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INTEGRABILITY OF INVARIANT METRICS ON THE

DIFFEOMORPHISM GROUP OF THE CIRCLE

ADRIAN CONSTANTIN AND BORIS KOLEV

Abstract. Each Hk Sobolev inner product (k ≥ 0) defines a Hamil-
tonian vector field Xk on the regular dual of the Lie algebra of the
diffeomorphism group of the circle. We show that only X0 and X1 are
bi-Hamiltonian relatively to a modified Lie-Poisson structure.

1. Introduction

Often motions of inertial mechanical systems are described in Lagrangian
variables by paths on a configuration space G that is a Lie group. The
velocity phase space is the tangent bundle TG and the kinetic energy

K =
1

2
< v, v >

for v ∈ TG. For example, in continuum mechanics the state of a system at
time t ≥ 0 can be specified by a diffeomorphism x 7→ ϕ(t, x) of the ambient
space, giving the configuration of the particles with respect to their initial
positions at time t = 0. Here x is a label identifying a particle, taken to be
the position of the particle at time t = 0 so that ϕ(0, x) = x. In this setting G
would be the group of diffeomorphisms. The material (Lagrangian) velocity
field is given by (t, x) 7→ ϕt(t, x) while the spatial (Eulerian) velocity field
is u(t, y) = ϕt(t, x), where y = ϕ(t, x), i.e. u = ϕt ◦ ϕ−1. Observe that
for any fixed time-independent diffeomorphism η, the spatial velocity field
u = ϕt ◦ ϕ−1 along the path t 7→ ϕ(t) remains unchanged if we replace this
path by t 7→ ϕ(t) ◦ η. This right-invariance property suggests to extend
the kinetic energy K by right translation to a right-invariant Lagrangian
K : TG → R, obtaining a Lagrangian system on G. The length of a path
{ϕ(t)}t∈[a,b] in G is defined as

l(ϕ) =

∫ b

a
< ϕt, ϕt >1/2 dt.

The Least Action Principle holds if the equation of motion is the geodesic
equation. The set Diff(S1) of all smooth orientation-preserving diffeomor-
phisms of the circle represents the configuration space for the spatially peri-
odic motion of inertial one-dimensional mechanical systems. Diff(S1) is an
infinite dimensional Lie group, the group operation being composition [19]
and its Lie algebra Vect(S1) being the space of all smooth vector fields on S
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2 A. CONSTANTIN AND B. KOLEV

cf. [29]. On the regular (or L2) dual Vect∗(S1) of the Lie algebra Vect(S1)
there are some affine canonical Lie-Poisson structures, called modified Lie-

Poisson structures, which are all compatible. On the other hand, we can
consider on the regular dual Vect∗(S1) a countable family {Xk}k≥0 of Hamil-
tonian vector fields defined by Sobolev inner products. The importance of
these inner products lies in that each gives rise via right translation to a
geodesic flow on Diff(S1), the Riemannian exponential map of which defines
a local chart for every k ≥ 1 cf. [10] - a property which fails for the Lie
group exponential map [19, 27] as well as for the Riemannian exponential
map if k = 0 [9]. In this paper we show that the Hamiltonian vector field
Xk is bi-Hamiltonian relatively to a modified Lie-Poisson structure if and
only if k ∈ {0, 1}.

2. Preliminaries

In this section, we review some fundamental aspects of finite dimensional
smooth Poisson manifolds.

Definition 2.1. A symplectic manifold is a pair (M,ω), where M is a
manifold and ω is a closed nondegenerate 2-form on M , that is dω = 0
and for each m ∈ M , ωm : TmM × TmM → R is a continuous bilinear
skew-symmetric map such that the induced linear map ω̃v : TmM → T ∗

mM
defined by ω̃v(w) = ω(v,w) is an isomorphism for all v ∈ TmM .

Example 2.2. In the general study of variational problems, extensive use is
made of the canonical symplectic structure on the cotangent bundle T ∗M
(representing the phase space) of the manifold M (representing the con-
figuration space). This symplectic form is given in any local trivialization
(q, p) ∈ U × R

n ⊂ R
n × R

n of T ∗M by

ω(q,p)

(

(Q,P ), (Q̃, P̃ )
)

= P̃ · Q − P · Q̃, (Q,P ), (Q̃, P̃ ) ∈ R
n × R

n.

Since a symplectic form ω is nondegenerate, it induces an isomorphism

(2.1) ♭ : TM → T ∗M, X 7→ X♭,

defined via X♭(Y ) = ω(X,Y ). The symplectic gradient Xf of a function

f is defined by the relation X♭
f = −df . The inverse of the isomorphism

♭ defines a skew-symmetric bilinear form W on the cotangent space of M .
This bilinear form W induces itself a bilinear mapping on C∞(M), the space
of smooth functions f : M → R, given by

(2.2) { f, g} = W (df, dg) = ω(Xf ,Xg), f, g ∈ C∞(M),

and called the Poisson bracket of the functions f and g.

Example 2.3. In Example 2.2, the Poisson bracket is given by

(2.3) { f, g} =

n
∑

i=1

( ∂f

∂qi

∂g

∂pi
−

∂f

∂pi

∂g

∂qi

)

.

The observation that a bracket like (2.3) could be introduced on C∞(M)
for a smooth manifold M , without the use of a symplectic form, leads to the
general notion of a Poisson structure [26].
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Definition 2.4. A Poisson structure on a C∞ manifold M is a skew-
symmetric bilinear mapping (f, g) 7→ { f, g} on the space C∞(M), which
satisfies the Jacobi identity

(2.4) { { f, g} , h} + { { g, h} , f} + { {h, f} , g} = 0,

as well as the Leibnitz identity

(2.5) { f, gh} = { f, g}h + g { f, h} .

When the Poisson structure is induced by a symplectic structure ω, the
Leibnitz identity is a direct consequence of (2.2), whereas the Jacobi iden-

tity (2.4) corresponds to the condition dω = 0 satisfied by the symplectic
form ω. In the general case, the fact that the mapping g 7→ { f, g} satisfies
(2.5) means that it is a derivation of C∞(M). Each derivation on C∞(M)
for a C∞ manifold (even in the infinite dimensional case cf. [1]) corresponds
to a smooth vector field, that is, to each f ∈ C∞(M) is associated a vector
field Xf : M → TM , called the Hamiltonian vector field of f , such that

(2.6) { f, g} = Xf · g = dg.Xf ,

where dg.Xf = LXf
g is the Lie derivative of g along Xf . Conversely, a vector

field X : M → TM on a Poisson manifold M is said to be Hamiltonian if
there exists a function f such that X = Xf .

Recall [29] that for a smooth vector field X : M → TM , the Lie derivative
operator LX : C∞(M) → C∞(M) acts on smooth functions g : M → R with
differentials dg : M → T ∗M by (LXg)(m) = dg(m) · X(m) for m ∈ M .
The space Vect(M) of smooth vector fields on M and the space of operators
{LX : X ∈ Vect(M)} are isomorphic as real vector spaces, the linear
isomorphism between them being X 7→ LX [1]. Therefore the elements of
Vect(M) can be regarded as operators on C∞(M) via X ·f = LXf , forming
a Lie algebra if endowed with the bracket [X,Y ] = LX ◦ LY − LY ◦ LX .
Notice that (2.4) yields

(2.7) [Xf ,Xg] = X{ f,g}.

From (2.7) it follows (see [29]) that g ∈ C∞(M) is a constant of motion for
Xf if and only if { f, g} = 0.

Jost [21] pointed out that, just like a derivation on C∞(M) corresponds
to a vector field, a bilinear bracket { f, g} satisfying the Leibnitz rule (2.5)
corresponds to a skew-symmetric bilinear form on TM . That is, there exists
a C∞ tensor field W ∈ Γ(

∧2 TM), called the Poisson bivector of (M, { ·, ·}),
such that

{ f, g} = W (df, dg).

Using the unique local extension of the Lie bracket of vector fields to skew-
symmetric multivector fields, called the Schouten-Nijenhuis bracket [30], the
condition (2.4) becomes

(2.8) [W,W ] = 0.

Conversely, any W ∈ Γ(
∧2 TM) that satisfies (2.8) induces a Poisson struc-

ture on M via (2.2). The only condition that must be satisfied by W is
(2.8) since (2.5) holds automatically. A Poisson structure on M is therefore
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equivalent to a bivector W that satisfies (2.8). This induces a homomor-
phism

(2.9) # : T ∗M → TM, α 7→ α#,

such that β(α#) = W (β, α) for every β ∈ T ∗M . Notice that for f ∈ C∞(M)
we have (df)# = Xf . If the homomorphism (2.9) is an isomorphism we call
the Poisson structure nondegenerate. A nondegenerate Poisson structure on
M is equivalent to a symplectic structure where the symplectic form ω is
just #W , the closedness condition corresponding to the Jacobi identity [30].

Remark 2.5. The notion of a Poisson manifold is more general than that
of a symplectic manifold. For example, in the symplectic case the Poisson
bracket satisfies the additional property that { f, g} = 0 for all g ∈ C∞(M)
only if f ∈ C∞(M) is constant, whereas for Poisson manifolds such non-
constant functions f might exist, in which case they are called Casimir

functions. To highlight this, notice that by Darboux’ theorem [29] a finite
dimensional symplectic manifold M has to be even dimensional and locally
there are coordinates {q1, ..., qn, p1, ..., pn} such that { f, g} is given by (2.3).
On the other hand, on M = R

2n+1 with coordinates {q1, ..., qn, p1, ..., pn, ζ}
we determine a Poisson structure defining the Poisson bracket of f, g ∈
C∞(R2n+1) by the same formula (2.3). Notice that any f ∈ C∞(R2n+1)
which depends only on ζ is a Casimir function.

Two Poisson bivectors W1 and W2 define compatible Poisson structures if

(2.10) [W1,W2] = 0.

This is equivalent to say that for any λ, µ ∈ R,

{ f, g}λ, µ = λ { f, g}1 + µ { f, g}2

is also a Poisson bracket. On a manifold M equipped with two compatible
Poisson structures, a vector field X is said to be (formally) integrable or
bi-Hamiltonian if it is Hamiltonian for both structures.

On a symplectic manifold (M,ω), a necessary condition for a vector field
X to be Hamiltonian is that LXω = 0 [29]. A similar criterion exists for a
Poisson manifold (M,W ). It is instructive for later considerations to present
a short proof of this known result.

Proposition 2.6. On a Poisson manifold (M,W ) a necessary condition for

a vector field X to be Hamiltonian is

(2.11) LXW = 0.

Proof. If X is Hamiltonian, there is a function h ∈ C∞(M) such that X =
Xh. Let f and g be arbitrary smooth functions on M . We have

LXW (df, dg) = LX (W (df, dg)) − W (LXdf, dg) − W (df, LXdg) .

But LXh
f = {h, f} and LXh

df = dLXh
f = d {h, f}. Therefore

LXW (df, dg) = LX { f, g} − W (d {h, f} , dg) − W (df, d {h, g})

= {h, { f, g}} − { {h, f} , g} − { f, {h, g}} .

This last expression equals zero because of the Jacobi identity. �
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The fundamental example of a non-symplectic Poisson structure is the
Lie-Poisson structure on the dual g∗ of a Lie algebra g.

Definition 2.7. On the dual space g∗ of a Lie algebra g of a Lie group G,
there is a Poisson structure defined by

(2.12) { f, g} (m) = m([dmf, dmg])

for m ∈ g∗ and f, g ∈ C∞(g∗), called the canonical Lie-Poisson structure 1.

Remark 2.8. The canonical Lie-Poisson structure has the remarkable prop-
erty to be linear. A Poisson bracket on a vector space is said to be linear if
the bracket of two linear functionals is itself a linear functional.

Each element γ ∈
∧2

g∗ can be viewed as a Poisson bivector. Indeed,
[γ, γ] = 0 since γ is a constant tensor field. As such, γ defines a Poisson
structure on g∗. The condition of compatibility with the canonical Lie-
Poisson structure, [W0, γ] = 0, can be written as (see [30], Chapter 3)

(2.13) γ([u, v] , w) + γ([v,w] , u) + γ([w, u] , v) = 0, u, v, w ∈ g.

On a Lie group G, a right-invariant k-form ω is completely defined by

its value at the unit element e, and hence by an element of
∧k

g∗. In other
words, there is a natural isomorphism between the space of right-invariant k-

forms on G and
∧k

g∗. Moreover, since the exterior differential d commutes

with right translations, it induces a linear operator ∂ :
∧k

g∗ →
∧k+1

g∗

that satisfies ∂ ◦ ∂ = 0 and

(1) ∂γ = 0 for γ ∈
∧0

g∗ = R;

(2) ∂γ (u, v) = −γ([u, v]) for γ ∈
∧1

g∗ = g∗;

(3) ∂γ (u, v,w) = γ([u, v] , w) + γ([v,w] , u) + γ([w, u] , v) for γ ∈
∧2

g∗,

where u, v,w ∈ g, as one can check by direct computation (see [18], Chap-

ter 24). The kernel Zn(g) of ∂ :
∧n(g∗) →

∧n+1(g∗) is the space of n-

cocycles and the range Bn(g) of ∂ :
∧n−1(g∗) →

∧n(g∗) is the spaces of
n-coboundaries. Notice that Bn(g) ⊂ Zn(g). The quotient space Hn

CE(g) =
Zn(g)/Bn(g) is the n-th Lie algebra cohomology or Chevaley-Eilenberg co-

homology group of g. Notice that in general the Lie algebra cohomology is
different from the de Rham cohomology Hn

DR. For example, H1
DR(R) = R

but H1
CE(R) = 0.

Each 2-cocycle γ defines a Poisson structure on g∗ compatible with the
canonical one. Indeed (2.13) can be recast as ∂γ = 0. Notice that the
Hamiltonian vector field Xf of a function f ∈ C∞(g∗) computed with respect
to the Poisson structure defined by the 2-cocycle γ is

(2.14) Xf (m) = γ(dmf, ·).

Definition 2.9. A modified Lie-Poisson structure is a Poisson structure
on g∗ whose Poisson bivector is given by Wγ = W0 + γ, where W0 is the
canonical Poisson bivector and γ is a 2-cocycle.

1Here, dmf , the differential of a function f ∈ C∞(g∗) at m ∈ g∗ is to be understood
as an element of the Lie algebra g
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Example 2.10. A special case of modified Lie-Poisson structure is given by
a 2-cocycle γ which is a coboundary. If γ = ∂m0 for some m0 ∈ g∗, the
expression

{ f, g}γ (m) = m0([dmf, dmg])

looks like if the Lie-Poisson bracket had been ”frozen” at a point m0 ∈ g∗

and for this reason some authors call it a ”freezing” structure.

3. Modified Lie-Poisson structures on Vect(S1)

The group Diff(S1) of smooth orientation-preserving diffeomorphisms of
the circle S

1 is endowed with a smooth manifold structure based on the
Fréchet space C∞(S1). The composition and the inverse are both smooth
maps Diff(S1) × Diff(S1) → Diff(S1), respectively Diff(S1) → Diff(S1), so
that Diff(S1) is a Lie group [19]. Its Lie algebra Vect(S1) is the space of
smooth vector fields on S

1, which is isomorphic to the space C∞(S1) of
periodic functions. The Lie bracket on Vect(S1) is given by

[u, v] = uvx − uxv.

Since the topological dual of the Fréchet space Vect(S1) is too big, being iso-
morphic to the space of distributions on the circle, we restrict our attention
in the following to the regular dual Vect∗(S1), the subspace of distributions
defined by linear functionals of the form

u 7→

∫

S1

mudx

for some function m ∈ C∞(S1). The regular dual Vect∗(S1) is therefore
isomorphic to C∞(S1) by means of the L2 inner product 2

< u, v >=

∫

S1

uv dx.

Let f be a smooth real valued function on C∞(S1). Its Fréchet derivative
at m, df(m) is a linear functional on C∞(S1). We say that f is a regular

function if there exists a smooth map δf : C∞(S1) → C∞(S1) such that

df(m)M =

∫

S1

M · δf(m) dx, m,M ∈ C∞(S1).

That is, the Fréchet derivative df(m) belongs to the regular dual Vect∗(S1)
and the mapping m 7→ δf(m) is smooth. The map δf is a vector field on
C∞(S1), called the gradient of f for the L2-metric. In other words, a regular
function is a smooth function on C∞(S1) which has a smooth gradient.

Example 3.1. Typical examples of regular functions are nonlinear functionals

over the space C∞(S1), like

f(m) =

∫

S1

(

m2 + mm2
x

)

dx with δf(m) = 2m − m2
x − 2mmxx,

as well as linear functionals

f(m) =

∫

S1

um dx with δf(m) = u ∈ C∞(S1).

2In the sequel, we use the notation u, v, . . . for elements of Vect(S1) and m,n, . . . for
elements of Vect∗(S1) to distinguish them, although they all belong to C∞(S1).
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Notice that the smooth function fθ : C∞(S1) → R defined by fθ(m) = m(θ)
for some fixed θ ∈ S

1 is not regular as δfθ is the Dirac measure at θ.

Conversely, a smooth vector field X on Vect∗(S1) is called a gradient if
there exists a regular function f on Vect∗(S1) such that X(m) = δf(m) for
all m ∈ Vect∗(S1). Observe that if f is a smooth real valued function on
C∞(S1) then its second Fréchet derivative is symmetric [19], that is,

d2f(m)(M,N) = d2f(m)(N,M), m,M,N ∈ C∞(S1).

For a regular function, this property can be written as

(3.1)

∫

S1

(

d δf(m)M
)

N dx =

∫

S1

(

d δf(m)N
)

M dx,

for all m,M,N ∈ C∞(S1). Hence the linear operator d δf(m) is symmetric
for the L2-inner product on C∞(S1) for each m ∈ C∞(S1). We will resume
this fact in the following lemma.

Lemma 3.2. A necessary condition for a vector field X on C∞(S1) to be a

gradient is that its Fréchet derivative dX(m) is a symmetric linear operator.

To define a Poisson bracket on the space of regular functions on Vect∗(S1),
we consider a one-parameter family of linear operators J(m) and set

(3.2) { f, g} (m) =

∫

S1

δf(m)J(m) δg(m) dx.

The operators J(m) must satisfy certain conditions in order for (3.2) to be
a valid Poisson structure on Vect∗(S1).

Definition 3.3. A family of linear operators J(m) on Vect∗(S1) defines a
Poisson structure on Vect∗(S1) if (3.2) satisfies

(1) { f, g} is regular if f and g are regular,
(2) { g, f} = −{ f, g},
(3) { { f, g} , h} + { { g, h} , f} + { {h, f} , g} = 0.

Notice that the second condition above simply means that J(m) is a
skew-symmetric operator for each m.

Example 3.4. The canonical Lie-Poisson structure on Vect∗(S1) given by

{ f, g} (m) = m ([δf, δg]) =

∫

S1

δf(m) (mD + Dm) δg(m) dx

is represented by the one-parameter family of skew-symmetric operators

(3.3) J(m) = mD + Dm

where D = ∂x. It can be checked that all the three required properties are
satisfied. In particular, we have

δ { f, g} = d δf(Jδg) − d δg(Jδf) + δf δgx − δg δfx.

Definition 3.5. The Hamiltonian of a regular function f , for a Poisson
structure defined by J is defined as the vector field

Xf (m) = J(m) δf(m).
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Proposition 3.6. A necessary condition for a smooth vector field X on

Vect∗(S1) to be Hamiltonian with respect to the Poisson structure defined by

a constant linear operator K is the symmetry of the operator dX(m) ◦ K
for each m ∈ Vect∗(S1).

Proof. If X is Hamiltonian, we can find a regular function f such that

X(m) = Kδf(m).

Moreover, since K is a constant linear operator, we have

d
(

K δf
)

(m)M = K ◦
(

dδf(m)
)

M.

Therefore, we get

< dX(m) ◦ K M, N > =< K ◦ dδf(m) ◦ K M, N >

=< M, K ◦ dδf(m) ◦ K N >

=< M, dX(m) ◦ K N >,

since K is skew-symmetric and dδf(m) is symmetric. �

A 2-cocycle on Vect(S1) is a bilinear functional γ represented by a skew-
symmetric operator K : C∞(S1) → C∞(S1) such that

γ(u, v) =< u,Kv >=

∫

S1

uK v dx,

and satisfying the Jacobi identity

< [u, v] ,Kw > + < [v,w] ,Ku > + < [w, u] ,Kv >= 0.

If K is a differential operator we call γ a differential cocycle. Gelfand and
Fuks [16] observed that all differential 2-cocycles of Vect(S1) belong to the
one-dimensional cohomology class generated by [D3]. Moreover, each regular
2-coboundary is represented by the skew-symmetric operator

m0D + Dm0,

for some m0 ∈ C∞(S1). Therefore, each differential 2-cocycle of Vect(S1) is
represented by an operator of the form

(3.4) K = m0D + Dm0 + βD3

where m0 ∈ C∞(S1) and β ∈ R (see also [17]).
For k ≥ 0 and u, v ∈ Vect(S1) ≡ C∞(S1), let us now define the Hk

(Sobolev) inner product by

< u, v >k=

∫

S1

k
∑

i=0

(∂i
xu) (∂i

xv) dx =

∫

S1

Ak(u) v dx ,

where

(3.5) Ak = 1 −
d2

dx2
+ ... + (−1)k

d2k

dx2k

is a continuous linear isomorphism of C∞(S1). Note that Ak is a symmetric
operator for the L2 inner product since

∫

S1

Ak(u) v dx =

∫

S1

uAk(v) dx.
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The operator Ak gives rise to a Hamiltonian function on Vect∗(S1) given by

hk(m) =

∫

S1

1
2 m(A−1

k m) dx.

The corresponding Hamiltonian vector field Xk is given by

Xk(m) = (mD + Dm)(A−1
k m) = 2mux + umx,

if we let m = Aku.

Theorem 3.7. The Hamiltonian vector field Xk is bi-Hamiltonian relatively

to a modified Lie-Poisson structure if and only if k ∈ {0, 1}.

Proof. It is well known (see [28]) that X0 is bi-Hamiltonian with respect to
the operator D which represents a coboundary. It is also known that X1

is a bi-Hamiltonian vector field with respect to the cocycle represented by
the operator D(1 − D2) cf. [2, 11, 14]. Notice that this cocycle is not a
coboundary.

We will now show that there is no differential cocycle

K = m0D + Dm0 + βD3

for which Xk could be Hamiltonian unless k ∈ {0, 1}. We have

dXk(m) = 2uxI + uD + 2mDA−1
k + mxA

−1
k ,

and in particular, for m = 1,

dXk(1) = D + 2DA−1
k .

Letting

P (m) = dXk(m) ◦ K,

we obtain that

P (1) =
(

D + 2DA−1
k

)

◦
(

m0D + Dm0

)

+ βD4(1 + 2A−1
k ),

whereas

P (1)∗ =
(

m0D + Dm0

)

◦
(

D + 2DA−1
k

)

+ βD4(1 + 2A−1
k ).

Therefore, denoting m′
0 = ∂xm0, we have

P (1) − P (1)∗ =
(

m′
0D + Dm′

0

)

+ 2
(

A−1
k Dm0D − Dm0DA−1

k

)

+

+ 2
(

A−1
k D2m0 − m0D

2A−1
k

)

.

If this operator is zero, we must have in particular the relation

Ak

(

P (1) − P (1)∗
)

Ak(e
irx) = 0,

for all r ∈ Z. But, for r 6= ±1,

Ak(e
irx) = fk(r) eirx with fk(r) =

r2k+2 − 1

r2 − 1
,

and

Ak

(

P (1) − P (1)∗
)

Ak(e
irx)

is of the form eirx times a polynomial expression in r with highest order term
2im′

0(x) r4k+1. Therefore, a necessary condition for Xk to be Hamiltonian
relatively to the Poisson operator K defined by (3.4) is that m0 is a constant.
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Let α = 2m0 ∈ R. Then

P (m) = dXk(m) ◦ K = α
{

2uxD + uD2 + 2mD2A−1
k + mxDA−1

k

}

+

+ β
{

2uxD3 + uD4 + 2mD4A−1
k + mxD3A−1

k

}

because D and Ak commute. By virtue of Proposition 3.6, a necessary
condition for Xk to be Hamiltonian with respect to the cocycle represented
by K is that P (m) is symmetric. That is

(3.6) < P (m)M,N >=< M,P (m)N >,

for all m,M,N ∈ C∞(S1). Since this last expression is tri-linear in the vari-
ables m,M,N , the equality can be checked for complex periodic functions
m,M,N where the L2 inner product is extended naturally into a complex
bilinear functional. That is, the extension is not a hermitian product, we
just allow homogeneity with respect to the complex scalar field in both com-
ponents. Let m = Aku, u = exp(iax), M = exp(ibx) and N = exp(icx) with
a, b, c ∈ Z. We have

< P (m)M,N >=
[

(2ab3 + b4)β − (2ab + b2)α+

+
(

(ab3 + 2b4)β − (ab + 2b2)α
)fk(a)

fk(b)

]

∫

S1

ei(a+b+c)xdx ,

whereas

< M,P (m)N >=
[

(2ac3 + c4)β − (2ac + c2)α+

+
(

(ac3 + 2c4)β − (ac + 2c2)α
)fk(a)

fk(c)

]

∫

S1

ei(a+b+c)xdx .

For a = n, b = −2n and c = n, we obtain
(3.7)

< P (m)M,N >= (24n4β − 6n2α)
fk(n)

fk(2n)
, < M,P (m)N >= 6n4β − 6n2α.

The equality of the two expressions in (3.7) for all n ∈ N is ensured by means
of (3.6). For k = 1 this leads to the condition α + β = 0 and we recover the
second Poisson structure given by K = D − D3 for which X1 is known to
be Hamiltonian with Hamiltonian function

h̃1(m) =
1

2

∫

S1

(

(A−1
1 m)3 + (A−1

1 m) [(A−1
1 m)x]2

)

dx.

In the general case, if β 6= 0, the leading term with respect to n in the
first expression in (3.7) is (−48β 2−2k), whereas in the second it is (−12β).
Thus unless β = 0 we must have k = 1. On the other hand, if β = 0, from
(3.6)-(3.7) we infer that αfk(n) = αfk(2n) for all n ∈ N. Thus α = 0 unless
k = 0. For k = 0 we recover the Poisson structure given by K = D for
which X0 is Hamiltonian with Hamiltonian function

h̃0(m) =
1

2

∫

S1

m3 dx.

This completes the proof. �
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4. Conclusion

We showed that among all Hk Sobolev inner products on C∞(S1), only for
k ∈ {0, 1} is the associated vector field bi-Hamiltonian relatively to a mod-
ified Lie-Poisson structure. Endowing Diff(S1) with the H1 right-invariant
metric, the associated geodesic equation turns out to be the Camassa-Holm
equation [23] (see also [22])

ut + uux + ∂x(1 − ∂2
x)−1(u2 +

1

2
u2

x) = 0,

a model for shallow water waves (see [2] and the alternative derivations in
[5, 13, 15, 20]) that accommodates waves that exist indefinitely in time [3, 7]
as well as breaking waves [6, 8]. The bi-Hamiltonian structure is reflected
in the existence of infinitely many conserved integrals for the equation [2,
11, 14, 24] which are very useful in the qualitative analysis of its solutions.
Both global existence results and blow-up results can be obtained using
certain conservation laws [3, 7, 31], while the proof of stability of traveling
wave solutions relies on the specific form of some conserved quantities [4,
11, 12, 25]. On the other hand, the geodesic equation on Diff(S1) for the L2

right-invariant metric is the inviscid Burgers equation

ut + 3uux = 0.

This model of gas dynamics has been thoroughly studied (see [9] and ref-
erences therein). In contrast to the case of the H1 right-invariant metric
[10], the Riemannian exponential map is not a C1 local diffeomorphism in
the case of the L2 right-invariant metric [9]. This means that of the two bi-
Hamiltonian vector fields X0 and X1, the second generates a flow on Diff(S1)
with properties that parallel those of geodesic flows on finite-dimensional Lie
groups.
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