
N,i
k , ·), where

the path-wise proposal kernel Rp
k is of type

Rp
k(x0:k, f) =

∫

X

Rk(xk, dxk+1)f(x0:k, xk+1) ,

with f ∈ Bb(X
k+2) and each Rk being a Markov transition kernel. The new

particles are simulated independently of each other, and the special form of Rp
k

implies that past particle trajectories are kept unchanged throughout this mutation

step. A popular choice is to set Rk ≡ Q, yielding the so-called bootstrap filter ; more

sophisticated techniques involve proposals depending on the new observation yk+1

(see Example 5.2). Secondly, when the new observation is available, the importance

weights are updated according to the formula ωN,i
k+1 = ωN,i

k Wk+1[ξ
N,i
k+1(k : k + 1)]

where, for (x, x′) ∈ X
2, Wk(x, x

′) , gk(x
′) dQ(x, ·)/dRk−1(x, ·)(x′). Furthermore, we

define FN
k+1 , FN

k ∨ σ(ξN,1
k+1, . . . , ξ

N,N
k+1 ). Now, for f ∈ Bb(X

k+2), the self-normalized

estimate

φN
ν,0:k+1|k+1f ,

1

ΩN
k+1

N∑

j=1

ωN,j
k+1f(ξN,j

k+1)

provides an approximation of the expectation φν,0:k+1|k+1f .

As it is well established, the previous scheme fails because the distribution of

the importance weights becomes more and more skewed as k increases. To pre-

vent degeneracy, a selection mechanism should be introduced. In its simpler form,

this mechanism amounts to resample, when needed, the propagated particles by

drawing, conditionally independently, indices IN,1
k , . . . , IN,N

k in the set {1, . . . , N}
multinomially with respect to the normalized weights, that is,

P

(
IN,i
k = j

∣∣∣FN
k ∨ Gk

)
=
ωN,j

k

ΩN
k

, j ∈ {1, . . . , N} .

Now, a new particle cloud {ξ̂N,i

k ; 1 ≤ i ≤ N} is formed by setting ξ̂
N,j

k = ξ
N,IN,j

k

k .

After the resampling procedure, the weights are all reset ωN,i
k = 1/N , yielding
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another estimate

φ̂N
ν,0:k|kf ,

1

N

N∑

i=1

f
(
ξ̂

N,i

k

)

of φν,0:k|kf . Note that the resampling mechanism might modify the whole trajectory

of a certain particle, implying that in general, for m ≤ n, ξN,i
n (m) 6= ξN,i

n+1(m).

The multinomial resampling method is not the only conceivable way to carry

out the selection step; see Section 5. The collection Doucet et al. (2001b) contains

several suggestions for how to improve the algorithm above in general, as well as a

great variety of examples of adjustments of the technique to specific applications.

Having a particle filtering device at our disposal, an approximation of γn ,

τn(X) = Eν [tn(X0:n)|Gn] is obtained by propagating a system of particle trajec-

tories and associated weights {(ξN,j
k , ωN,j

k ); 1 ≤ j ≤ N, 0 ≤ k ≤ n}, and using the

estimators

γN
n =

1

ΩN
n

N∑

j=1

ωN,j
n tn(ξN,j

n ) or γ̂N
n =

1

N

N∑

j=1

tn
(
ξ̂

N,j

n

)
. (3.1)

When the functional {tn} has the form given in (1.1), it is straightforward to

verify that storing the whole particle trajectories is indeed not required to evaluate

(3.1): upon defining tN,i
k , tk(ξ

N,i
k ) we have, for k ≥ 1,

tN,i
k+1 =





tN,i
k + sk

[
ξ

N,i
k+1(k : k + 1)

]
, if no resampling;

t
N,Ii

k+1

k + sk

[
ξ̂

N,i

k+1(k : k + 1)
]
, if resampling occurs.

(3.2)

The recursion is initialized by tN,i
1 = t1(ξ

N,i
1 ). In accordance with (3.1), γN

n is

obtained as
∑N

i=1 ω
N,i
n tN,i

n /ΩN
n . Hence, for each particle ξN,i

k we only need to store

its current position ξN,i
k (k), weight ωN,i

k and associated functional value tN,i
k . Thus,

the method necessitates only minor adaptations once the particle filter has been

implemented.

As illustrated in Fig. 3.1, as n increases, the path trajectories system collapse, and

the estimators (3.1) are not reliable for sensible N values (see Doucet et al. (2001b),

Kitagawa and Sato (2001) and Andrieu and Doucet (2003) for a discussion).

To cope with this drawback we suggest the following method, advocated first in

Kitagawa and Sato (2001). By the forgetting property of the time-reversed con-

ditional hidden chain (Theorem 4.2), we expect that, for a large enough integer

∆n ≤ n− k,

Eν [sk(Xk:k+1)| Gn] ≈ Eν [sk(Xk:k+1)| Gk+∆n
] , (3.3)

yielding,

γn = Eν

[
n−1∑

k=0

sk(Xk:k+1)

∣∣∣∣∣Gn

]
≈

n−1∑

k=0

Eν

[
sk(Xk:k+1)| G(k+∆n)∧n

]
.
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Figure 3.1. Typical particle trajectories for N = 50; see Section 5

for details regarding model and algorithm.

The relation above suggests that waiting for all the trajectories to collapse—as

(3.2) implies—is not an optimal simulation principle. Instead, when the particle

population N is sufficiently large, so that (3.3) is valid for a lag ∆n which may be

far smaller than typical collapsing time. This yields the two approximations

γN,∆n

n ,

n−1∑

k=0

N∑

j=1

ωN,j
k(∆n)

ΩN
k(∆n)

sk

[
ξ

N,j
k(∆n)(k : k + 1)

]
, (3.4)

γ̂N,∆n

n ,
1

N

n−1∑

k=0

N∑

j=1

sk

[
ξ̂

N,j

k(∆n)(k : k + 1)
]
, (3.5)

of γn, where k(∆n) , (k + ∆n) ∧ n. Although somewhat more involved than the

standard approximation (3.1), the lag-based approximation above may be updated

recursively by maintaining a cache of the recent history of the particles as well as

the cumulated contribution of terms that will not get updated anymore.

Thus, apart from increased storage requirements, computing the lag-based approx-

imation γ̂N,∆n
n is clearly not, from a computational point of view, more demanding

than computing γ̂N
n .

4. Theoretical evaluation of the fixed-lag technique

To accomplish the robustification above, we need to specify the lag ∆n and how

this lag should depend on n. This is done by examining the quality of the estimates

produced by the algorithm in terms of bias and Lp error. Of particular interest is

how these errors are affected by the lag and whether it makes their dependence on n

and N more favorable in comparison with the standard trajectory-based approach.

The validity of (3.3), is based on the assumption that the conditional hidden

chains—in the forward as well as the backward directions—have forgetting properties
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that is, the distributions of two versions of each chain starting at different initial

distributions approach each other as time increases. This property depends on the

following uniform ergodicity conditions on the model, which imply that forgetting

occurs at a geometrical rate.

Assumption 4.1.

(i) σ− , infθ∈Θ infx,x′∈X qθ(x, x
′) > 0, σ+ , supθ∈Θ supx,x′∈X qθ(x, x

′) <∞.

(ii) For all y ∈ Y, supθ∈Θ ‖g(·, y ; θ)‖
X,∞ <∞ and infθ∈Θ

∫
X
g(x, y; θ)µ(dx) > 0.

We now define the Markov transition kernels that generate the conditional hidden

chains. Introduce, for f ∈ Bb(X
k+2) and x0:k ∈ X

k+1, the un-normalized path-wise

transition kernel

Lk(x0:k, f ; θ) ,

∫

X

f(x0:k+1)gk+1(xk+1; θ)Qθ(xk, dxk+1) .

Assumption 4.1 makes this integral well defined for all k ≥ 0. It is easily seen that

for all k ≤ m, the function Lk · · ·Lm(x0:k,X
m+2; θ) depends only on xk. Thus, a

version of this function comprising only the last component is well defined, and we

write Lk · · ·Lm(xk,X
m+2; θ) in this case. For k > m, we set Lk · · ·Lm ≡ Id. Using

this notation and given n ≥ 0, the forward smoothing kernels given by, for k ≥ 0,

xk ∈ X and A ∈ X ,

Fk|n(xk, A; θ) , Pθ (Xk+1 ∈ A|Xk = xk,Gn) ,

can, for indices 0 ≤ k < n, be written as

Fk|n(xk, A; θ) =

∫

A

gk+1(xk+1; θ)Lk+1 · · ·Ln−1(xk+1,X
n+1; θ)Qθ(xk, dxk+1)

Lk · · ·Ln−1(xk,Xn+1; θ)
. (4.1)

For k ≥ n we simply have Fk|n(xk, A; θ) = Qθ(xk, A).

Analogously, for the time-reversed conditional hidden chain we consider the back-

ward smoothing kernels defined by, for a given n ≥ 0,

Bν,k|n(xk+1, A; θ) , Pθ,ν (Xk ∈ A|Xk+1 = xk+1,Gn) , (4.2)

where k ≥ 0, xk+1 ∈ X and A ∈ X . Note that since the probability (4.2) depends

on the initial distribution of the latent chain, ν is included in the notation of the

backward kernel. A straightforward application of Bayes’ formula shows that Bν,k|n

can, for indices k ≤ n, be expressed as

Bν,k|n(xk+1, A; θ) =

∫
A
qθ(xk, xk+1)φν,k(dxk; θ)∫

X
qθ(xk, xk+1)φν,k(dxk; θ)

. (4.3)

In addition, for k > n, that is, for time indices outside the observed region, we have

Bν,k|n(xk+1, A; θ) =

∫
A

∫
X
qθ(xk, xk+1)q

k−n
θ (xn, xk)φν,n(dxn; θ)µ(dxk)∫

X
qk−n+1
θ (xn, xk+1)φν,n(dxn; θ)

, (4.4)
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where, for m ≥ 1, qm
θ denotes the density of the m-step kernel Qm

θ . For any

two probability measures η1 and η2 we define the total variation distance ‖η1 −
η2‖TV = supA |η1(A)− η2(A)|, and for measurable functions f we recall the identity

supf :‖f‖∞≤1 |η1f − η2f | = 2‖η1 − η2‖TV. Part (i) of Assumption 4.1 implies, for all

x ∈ X, θ ∈ Θ and A ∈ X , the bound Qθ(x,A) ≥ σ−µ(A), saying that the hidden

chain allows X as a 1-small set (see, e.g., Meyn and Tweedie, 1993). Under

this condition, for any two initial distributions ν1, ν2 and any parameter θ ∈ Θ,

‖ν1Q
n
θ − ν2Q

n
θ‖TV → 0 geometrically fast as n goes to infinity. See Lindvall (1992),

Sections III.9–11.

Assumption 4.1 has an important impact on the conditional hidden chains in both

directions. Firstly, we consider the forward smoothing kernel. Plugging the uniform

upper and lower bounds of qθ into the formula (4.1) provides straightforwardly, for

xk ∈ X and A ∈ X ,

Fk|n(xk, A; θ) ≥ (1 − ρ)κk(A;yk+1:n, θ) , (4.5)

where

κk(A;yk+1:n, θ) ,

∫
A
gk+1(xk+1; θ)Lk+1 · · ·Ln−1(xk+1,X

n+1; θ)µ(dxk+1)∫
X
gk+1(xk+1; θ)Lk+1 · · ·Ln−1(xk+1,Xn+1; θ)

,

and ρ , 1 − σ−/σ+. For indices after the last observation, that is, k ≥ n, it is

easily checked that the bound (4.5) holds true with κk(A;yk+1:n, θ) , µ(A). Thus,

we conclude that X is a 1-small set also for the conditional hidden chain in the

forward direction, with minorization constant 1− ρ. The backward direction works

analogously; in fact, using (4.3) and (4.4),

Bν,k|n(xk+1, A; θ) ≥ (1 − ρ)κ̂ν,k(A;y0:k∧n, θ) , (4.6)

where, for k ≤ n, κ̂ν,k(A;y0:k, θ) , φν,k(A; θ) and, for k > n,

κ̂ν,k(A;y0:n, θ) ,

∫
A

∫
X
qk−n
θ (xn, xk)φν,n(dxn; θ)µ(dxk)∫

X2 q
k−n
θ (xn, xk)φν,n(dxn; θ)µ(dxk)

.

The following theorem (see Del Moral, 2004, p.143) shows that the forward and

backward kernels are geometrically ergodic.

Theorem 4.2. Assume 4.1 and let θ ∈ Θ. Then, for all k ≥ m ≥ 0, all probability

measures ν1 and ν2 on X and all y0:n,
∥∥ν1Fm|n · · ·Fk|n(· ; θ) − ν2Fm|n · · ·Fk|n(· ; θ)

∥∥
TV

≤ ρk−m+1 ,
∥∥ν1Bν,k|n · · ·Bν,m|n(· ; θ) − ν2Bν,k|n · · ·Bν,m|n(· ; θ)

∥∥
TV

≤ ρk−m+1 .

Assumption 4.1 typically requires that X is a compact set, and one has at present

time failed to significantly weaken this, rather strong, restriction (see Chigansky and

Lipster (2004), Doucet and Tadić (2005), Del Moral (2004), and Cappé et al. (2005)

for some attempts in this direction).
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4.1. Main results. For any stochastic variable Z, sub-σ-algebra H of F and integer

p ≥ 1, we define the conditional Lp norm ‖Z‖p|H , E
1/p[|Z|p|H]. In most cases, we

will let H be an element of the filtration generated by the observed process; studying

the particle filter mechanism under the norm ‖·‖p|Gn
implies the assumption that all

randomness of the system is concentrated to the evolution of the particle swarm only,

while the observations are fixed. For notational brevity, we assume in this section

that resampling is applied at every iteration; for the sake of simplicity, we have only

considered the case where multinomial resampling is used (see Chopin (2004) and

Douc and Moulines (2005) for analysis of the case of residual resampling).

Assumption 4.3. For all k ≥ 1, ‖Wk‖X2,∞ <∞; in addition, ‖W0‖X,∞ <∞.

Remark 4.4. In case of the bootstrap particle filter, for which Rk ≡ Q, Assumption

4.3 is implied by Assumption 4.1. The same is true for the so-called optimal kernel

used in Example 5.2.

Theorem 4.5. Under assumptions 4.1, 4.3, for n ≥ 0, the following holds true for

all ∆n ≥ 0 and N ≥ 1.

(i) For all p ≥ 2,

∥∥γ̂N,∆n

n − γn

∥∥
p|Gn

≤ 2ρ∆n

n−∆n∑

k=0

‖sk‖X2,∞ +

Bp√
N(1 − ρ)

n−1∑

k=0

‖sk‖X2,∞



 1

σ−

(k+∆n)∧n∑

m=1

‖Wm‖X2,∞ρ
0∨(k−m)

µgm
+

‖W0‖X,∞

νg0
+ 1



 ,

(ii)

∣∣E
[
γ̂N,∆n

n

∣∣Gn

]
− γn

∣∣ ≤ 2ρ∆n

n−∆n∑

k=0

‖sk‖X2,∞ +

B

N(1 − ρ)2

n−1∑

k=0

‖sk‖X2,∞



 1

σ2
−

(k+∆n)∧n∑

m=1

‖Wm‖2
X2,∞ρ

0∨(k−m)

(µgm)2
+

‖W0‖2
X,∞

(νg0)2
+ 1



 .

Here Bp and B are universal constants such that Bp depends on p only.

For the purpose of illustrating these bounds, assume that all ‖sk‖X2,∞ and all

fractions ‖Wk‖X2,∞/µgk are uniformly bounded in k. We then draw the conclusion

that if the lag is increased with n at a rate of logn then the error is then dominated

by the variability due to the particle filter—the second term of 4.5(i)—which is of

order O(N−1/2n logn). In contrast, setting ∆n = n, that is, using the direct full-path

approximation, would result in a stochastic error of order O(N−1/2n2).
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4.2. Extension to randomly varying observations. As mentioned, all results

presented above concern smoothing distribution approximations produced by the

particle filter algorithm given a fixed sequence of observations. However, when

studying asymptotic properties—consistency and asymptotic normality—of the ap-

proximative particle filter MLE (see Olsson and Rydén, 2005) it is a necessity to

extend these results to the case of a randomly varying sequence of observations.

For the bounds presented in Theorem 4.5, the conditioning on Gn can be removed

by introducing additional model assumptions. Denote by Q̊, g̊ and ν̊ the kernel,

measurement and initial densities, respectively, of the state space model generating

the observations used by the particle filter (we stress that Q̊ and g̊ are not assumed

to belong to the parametric families {(Qθ, gθ); θ ∈ Θ}). In addition, we let P̊ be the

law of the bivariate Markov associated to (Q̊,̊g,̊ν), E̊ the corresponding expectation,

and ‖·‖p,◦ the Lp norm under P̊. Using these observed values as input, the evolution

of the particle cloud follows the usual dynamics (Qθ,gθ,ν, θ ∈ Θ). The objective is

to a priori, that is, before the observations y0:n are available, form an idea of how

well the particle filter will approximate γn.

Assumption 4.6. Let tn be given by (1.1). For p ≥ 2 and ℓ ≥ 1 there exists a

constant ap,ℓ(tn) ∈ R such that

sup
0≤k≤n
0≤i≤n−1

E̊

[
‖Wk‖p

X,∞ ‖si‖ℓ
X2,∞

(µgk)p

]
∨ E̊

[
‖si‖ℓ

Xn+1,∞

]
≤ ap,ℓ(tn) .

Proposition 4.7. Assume 4.1 and 4.3. Then, the following holds true for all N ≥
1.

(i) If Assumption 4.6 is satisfied for ℓ = p ≥ 2, then

∥∥γ̂N,∆n

n − γn

∥∥
p,◦

≤ 2bp(tn)ρ∆n(n− ∆n + 1)

+
Bpbp(tn)√
N(1 − ρ)

{
∆nn + ∆n

σ−
+ n

[
1

σ−(1 − ρ)
+

1

infx∈X
dν
dµ

(x)
+ 1

]}
,

where bp(tn) , [ap,p(tn)]1/p ;

(ii) if Assumption 4.6 is satisfied for p = 2, ℓ = 1, then
∣∣∣E̊

[
γ̂N,∆n

n − γn

]∣∣∣ ≤ 2a2,1(tn)ρ∆n(n− ∆n + 1)

+
Bpa2,1(tn)

N(1 − ρ)2

{
∆nn + ∆n

σ2
−

+ n

[
1

σ2
−(1 − ρ)

+
1

infx∈X
dν
dµ

(x)
+ 1

]}
.

The proof of this result is given in Section 7.2.

Remark 4.8. In the case of a compact state space X, Assumption 4.6 implies only

limited additional restrictions on the state space model. In fact, for a large class of

models, Assumption 4.6 follows as a direct consequence of Assumption 4.1.
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5. Applications to maximum likelihood estimation

We now return to the computation of maximum likelihood estimator. In the

following we consider models for which the set of complete data log-likelihood func-

tions, parameterized by the parameter vector, constitute an exponential family ; that

is, for all θ ∈ Θ and n ≥ 0,

pθ(x0:n,y0:n) = exp [〈ψ(θ),Sn(x0:n)〉 − c(θ)]h(x0:n) . (5.1)

Here ψ and the sufficient statistics Sn are R
ds-valued functions on Θ and X

n+1 ,

respectively, and c is a real-valued function on θ and h is a real-valued non-negative

function on X
n+1. By 〈· , ·〉 we denote the scalar product. All these functions may

depend on the observed values y0:n, even though this is expunged from the notation.

If the complete data log-likelihood function is of the particular form (5.1) and the

expectation φν,0:n|n(Sn; θ) is finite for all θ ∈ Θ, the intermediate quantity of EM

can be written as

Q(θ; θ′) =
〈
ψ(θ), φν,0:n|n(Sn; θ′)

〉
− c(θ) + φν,0:n|n (log h; θ′) .

Since the last term does not depend on θ, it has no effect on the updated parameter

value. Thus, we will in the following exclude this term from the expression of Q.

We will throughout this section assume that maximization of 〈ψ(θ), s〉 − c(θ) with

respect to the parameter is feasible for all possible values s of the sufficient statistics.

Note finally that, as mentioned in the introduction, a typical element Sn,m(x0:n) of

the vector Sn(x0:n) is an additive functional Sn,m(x0:n) =
∑n−1

k=0 s
(k)
n,m(xk:k+1) so that

φν,0:n|n(Sn; θ′) can be estimated using either (3.4) or (3.5). Denoting by Ŝn such

estimator, we may approximate the intermediate quantity by

Q̂N(θ; θ′) =
〈
ψ(θ), Ŝn

〉
− c(θ) . (5.2)

In the next step—referred to as the M-step—Q̂N (θ; θ′) is maximized with respect

to θ, providing a new parameter estimate. This procedure is repeated recursively

given an initial guess θ̂0. Proceeding in this way, we obtain a Monte-Carlo version

of the EM algorithm (see Tanner, 1993; Fort and Moulines, 2003). We summarize

the algorithm below.

For i = 1, 2, . . .

Simulation step: Run, using Ni particles, the particle filter n steps under

the parameter θ̂i−1, providing an approximation Ŝ
i

n of the smoothed quan-

tity φν,0:n|n(Sn; θ̂i−1). Use this to obtain Q̂Ni(θ; θ̂i−1) via (5.2).

M-step: Next, choose the new estimate θ̂i to be the (or any, if several exist)

value of θ ∈ Θ which maximizes Q̂Ni(θ; θ̂i−1).
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As an illustration, we consider the problem of inference in a noisily observed

AR(1) model and the stochastic volatility (SV) model. For the first model, it is

possible to carry out exact computation of the MLE, which is interesting from a

comparative point of view. Since the noisily observed AR(1) model belongs to the

class of linear/Gaussian models, for which ergodicity of the conditional hidden chain

is established, in the sense that (3.3) holds true, the application of the fixed-lag

technique is well-founded in this case. However, similar theoretical results are not

available for the SV model, and here we instead plead empirical evidence that this

model also exhibits such forgetting properties. Thus, both the following examples

will be analyzed in the light of the theory developed in Section 4.

Example 5.1 (SMCEM for noisily observed AR(1) model). We consider the state

space model

Xk+1 = aXk + σwWk+1 ,

Yk = Xk + σvVk ,

the variables {Wk; k ≥ 1} and {Vk; k ≥ 0} being independent standard normal

distributed variables. We let the initial distribution ν be a diffuse prior; in particular

this means that the initial filter distribution φν,0 is N (y0, σv). Throughout this

example we consider an observation data set of length n = 10000, produced by

simulation under the parameters asim = 0.98, σsim
w = 0.2 and σsim

v = 1. This noisily

observed AR(1) model dovetails into the framework of exponential families, with

ψ(θ) =

(
1

2σ2
w

,− a

σ2
w

,
a2

2σ2
w

,
1

2σ2
v

)
,

and components of the R
4-valued function x0:n 7→ Sn(x0:n) given by

Sn,1(x0:n) ,

n−1∑

k=1

x2
k , Sn,2(x0:n) ,

n−1∑

k=0

xkxk+1 ,

Sn,3(x0:n) ,

n∑

k=0

x2
k , Sn,4(x0:n) ,

n∑

k=0

(yk − xk)
2 .

Furthermore, up to terms not depending on parameters,

c(θ) =
n

2
log σ2

w +
n + 1

2
log σ2

v .

In this setting, one step of the MCEM algorithm is carried out in the following

way. Having produced an estimate θ̂i−1 of the parameters θ = (a, σ2
w, σ

2
v) at the

previous iteration, we compute an approximation Ŝn = (Ŝn,1, Ŝn,2, Ŝn,3, Ŝn,4) of

φν,0:n|n(Sn; θ̂i−1) using the particle filter and update the parameters according to

âi =
Ŝn,2

Ŝn,1

,
(
σ̂i

w

)2
=

1

n

(
Ŝn,3 − âiŜn,2

)
,

(
σ̂i

v

)2
=

Ŝn,4

n+ 1
. (5.3)



SEQUENTIAL MONTE CARLO SMOOTHING 15

1 2 3 4 5 6

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

n=100

S
n,

1/n

Lag (log2)
1 2 3 4 5 6 7

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

n=1000

Lag (log2)
1 2 3 4 5 6 7

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

n=10000

Lag (log2)

Figure 5.1. Boxplots of estimates of φν,0:n|nSn,1/n, produced with

the fixed-lag technique, for the noisily observed AR(1) model in Ex-

ample 5.1.

We simulated, for each n = 100, 1000, 10000 observations, 1000 sequential Monte

Carlo estimates of φν,0:n|nS1 using the fixed-lag smoothing technique for the param-

eter values a = 0.8, σw = 0.5 and σv = 2. Here the standard bootstrap particle filter

with systematic resampling was used, implying that, for all k ≥ 0, Rk ≡ Q. The

dotted lines indicate the exact expected values, obtained by means of disturbance

smoothing. To study the bias-variance trade-off—discussed in detail in the previous

section—of the method, we used six different lags for each n and a constant particle

population size N = 1000. The result is displayed in Figure 5.1, from which it is

evident that the bias is controlled for a size of the lag that increases approximately

logarithmically with n: In particular, from the plot we deduce that optimal outcome

is gained when lags of size 24, 24, and 25 are used for n being 100, 1000, and 10000,

respectively.

When the lag is sufficiently large for ignoring the term of the bias which is deduced

from forgetting arguments—being roughly of magnitude nρ∆n—, increasing the lag

further exclusively leads to an increase of variance as well as bias of the estimates;

compare the two last boxes of each plot. This is completely in accordance with the

theoretical results of Section 3. Note that the scale on the y-axis is the same for the

three panels although the y-axis has been shifted in each panel due to the fact that

the value of the normalized smoothed statistic evolves as the number of observations

increases.

In Figure 5.2, we again report the cases n = 100, 1000, 10000 observations, and

compare the basic approximation strategy (3.2) with the one based on fixed-lag

smoothing with suitable lags. Guided by the plots of Figure 5.1 and the theory

developed in the previous section, we choose the lags 24, 24, and 25, respectively.
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Figure 5.2. Boxplots of estimates of φν,0:n|nSn,1/n, produced by

means of both the fixed-lag technique and standard trajectory-based

smoothing, for the noisily observed AR(1) model in Example 5.1. Each

box is based on 200 estimates, and the size of the particle population

was N = 1000 for all cases.
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Figure 5.3. Boxplots of Monte Carlo EM updates of a based on the

estimates of Figure 5.2.

The number of particles was set to 1000 for all n. It is obvious that fixed-lag

smoothing drastically reduces the variance without significantly raising the bias. As

in the previous figure, dotted lines indicate exact values. As expected, the bias of

the two techniques increases with n, since the number of particles is held constant.

Finally, we display in Figure 5.3 the resulting parameter estimates obtained by

plugging the additive functional estimates of Figure 5.3 into the EM updating for-

mulas (5.3), resulting in one iteration step of the Monte Carlo EM algorithm. Exact

updates are indicated by dotted lines. As for the additive functional estimates, it
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is clear that introducing the lag implies an obvious improvement. As the updat-

ing formulas (5.3) involve n, the dependence on n of the variance of the parameter

estimates is more involved here than in the functional case.

Example 5.2 (SMCEM for the stochastic volatility (SV) model). In the discrete

time case, the canonical version of the SV model (Hull and White, 1987; Jacquier

et al., 1994) is given by the two relations

Xk+1 = αXk + σǫk+1 , Yk = β exp

(
Xk

2

)
εk ,

where {ǫk; k ≥ 1} and {εk; k ≥ 0} are independent standard normal distributed

variables.

To use the SV model in practice, we need to estimate the parameters θ = (β, α, σ).

Throughout this example we will use a sequence of data obtained by simulation

under the parameters βsim = 0.63, αsim = 0.975 and σsim = 0.16. These parameters

are consistent with empirical estimates estimates for daily equity return series and

often used in simulation studies. In conformity with Example 5.1, we assume that

the latent chain is initialized by an improper diffuse prior. The SV model is within

the scope of exponential families, with

ψ(θ) =

(
− α2

2σ2
,− 1

2σ2
,
α

σ2
,− 1

2β2

)
,

and the components of the R
4-valued function x0:n 7→ Sn(x0:n) given by

Sn,1(x0:n) ,

n−1∑

k=0

x2
k , Sn,2(x0:n) ,

n∑

k=1

x2
k ,

Sn,3(x0:n) ,

n∑

k=1

xkxk−1 , Sn,4(x0:n) ,

n∑

k=0

yk exp(−xk) .

In addition, up to terms not depending on parameters,

c(θ) =
n+ 1

2
log β2 +

n + 1

2
log σ2.

Let Ŝn = (Ŝn,1, Ŝn,2, Ŝn,3, Ŝn,4) be a particle approximation of φν,0:n|n(Sn; θ̂i−1).

To apply the Monte Carlo EM algorithm to the SV model is not more involved than

for the autoregressive model in Example 5.1. In fact, the updating formulas appear

to be completely analogous:

α̂i =
Ŝn,3

Ŝn,1

,
(
σ̂i

)2
=

1

n

(
Ŝn,2 − α̂iŜn,3

)
,

(
β̂i

)2
=

Ŝn,4

n+ 1
.

In this example, it is possible and more efficient to use a proposal kernel Tk which

does not reduce to the prior kernel Q. Indeed, the conditional density of Xk+1 given

both Xk and Yk+1—so-called “optimal” proposal density following the terminology

of Liu and Chen (1995)—, although known only up to a normalization constant,
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is log-concave. As suggested by Pitt and Shephard (1999), it is then possible to

find the mode of the optimal proposal density, for each current particle position

{ξN,i
k (k); 1 ≤ i ≤ N}, using a fast-converging numerical search and to mimic the

optimal proposal by simulating the new particle position from a t-distribution with

fixed degrees of freedom but mean and variance adjusted to the determined mode

and its Hessian. We adopt this approach here. Note that in this case, the proposal

kernel Tk does depend on the new observation Yk+1.
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Figure 5.4. Boxplots of estimates of φν,0:n|nSn,1/n, produced with

the fixed-lag technique, for the SV model in Example 5.2. Each box

is based on 200 estimates, and the size of the particle population was

set to N = 1000 in all cases.

Using the described proposal technique, we repeat the numerical investigations of

Example 5.1. The resulting approximation of φν,0:n|nSn,1, displayed in Figure 5.4,

behaves similarly. Here again, we observe that moderate values of the lag ∆ are

sufficient to suppress the bias, supporting our (to the best of our knowledge, yet

unproved) conjecture that forgetting also occurs in the stochastic volatility model.

We finally compare the SMCEM parameter estimates obtained with the fixed-

lag approximation and the standard trajectory-based approximation on a simulated

dataset of length n = 5000. Note that for the SMCEM procedure to converges to

the MLE, it is necessary to augment the number of simulations that are performed

as we progress through the EM iterations. We follow the recommendation of Fort

and Moulines (2003) and start by running 150 iterations of the Monte Carlo EM

procedure with the number of particles set to N = 100. For the subsequent 100

iterations, the number of particles increases at a quadratic rate, with a final value (for

the 250th Monte Carlo EM iteration) equal to N = 1600. The cumulative number

of simulations performed during the 250 SMCEM iterations is equal to 75000 (times

the length of the observation sequence) which is quite moderate for a Monte Carlo
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Figure 5.5. SMCEM parameter estimates of β, α and σ from

n = 5000 observations using the standard trajectory-based smooth-

ing approximation. Each plot overlays 50 realizations of the particle

simulations; the histograms pertain to the final (250th) SMCEM iter-

ation.
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Figure 5.6. SMCEM parameter estimates of β, α and σ from n =

5000 observations using the fixed-lag smoothing approximation with

∆ = 40. Each plot overlays 50 realizations of the particle simulations;

the histograms pertain to the final (250th) SMCEM iteration.

based optimization method. In Figures 5.5 and 5.6, we display the superimposed

trajectories of parameter estimates for 50 realizations of the particles, together with

histograms of the final estimates (at iteration 250) when using, respectively, the
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trajectory-based approximation, in Figure 5.5, and the fixed-lag approximation with

∆ = 40, in Figure 5.6.

Smoothing algorithm β̂ α̂ σ̂

Trajectory-based, 0.5991 0.9742 0.1659

with 75000 total simulations std. 0.0136 std. 0.0019 std. 0.0070

Trajectory-based, 0.5990 0.9739 0.1666

with 750000 total simulations std. 0.0045 std. 0.0011 std. 0.0043

Fixed-lag, 0.5962 0.9735 0.1682

with 75000 total simulations std. 0.0019 std. 0.0006 std. 0.0024
Table 1. Mean and standard deviation of SMCEM parameter esti-

mates at the 250th iteration (estimated from 50 independent runs).

Not surprisingly, the fact that the particle simulations are iterated for several

successive values of the parameter estimates only amplifies the differences observed

so far. With the fixed-lag approximation, the standard deviation of the final SMCEM

parameter estimate is divided by a factor of 7 for β, and of 3 for α and σ, which

is quite impressive in the context of Monte Carlo methods : to achieve the same

accuracy with the trajectory-based approximation, one would need about ten times

more particles to compensate for the higher simulation variance. Table 1, shows

that the fixed-lag approximation (third row) indeed remains more reliable than the

trajectory-based approximation, even when the latter is computed from ten times

more particles (second row). Note that for the trajectory-based approximation,

multiplying the number of particles by ten does not reduce the standard deviation of

the estimates as much as expected from the asymptotic theory. This is certainly due

to the moderate number of particles used in the baseline setting, as we start from

N = 100 particles during the first SMCEM iterations and terminate with N = 1600.

6. Summary

We have discussed a modification of the standard trajectory-based sequential

Monte Carlo method for smoothing in state space models, which is based on obser-

vations made by Kitagawa and Sato (2001). In addition, the mechanisms and gains

of the method have been investigated by means of an exhaustive theoretical analy-

sis of the resulting particle estimates. This is the main contribution of the paper.

Since the technique is based on forgetting properties of the conditional hidden chain,

this analysis had to be performed under suitable regularity conditions on the latent

dynamics. An examination of the classical bias-variance-tradeoff of the procedure

lead to the key observation that the lag should be increased logarithmically with n.

As by-products we obtained a time-uniform O(N−1) bound of the particle filtering
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bias (follows by Proposition 7.1(ii) below, applied with i = n), and an extension to

randomly varying observations under fairly weak additional model assumptions.

Finally, we applied, with the theory developed in Section 4 as a guideline, the

fixed-lag technique within the framework of Monte Carlo EM for exponential fam-

ilies. In fact, the size of the optimal lag provided by the simulation study, that

is, the lag yielding both a minimum bias and a minimum variance, was precisely

of order log n. Increasing the lag further only increased the variance. Compared

to the standard trajectory-based smoothing, which corresponds to a lag of size n,

the proposed fixed-lag smoothing approach dramatically reduced the Monte Carlo

variance of the parameter estimates.

7. Proofs

7.1. Proof of of Theorem 4.5. The proof of Theorem 4.5 comprises partly the

geometric ergodicity of the time-reversed conditional hidden chain (Theorem 4.2),

partly the next proposition.

Proposition 7.1. Assume 4.1, 4.3 and let 0 ≤ i ≤ n. Consider a bounded and

measurable function fi, possibly depending on Y 0:n, of the form fi(x0:n) = fi(xi:n).

Then the following holds true for all N ≥ 1.

(i) For all p ≥ 2,
∥∥∥φ̂N

ν,0:n|nfi − φν,0:n|nfi

∥∥∥
p|Gn

≤ Bp‖fi‖Xn+1,∞√
N(1 − ρ)

[
1

σ−

n∑

k=1

‖Wk‖X2,∞ρ
0∨(i−k)

µgk

+
‖W0‖X,∞

νg0

+ 1

]
;

(ii)
∣∣∣E

[
φ̂N

ν,0:n|nfi

∣∣∣Gn

]
− φν,0:n|nfi

∣∣∣

≤ B‖fi‖Xn+1,∞

N(1 − ρ)2

[
1

σ2
−

n∑

k=1

‖Wk‖2
X2,∞ρ

0∨(i−k)

(µgk)2
+

‖W0‖2
X,∞

(νg0)2
+ 1

]
.

Here Bp and B are universal constants such that Bp depends on p only.

To prove Proposition 7.1 we need some preparatory lemmas and definitions. In

accordance with the scheme presented in Section 3, it is valid that, for A ∈ X⊗(k+1),

P

(
ξ

N,i
k ∈ A

∣∣∣FN
k−1 ∨ Gk

)

=
N∑

j=1

P

(
IN,i
k−1 = j

∣∣∣FN
k−1 ∨ Gk

)
P

(
ξ

N,i
k ∈ A

∣∣∣ IN,i
k−1 = j,FN

k−1 ∨ Gk

)

=

N∑

j=1

ωN,j
k−1

ΩN
k−1

Rp
k−1

(
ξ

N,j
k−1, A

)
, i ∈ {1, . . . , N} .
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That is, conditional on FN
k−1, the swarm {ξN,i

k ; 1 ≤ i ≤ N} of mutated particles at

time k is obtained by sampling N independent and identically distributed particles

from the measure

ηN
k , φN

ν,0:k−1|k−1R
p
k−1 .

Using this notation, define, for A ∈ X⊗(k+1),

µN
k|n(A) ,

∫
A
Wk(xk−1:k)Lk · · ·Ln−1(x0:k,X

n+1) ηN
k (dx0:k)

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

.

Hence µN
k|n ≪ ηN

k , and the resulting Radon-Nikodým derivative is given by

dµN
k|n

dηN
k

(x0:k) ,
Wk(xk−1:k)Lk · · ·Ln−1(x0:k,X

n+1)

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

.

Lemma 7.2. Let f ∈ Bb(X
n+1). Then, for all n ≥ 0,

φN
ν,0:n|nf − φν,0:n|nf

=
n∑

k=1

ϕN
k (f) +

φN
ν,0L0 · · ·Ln−1f

φN
ν,0L0 · · ·Ln−1(Xn+1)

− φν,0:n|nf ,

where

ϕN
k (f) ,

∑N
j=1

dµN
k|n

dηN
k

(ξN,j
k )f̂k:n(ξ

N,j
k )

∑N
j=1

dµN
k|n

dηN
k

(ξN,j
k )

− µN
k|nf̂k:n , (7.4)

and the real-valued functions {f̂k:n; 1 ≤ k ≤ n+1} are, for a fixed point x̂0:k ∈ X
k+1,

defined by

f̂k:n(x0:k) ,
Lk · · ·Ln−1f(x0:k)

Lk · · ·Ln−1(x0:k,Xn+1)
− Lk · · ·Ln−1f(x̂0:k)

Lk · · ·Ln−1(x̂0:k,Xn+1)
. (7.5)

Proof. As a starting point, consider the decomposition

φN
ν,0:n|nf − φν,0:n|nf =

φN
ν,0L0 · · ·Ln−1f

φN
ν,0L0 · · ·Ln−1(Xn+1)

− φν,0:n|nf

+

n∑

k=1

[
φN

ν,0:k|kLk · · ·Ln−1f

φN
ν,0:k|kLk · · ·Ln−1(Xn+1)

−
φN

ν,0:k−1|k−1Lk−1 · · ·Ln−1f

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

]

.

Now, since

φN
ν,0:k−1|k−1R

p
k−1[Wkf̂k:nLk · · ·Ln−1(X

n+1)]

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

=

∫

Xk

∫

X

dQ(xk−1, ·)
dRk−1(xk−1, ·)

(xk)
gk(xk)f̂k:n(x0:k)Lk · · ·Ln−1(x0:k,X

n+1)

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

× Rk−1(xk−1, dxk)φ
N
ν,0:k−1|k−1(dx0:k−1)

=
φN

ν,0:k−1|k−1Lk−1 · · ·Ln−1f

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

− Lk · · ·Ln−1f(x̂0:k)

Lk · · ·Ln−1(x̂0:k,Xn+1)
,
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we acquire the term-wise decomposition

ϕN
k (f) =

φN
ν,0:k|k[f̂k:nLk · · ·Ln−1(X

n+1)]

φN
ν,0:k|kLk · · ·Ln−1(Xn+1)

−
φN

ν,0:k−1|k−1R
p
k−1[Wkf̂k:nLk · · ·Ln−1(X

n+1)]

φN
ν,0:k−1|k−1Lk−1 · · ·Ln−1(Xn+1)

,

which is equivalent to the one presented in the lemma. 2

Conditional on FN
k−1, the first term on the right-hand-side of (7.4) is nothing but an

importance sampling estimate of µN
k|nf̂k:n, based on N independent ηN

k -distributed

variables.

Lemma 7.3. Assume 4.1 and let, for n ≥ 0 and 0 ≤ i ≤ n, fi be a function of

the form described in Proposition 7.1. Furthermore, let, for k ≥ 0, the real valued

function f̂i,k:n be defined through (7.5). Then
∥∥∥f̂i,k:n

∥∥∥
Xk+1,∞

≤ 2ρ0∨(i−k) ‖fi‖Xn+1,∞ .

Proof. For k ≥ i we bound f̂i,k:n by 2 ‖fi‖Xn+1,∞; however, for k < i a geometrically

decreasing bound of the function can be obtained by using the exponential forgetting

property of the conditional latent chain. Hence, since

Lk · · ·Ln−1fi(x0:k)

Lk · · ·Ln−1(x0:k,Xn+1)
= E [fi(X i:n)|Xk = xk,Gn]

= E [E [fi(X i:n)|Xi = xi,Gn]|Xk = xk,Gn]

= Fk|n · · ·Fi−1|n

(
xk, f

∗
i,n

)
,

where, for x ∈ X, f ∗
i,n(x) , E [fi(X i:n)|Xi = x,Gn], we can, for k < i, rewrite f̂i,k:n

as

f̂i,k:n(x0:k) = Fk|n · · ·Fi−1|n

(
xk, f

∗
i,n

)
− Fk|n · · ·Fi−1|n

(
x̂k, f

∗
i,n

)
.

Applying Theorem 4.2 to this difference yields
∣∣Fk|n · · ·Fi−1|n

(
xk, f

∗
i,n

)
− Fk|n · · ·Fi−1|n

(
x̂k, f

∗
i,n

)∣∣

≤ 2
∥∥f ∗

i,n

∥∥
X,∞

‖Fk|n · · ·Fi−1|n (xk, ·) − Fk|n · · ·Fi−1|n (x̂k, ·) ‖TV

≤ 2ρi−k
∥∥f ∗

i,n

∥∥
X,∞

≤ 2ρi−k ‖fi‖Xn+1,∞ .

2

Lemma 7.4. Assume 4.1 and let n ≥ 0. Then, for all 1 ≤ k ≤ n, x ∈ X and

N ≥ 1,
dµN

k|n

dηN
k

(x) ≤
‖Wk‖X2,∞

µgk(1 − ρ)σ−
.
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Proof. First, write

Lk · · ·Ln−1(x0:k,X
n+1)

=

∫

X

q(xk, xk+1)Lk+1 · · ·Ln−1(x0:k+1,X
n+1)gk+1(xk+1)µ(dxk+1)

≤ σ+

∫

X

Lk+1 · · ·Ln−1(x0:k+1,X
n+1)gk+1(xk+1)µ(dxk+1) . (7.6)

Now, since the function Lk+1 · · ·Ln−1(·,Xn+1) is constant in all but the last compo-

nent of the argument,

Lk−1 · · ·Ln−1(x0:k−1,X
n+1)

=

∫

X

q(xk−1, xk)gk(xk)

∫

X

q(xk, xk+1)Lk+1 · · ·Ln−1(x0:k+1,X
n+1)

× gk+1(xk+1)µ(dxk+1)µ(dxk)

≥ µgkσ
2
−

∫

X

Lk+1 · · ·Ln−1(x0:k+1,X
n+1)gk+1(xk+1)µ(dxk+1) . (7.7)

Since the integrals in (7.6) and (7.7) are equal, the bound of the lemma follows. 2

Proof of Proposition 7.1. We start with (i). Since, conditional on FN
n , the random

variables fi(ξ̂
N,j

n ), 1 ≤ j ≤ N , are independent and identically distributed with

expectation

E

[
fi(ξ̂

N,j

n )
∣∣∣FN

n ∨ Gn

]
=

1

ΩN
n

N∑

j=1

ωN,j
n fi(ξ

N,j
n ) , (7.8)

applying the Marcinkiewicz-Zygmund inequality provides the bound

Np/2
E

[∣∣∣∣∣
1

N

N∑

j=1

fi(ξ̂
N,j

n ) − 1

ΩN
n

N∑

j=1

ωN,j
n fi(ξ

N,j
n )

∣∣∣∣∣

p∣∣∣∣∣F
N
n ∨ Gn

]

≤ Cp ‖fi‖p
Xn+1,∞ ,

(7.9)

where Cp is a universal constant depending on p only. Having control of this dis-

crepancy, we focus instead on the Lp error associated with the weighted empirical

measure φN
ν,0:n|n. We make use of the identity

a/b− c/d = (a/b)(1 − b/d) + (a− c)/d
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on each term of the decomposition provided by Lemma 7.2. This, together with

Minkowski’s inequality, gives us the bound

∥∥ϕN
k (fi)

∥∥
p|FN

k
∨Gn

≤
∥∥∥∥∥

1

N

N∑

j=1

dµN
k|n

dηN
k

(ξN,j
k )f̂i,k:n(ξ

N,j
k ) − µN

k|nf̂i,k:n

∥∥∥∥∥
p|FN

k
∨Gn

+
∥∥∥f̂i,k:n

∥∥∥
Xk+1,∞

∥∥∥∥∥
1

N

N∑

j=1

dµN
k|n

dηN
k

(ξN,j
k ) − 1

∥∥∥∥∥
p|FN

k
∨Gn

. (7.10)

Applying the Marcinkiewicz-Zygmund inequality to the first term of this bound

gives

Np/2
E

[∣∣∣∣∣
1

N

N∑

j=1

dµN
k|n

dηN
k

(ξN,j
k )f̂k:n(ξ

N,j
k ) − µN

k|nf̂k:n

∣∣∣∣∣

p∣∣∣∣∣F
N
k−1 ∨ Gn

]

≤ Cp

∥∥∥∥∥
dµN

k|n

dηN
k

∥∥∥∥∥

p

Xk+1,∞

∥∥∥f̂k:n

∥∥∥
p

Xk+1,∞
, (7.11)

and treating the second term in a similar manner yields

Np/2
E

[∣∣∣∣∣
1

N

N∑

j=1

dµN
k|n

dηN
k

(ξN,j
k ) − 1

∣∣∣∣∣

p∣∣∣∣∣F
N
k−1 ∨ Gn

]
≤ Cp

∥∥∥∥∥
dµN

k|n

dηN
k

∥∥∥∥∥

p

Xk+1,∞

. (7.12)

Thus, we obtain, by inserting these bounds into (7.10) and applying Lemma 7.3 and

Lemma 7.4,

∥∥ϕN
k (fi)

∥∥
p|FN

k
∨Gn

≤ 4C1/p
p ρ0∧(i−k)

‖Wk‖X2,∞ ‖fi‖Xn+1,∞√
Nµgk(1 − ρ)σ−

. (7.13)

For the last difference of the decomposition provided by Lemma 7.2 we have, using

the same decomposition technique as in (7.10),
∥∥∥∥∥

φN
ν,0L0 · · ·Ln−1fi

φN
ν,0L0 · · ·Ln−1(Xn+1)

− φν,0:n|nfi

∥∥∥∥∥
p|Gn

≤ ‖fi‖Xn+1,∞

∥∥∥∥∥
1

N

∑N
j=1 ω

N,j
0 L0 · · ·Ln−1(ξ

N,j
0 ,Xn+1)

ν [g0L0 · · ·Ln−1(Xn+1)]
− 1

∥∥∥∥∥
p|Gn

+

∥∥∥∥∥
1

N

N∑

j=1

ωN,j
0 L0 · · ·Ln−1(ξ

N,j
0 , fi) − ν [g0L0 · · ·Ln−1fi]

∥∥∥∥∥
p|Gn

× 1

ν[g0L0 · · ·Ln−1(Xn+1)]
. (7.14)

Since, repeating arguments of Lemma 7.4,

‖W0L0 · · ·Ln−1(X
n+1)‖

X,∞

ν[g0L0 · · ·Ln−1(Xn+1)]
≤

‖W0‖X,∞

νg0(1 − ρ)
,
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we obtain, by applying the Marcinkiewicz-Zygmund inequality to each term of

(7.14),

∥∥∥∥∥
φN

ν,0L0 · · ·Ln−1fi

φN
ν,0L0 · · ·Ln−1(Xn)

− φν,0:n|nfi

∥∥∥∥∥
p|Gn

≤ 2C1/p
p

‖W0‖X,∞ ‖fi‖Xn+1,∞√
Nνg0(1 − ρ)

. (7.15)

Now (i) follows by a straightforward application of Minkowski’s inequality together

with (7.9), (7.13) and (7.15).

We turn to (ii). By means of the identity

a/b− c = (a/b)(1 − b)2 + (a− c)(1 − b) + c(1 − b) + a− c

applied to (7.4), we obtain the bound

∣∣E
[
ϕN

k (fi)
∣∣FN

k−1 ∨ Gn

]∣∣ ≤
∥∥∥f̂i,k:n

∥∥∥
Xk+1,∞

∥∥∥∥∥
1

N

N∑

j=1

dµN
k|n

dηN
k

(ξN,j
k ) − 1

∥∥∥∥∥

2

2|FN
k−1

∨Gn

+

∥∥∥∥∥
1

N

N∑

j=1

dµN
k|n

dηN
k

(ξN,j
k )f̂i,k:n(ξ

N,j
k ) − µN

k|nf̂i,k:n

∥∥∥∥∥
2|FN

k−1
∨Gn

×
∥∥∥∥∥

1

N

N∑

j=1

dµN
k|n

dηN
k

(ξN,j
k ) − 1

∥∥∥∥∥
2|FN

k−1
∨Gn

.

Thus, we get, by reusing (7.11) and (7.12),

∣∣E
[
ϕN

k (fi)
∣∣Gn

]∣∣ ≤ E

[∣∣E
[
ϕN

k (fi)
∣∣FN

k−1 ∨ Gn

]∣∣
∣∣∣Gn

]

≤ 4C2ρ
0∨(i−k)

‖Wk‖2
X2,∞ ‖fi‖Xn+1,∞

N(µgk)2(1 − ρ)2σ2
−

, (7.16)

and treating the last term of the decomposition in a completely similar manner

yields

∣∣∣∣∣E

[
φN

ν,0L0 · · ·Ln−1fi

φN
ν,0L0 · · ·Ln−1(Xn+1)

− φν,0:n|nfi

∣∣∣∣∣Gn

]∣∣∣∣∣ ≤ 2C2

‖W0‖2
X2,∞ ‖fi‖Xn+1,∞

N(νg0)2(1 − ρ)2
. (7.17)

Finally, from (7.8) we conclude that the multinomial selection mechanism does not

introduce any additional bias, and consequently (ii) follows from the triangle in-

equality together with (7.16) and (7.17). 2

We are now, having established Proposition 7.1, prepared for proceeding with the

proof of Theorem 4.5.
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Proof of Theorem 4.5. Decomposing the difference in question yields the bound

∥∥γ̂N,∆n

n − γn

∥∥
p|Gn

≤
n−1∑

k=0

∥∥∥φ̂N
ν,0:k(∆n)|k(∆n)sk − φν,0:k(∆n)|k(∆n)sk

∥∥∥
p|Gn

+

n−∆n∑

k=0

∣∣φν,0:k+∆n|k+∆n
sk − φν,0:n|nsk

∣∣ , (7.18)

where we have set k(∆n) = (k + ∆n) ∧ n. By writing

Eν [sk(Xk, Xk+1)|Xk+∆n+1 = xk+∆n+1,Gk+∆n
]

= Eν [Eν [sk(Xk, Xk+1)|Xk+1 = xk+1,Gk+∆n
]|Xk+∆n+1 = xk+∆n+1,Gk+∆n

]

= Bν,k+∆n|k+∆n
· · ·Bν,k+1|k+∆n

(
xk+∆n+1, ŝk|k+∆n

)
,

with, for x ∈ X,

ŝk|k+∆n
(x) , Eν [sk(Xk, Xk+1)|Xk+1 = x,Gk+∆n

] ,

we get that

φν,0:k+∆n|k+∆n
sk − φν,0:n|nsk

= ψk+∆n+1|k+∆n
Bν,k+∆n|k+∆n

· · ·Bν,k+1|k+∆n

(
xk+∆n+1, ŝk|k+∆n

)

− ψk+∆n+1|nBν,k+∆n|k+∆n
· · ·Bν,k+1|k+∆n

(
xk+∆n+1, ŝk|k+∆n

)
.

where we have defined, for ℓ,m ≥ 0, ψℓ|m , Pν(Xℓ ∈ ·|Gm). Hence, we obtain,

using the exponential forgetting property (see Theorem 4.2) of the time-reversed

conditional hidden chain,
∣∣φν,0:k+∆n|k+∆n

sk − φν,0:n|nsk

∣∣

≤ 2
∥∥ŝk|k+∆n

∥∥
X,∞

∥∥ψk+∆n+1|k+∆n
Bν,k+∆n|k+∆n

· · ·Bν,k+1|k+∆n
(xk+∆n+1, ·)

−ψk+∆n+1|k+∆n
Bν,k+∆n|k+∆n

· · ·Bν,k+1|k+∆n
(xk+∆n+1, ·)

∥∥
TV

≤ 2ρ∆n ‖sk‖X2,∞ . (7.19)

Plugging (7.19) and the bound of Proposition 7.1(i) into the decomposition (7.18)

completes the proof of (i). The proof of part (ii) is entirely analogous and is omitted

for brevity. 2

7.2. Proof of Proposition 4.7.

Assumption 7.5. Let fi be the function of Proposition 7.1. For p ≥ 2, ℓ ≥ 1 there

exists a constant α
(n)
p,ℓ (fi) ∈ R such that

sup
0≤k≤n

E̊

[
‖Wk‖p

X,∞ ‖fi‖ℓ
Xn+1,∞

(µgk)p

]
∨ E̊

[
‖fi‖ℓ

Xn+1,∞

]
≤ α

(n)
p,ℓ (fi) .

Proposition 7.6. Assume 4.1 and 4.3. Then, the following holds true for all N ≥ 1.
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(i) If Assumption 7.5 is satisfied for ℓ = p ≥ 2, then

∥∥∥φ̂N
ν,0:n|nfi − φν,0:n|nfi

∥∥∥
p,◦

≤ Bpβ
(n)
p (fi)√

N(1 − ρ)

[
1 − ρi

σ−(1 − ρ)
+
n− i

σ−
+

1

infx∈X
dν
dµ

(x)
+ 1

]

,

where β
(n)
p (fi) , [α

(n)
p,p (fi)]

1/p ;

(ii) if Assumption 7.5 is satisfied for p = 2, ℓ = 1, then

∣∣∣E̊
[
φ̂N

ν,0:n|nfi − φν,0:n|nfi

]∣∣∣

≤ Bα
(n)
2,1 (fi)

N(1 − ρ)2

[
1 − ρi

σ2
−(1 − ρ)

+
n− i

σ2
−

+
1

infx∈X
dν
dµ

(x)
+ 1

]

.

Proof. The proof of the first part is straightforward: combining Proposition 7.1

and Minkowski’s inequality provides the bound
∥∥∥φ̂N

ν,0:n|nfi − φν,0:n|nfi

∥∥∥
p,◦

= E̊
1/p

[∥∥∥φ̂N
ν,0:n|nfi − φν,0:n|nfi

∥∥∥
p

p,◦|G̊n

]

≤ Bp√
N(1 − ρ)

{
1

σ−

n∑

k=1

E̊
1/p

[
‖Wk‖p

X,∞ ‖fi‖p
Xn+1,∞

(µgk)p

]

ρ0∨(i−k)

+
1

infx∈X
dν
dµ

(x)
E̊

1/p

[
‖W0‖p

X,∞‖fi‖p
Xn+1,∞

(µg0)p

]

+ E̊
1/p

[
‖fi‖p

Xn+1,∞

]}

.

We finish the proof by plugging the bounds of Assumption 7.5 into the expression

above and summing up. The proof of the second part follows similarly. 2

Proof of Proposition 4.7. The proof of the first part follows by applying Proposi-

tion 7.6 and the bound (7.19) to the decomposition

∥∥γ̂N,∆n

n − γn

∥∥
p,◦

≤
n−1∑

k=0

∥∥∥φ̂N
ν,0:k(∆n)|k(∆n)sk − φν,0:k(∆n)|k(∆n)sk

∥∥∥
p,◦

+

n−∆n∑

k=0

∥∥φν,0:k+∆n|k+∆n
sk − φν,0:n|nsk

∥∥
p,◦

.

The second part is proved in a similar manner. 2



References 29

References

Andrieu, C. and Doucet, A. (2003). Online Expctation-Maximization type algo-

rithms for parameter estimation in general state space models. In Proc. IEEE

Int. Conf. Acoust., Speech, Signal Process.
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