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Integrability of invariant metrics on the diffeomorphism group of the circle

Introduction

Often motions of inertial mechanical systems are described in Lagrangian variables by paths on a configuration space G that is a Lie group. The velocity phase space is the tangent bundle T G and the kinetic energy

K = 1 2 < v, v >
for v ∈ T G. For example, in continuum mechanics the state of a system at time t ≥ 0 can be specified by a diffeomorphism x → ϕ(t, x) of the ambient space, giving the configuration of the particles with respect to their initial positions at time t = 0. Here x is a label identifying a particle, taken to be the position of the particle at time t = 0 so that ϕ(0, x) = x. In this setting G would be the group of diffeomorphisms. The material (Lagrangian) velocity field is given by (t, x) → ϕ t (t, x) while the spatial (Eulerian) velocity field is u(t, y) = ϕ t (t, x), where y = ϕ(t, x), i.e. u = ϕ t • ϕ -1 . Observe that for any fixed time-independent diffeomorphism η, the spatial velocity field u = ϕ t • ϕ -1 along the path t → ϕ(t) remains unchanged if we replace this path by t → ϕ(t) • η. This right-invariance property suggests to extend the kinetic energy K by right translation to a right-invariant Lagrangian K : T G → R, obtaining a Lagrangian system on G. The length of a path {ϕ(t)} t∈ [a,b] in G is defined as

l(ϕ) = b a < ϕ t , ϕ t > 1/2 dt.
The Least Action Principle holds if the equation of motion is the geodesic equation. The set Diff(S 1 ) of all smooth orientation-preserving diffeomorphisms of the circle represents the configuration space for the spatially periodic motion of inertial one-dimensional mechanical systems. Diff(S 1 ) is an infinite dimensional Lie group, the group operation being composition [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF] and its Lie algebra Vect(S 1 ) being the space of all smooth vector fields on S 1

cf. [START_REF] Schmid | Infinite dimensional Hamiltonian systems[END_REF]. On the regular (or L 2 ) dual Vect * (S 1 ) of the Lie algebra Vect(S 1 ) there are some affine canonical Lie-Poisson structures, called modified Lie-Poisson structures, which are all compatible. On the other hand, we can consider on the regular dual Vect * (S 1 ) a countable family {X k } k≥0 of Hamiltonian vector fields defined by Sobolev inner products. The importance of these inner products lies in that each gives rise via right translation to a geodesic flow on Diff(S 1 ), the Riemannian exponential map of which defines a local chart for every k ≥ 1 cf. [START_REF] Constantin | Geodesic flow on the diffeomorphism group of the circle[END_REF] -a property which fails for the Lie group exponential map [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF][START_REF] Milnor | Remarks on infinite-dimensional Lie groups[END_REF] as well as for the Riemannian exponential map if k = 0 [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF]. In this paper we show that the Hamiltonian vector field X k is bi-Hamiltonian relatively to a modified Lie-Poisson structure if and only if k ∈ {0, 1}.

Preliminaries

In this section, we review some fundamental aspects of finite dimensional smooth Poisson manifolds. Definition 2.1. A symplectic manifold is a pair (M, ω), where M is a manifold and ω is a closed nondegenerate 2-form on M , that is dω = 0 and for each m ∈ M , ω m : T m M × T m M → R is a continuous bilinear skew-symmetric map such that the induced linear map ωv :

T m M → T * m M defined by ωv (w) = ω(v, w) is an isomorphism for all v ∈ T m M . Example 2.2.
In the general study of variational problems, extensive use is made of the canonical symplectic structure on the cotangent bundle T * M (representing the phase space) of the manifold M (representing the configuration space). This symplectic form is given in any local trivialization (q, p)

∈ U × R n ⊂ R n × R n of T * M by ω (q,p) (Q, P ), ( Q, P ) = P • Q -P • Q, (Q, P ), ( Q, P ) ∈ R n × R n .
Since a symplectic form ω is nondegenerate, it induces an isomorphism (2.1)

♭ : T M → T * M, X → X ♭ , defined via X ♭ (Y ) = ω(X, Y ). The symplectic gradient X f of a function f is defined by the relation X ♭ f = -df .
The inverse of the isomorphism ♭ defines a skew-symmetric bilinear form W on the cotangent space of M . This bilinear form W induces itself a bilinear mapping on C ∞ (M ), the space of smooth functions f : M → R, given by The observation that a bracket like (2.3) could be introduced on C ∞ (M ) for a smooth manifold M , without the use of a symplectic form, leads to the general notion of a Poisson structure [START_REF] Lichnerowicz | Les variétés de Poisson et leurs algèbres de Lie associées[END_REF]. Definition 2.4. A Poisson structure on a C ∞ manifold M is a skewsymmetric bilinear mapping (f, g) → { f, g} on the space C ∞ (M ), which satisfies the Jacobi identity

(2.2) { f, g} = W (df, dg) = ω(X f , X g ), f, g ∈ C ∞ (M ),
(2.4) { { f, g} , h} + { { g, h} , f } + { { h, f } , g} = 0,
as well as the Leibnitz identity

(2.5) { f, gh} = { f, g} h + g { f, h} .
When the Poisson structure is induced by a symplectic structure ω, the Leibnitz identity is a direct consequence of (2.2), whereas the Jacobi identity (2.4) corresponds to the condition dω = 0 satisfied by the symplectic form ω. In the general case, the fact that the mapping g → { f, g} satisfies (2.5) means that it is a derivation of C ∞ (M ). Each derivation on C ∞ (M ) for a C ∞ manifold (even in the infinite dimensional case cf. [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF]) corresponds to a smooth vector field, that is, to each f ∈ C ∞ (M ) is associated a vector field X f : M → T M , called the Hamiltonian vector field of f , such that

(2.6) { f, g} = X f • g = dg.X f ,
where dg.X f = L X f g is the Lie derivative of g along X f . Conversely, a vector field X : M → T M on a Poisson manifold M is said to be Hamiltonian if there exists a function f such that X = X f . Recall [START_REF] Schmid | Infinite dimensional Hamiltonian systems[END_REF] that for a smooth vector field X :

M → T M , the Lie derivative operator L X : C ∞ (M ) → C ∞ (M ) acts on smooth functions g : M → R with differentials dg : M → T * M by (L X g)(m) = dg(m) • X(m) for m ∈ M .
The space Vect(M ) of smooth vector fields on M and the space of operators {L X : X ∈ Vect(M )} are isomorphic as real vector spaces, the linear isomorphism between them being X → L X [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF]. Therefore the elements of Vect(M ) can be regarded as operators on C ∞ (M ) via X

• f = L X f , forming a Lie algebra if endowed with the bracket [X, Y ] = L X • L Y -L Y • L X . Notice that (2.4) yields (2.7) [X f , X g ] = X { f,g} .
From (2.7) it follows (see [START_REF] Schmid | Infinite dimensional Hamiltonian systems[END_REF]) that g ∈ C ∞ (M ) is a constant of motion for X f if and only if { f, g} = 0. Jost [START_REF] Jost | Poisson brackets[END_REF] pointed out that, just like a derivation on C ∞ (M ) corresponds to a vector field, a bilinear bracket { f, g} satisfying the Leibnitz rule (2.5) corresponds to a skew-symmetric bilinear form on T M . That is, there exists a

C ∞ tensor field W ∈ Γ( 2 T M ), called the Poisson bivector of (M, { •, •}), such that { f, g} = W (df, dg).
Using the unique local extension of the Lie bracket of vector fields to skewsymmetric multivector fields, called the Schouten-Nijenhuis bracket [START_REF] Vaisman | Lectures on the geometry of Poisson manifolds[END_REF], the condition (2.4) becomes

(2.8) [W, W ] = 0.
Conversely, any W ∈ Γ( 2 T M ) that satisfies (2.8) induces a Poisson structure on M via (2.2). The only condition that must be satisfied by W is (2.8) since (2.5) holds automatically. A Poisson structure on M is therefore equivalent to a bivector W that satisfies (2.8). This induces a homomorphism (2.9) # :

T * M → T M, α → α # , such that β(α # ) = W (β, α) for every β ∈ T * M . Notice that for f ∈ C ∞ (M )
we have (df ) # = X f . If the homomorphism (2.9) is an isomorphism we call the Poisson structure nondegenerate. A nondegenerate Poisson structure on M is equivalent to a symplectic structure where the symplectic form ω is just #W , the closedness condition corresponding to the Jacobi identity [START_REF] Vaisman | Lectures on the geometry of Poisson manifolds[END_REF].

Remark 2.5. The notion of a Poisson manifold is more general than that of a symplectic manifold. For example, in the symplectic case the Poisson bracket satisfies the additional property that This is equivalent to say that for any λ, µ ∈ R,

{ f, g} = 0 for all g ∈ C ∞ (M ) only if f ∈ C ∞ (M )
{ f, g} λ, µ = λ { f, g} 1 + µ { f, g} 2
is also a Poisson bracket. On a manifold M equipped with two compatible Poisson structures, a vector field X is said to be (formally) integrable or bi-Hamiltonian if it is Hamiltonian for both structures. On a symplectic manifold (M, ω), a necessary condition for a vector field X to be Hamiltonian is that L X ω = 0 [START_REF] Schmid | Infinite dimensional Hamiltonian systems[END_REF]. A similar criterion exists for a Poisson manifold (M, W ). It is instructive for later considerations to present a short proof of this known result. Proposition 2.6. On a Poisson manifold (M, W ) a necessary condition for a vector field X to be Hamiltonian is

(2.11) L X W = 0. Proof. If X is Hamiltonian, there is a function h ∈ C ∞ (M ) such that X = X h .
Let f and g be arbitrary smooth functions on M . We have

L X W (df, dg) = L X (W (df, dg)) -W (L X df, dg) -W (df, L X dg) . But L X h f = { h, f } and L X h df = dL X h f = d { h, f }. Therefore L X W (df, dg) = L X { f, g} -W (d { h, f } , dg) -W (df, d { h, g}) = { h, { f, g}} -{ { h, f } , g} -{ f, { h, g}} .
This last expression equals zero because of the Jacobi identity.

The fundamental example of a non-symplectic Poisson structure is the Lie-Poisson structure on the dual g * of a Lie algebra g. Definition 2.7. On the dual space g * of a Lie algebra g of a Lie group G, there is a Poisson structure defined by

(2.12) { f, g} (m) = m([d m f, d m g])
for m ∈ g * and f, g ∈ C ∞ (g * ), called the canonical Lie-Poisson structure 1 .

Remark 2.8. The canonical Lie-Poisson structure has the remarkable property to be linear. A Poisson bracket on a vector space is said to be linear if the bracket of two linear functionals is itself a linear functional.

Each element γ ∈ 2 g * can be viewed as a Poisson bivector. Indeed, [γ, γ] = 0 since γ is a constant tensor field. As such, γ defines a Poisson structure on g * . The condition of compatibility with the canonical Lie-Poisson structure, [W 0 , γ] = 0, can be written as (see [START_REF] Vaisman | Lectures on the geometry of Poisson manifolds[END_REF], Chapter 3)

(2.13) γ([u, v] , w) + γ([v, w] , u) + γ([w, u] , v) = 0, u, v, w ∈ g.
On a Lie group G, a right-invariant k-form ω is completely defined by its value at the unit element e, and hence by an element of k g * . In other words, there is a natural isomorphism between the space of right-invariant kforms on G and k g * . Moreover, since the exterior differential d commutes with right translations, it induces a linear operator ∂ :

k g * → k+1 g * that satisfies ∂ • ∂ = 0 and (1) ∂γ = 0 for γ ∈ 0 g * = R; (2) ∂γ (u, v) = -γ([u, v]) for γ ∈ 1 g * = g * ; (3) ∂γ (u, v, w) = γ([u, v] , w) + γ([v, w] , u) + γ([w, u] , v) for γ ∈ 2 g * ,
where u, v, w ∈ g, as one can check by direct computation (see [START_REF] Guillemin | Symplectic techniques in physics[END_REF], Chapter 24). The kernel Z n (g) of ∂ : n (g * ) → n+1 (g * ) is the space of ncocycles and the range B n (g) of ∂ : n-1 (g * ) → n (g * ) is the spaces of n-coboundaries. Notice that B n (g) ⊂ Z n (g). The quotient space H n CE (g) = Z n (g)/B n (g) is the n-th Lie algebra cohomology or Chevaley-Eilenberg cohomology group of g. Notice that in general the Lie algebra cohomology is different from the de Rham cohomology H n DR . For example,

H 1 DR (R) = R but H 1 CE (R) = 0. Each 2-
cocycle γ defines a Poisson structure on g * compatible with the canonical one. Indeed (2.13) can be recast as ∂γ = 0. Notice that the Hamiltonian vector field X f of a function f ∈ C ∞ (g * ) computed with respect to the Poisson structure defined by the 2-cocycle γ is

(2.14) X f (m) = γ(d m f, •).
Definition 2.9. A modified Lie-Poisson structure is a Poisson structure on g * whose Poisson bivector is given by W γ = W 0 + γ, where W 0 is the canonical Poisson bivector and γ is a 2-cocycle. 1 Here, dmf , the differential of a function f ∈ C ∞ (g * ) at m ∈ g * is to be understood as an element of the Lie algebra g Example 2.10. A special case of modified Lie-Poisson structure is given by a 2-cocycle γ which is a coboundary. If γ = ∂m 0 for some m 0 ∈ g * , the expression { f, g} γ (m) = m 0 ([d m f, d m g]) looks like if the Lie-Poisson bracket had been "frozen" at a point m 0 ∈ g * and for this reason some authors call it a "freezing" structure.

Modified Lie-Poisson structures on Vect(S 1 )

The group Diff(S 1 ) of smooth orientation-preserving diffeomorphisms of the circle S 1 is endowed with a smooth manifold structure based on the Fréchet space C ∞ (S 1 ). The composition and the inverse are both smooth maps Diff(S 1 ) × Diff(S 1 ) → Diff(S 1 ), respectively Diff(S 1 ) → Diff(S 1 ), so that Diff(S 1 ) is a Lie group [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]. Its Lie algebra Vect(S 1 ) is the space of smooth vector fields on S 1 , which is isomorphic to the space C ∞ (S 1 ) of periodic functions. The Lie bracket on Vect(S 1 ) is given by

[u, v] = uv x -u x v.
Since the topological dual of the Fréchet space Vect(S 1 ) is too big, being isomorphic to the space of distributions on the circle, we restrict our attention in the following to the regular dual Vect * (S 1 ), the subspace of distributions defined by linear functionals of the form u → Let f be a smooth real valued function on C ∞ (S 1 ). Its Fréchet derivative at m, df (m) is a linear functional on C ∞ (S 1 ). We say that f is a regular function if there exists a smooth map δf : C

∞ (S 1 ) → C ∞ (S 1 ) such that df (m) M = S 1 M • δf (m) dx, m, M ∈ C ∞ (S 1 ).
That is, the Fréchet derivative df (m) belongs to the regular dual Vect * (S 1 ) and the mapping m → δf (m) is smooth. The map δf is a vector field on C ∞ (S 1 ), called the gradient of f for the L 2 -metric. In other words, a regular function is a smooth function on C ∞ (S 1 ) which has a smooth gradient. 

f (m) = S 1 m 2 + mm 2 x dx with δf (m) = 2m -m 2 x -2mm xx ,
as well as linear functionals

f (m) = S 1 um dx with δf (m) = u ∈ C ∞ (S 1
). 2 In the sequel, we use the notation u, v, . . . for elements of Vect(S 1 ) and m, n, . . . for elements of Vect * (S 1 ) to distinguish them, although they all belong to C ∞ (S 1 ).

Notice that the smooth function f θ : C ∞ (S 1 ) → R defined by f θ (m) = m(θ) for some fixed θ ∈ S 1 is not regular as δf θ is the Dirac measure at θ.

Conversely, a smooth vector field X on Vect * (S 1 ) is called a gradient if there exists a regular function f on Vect * (S 1 ) such that X(m) = δf (m) for all m ∈ Vect * (S 1 ). Observe that if f is a smooth real valued function on C ∞ (S 1 ) then its second Fréchet derivative is symmetric [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF], that is,

d 2 f (m)(M, N ) = d 2 f (m)(N, M ), m, M, N ∈ C ∞ (S 1 ).
For a regular function, this property can be written as

(3.1) S 1 d δf (m)M N dx = S 1 d δf (m)N M dx, for all m, M, N ∈ C ∞ (S 1
). Hence the linear operator d δf (m) is symmetric for the L 2 -inner product on C ∞ (S 1 ) for each m ∈ C ∞ (S 1 ). We will resume this fact in the following lemma.

Lemma 3.2. A necessary condition for a vector field X on C ∞ (S 1 ) to be a gradient is that its Fréchet derivative dX(m) is a symmetric linear operator.

To define a Poisson bracket on the space of regular functions on Vect * (S 1 ), we consider a one-parameter family of linear operators J(m) and set

(3.2) { f, g} (m) = S 1 δf (m) J(m) δg(m) dx.
The operators J(m) must satisfy certain conditions in order for (3.2) to be a valid Poisson structure on Vect * (S 1 ). 

) { g, f } = -{ f, g}, 2 
{ { f, g} , h} + { { g, h} , f } + { { h, f } , g} = 0. (3) 
Notice that the second condition above simply means that J(m) is a skew-symmetric operator for each m. 

{ f, g} (m) = m ([δf, δg]) = S 1 δf (m) (mD + Dm) δg(m) dx
is represented by the one-parameter family of skew-symmetric operators

(3.3) J(m) = mD + Dm where D = ∂ x .
It can be checked that all the three required properties are satisfied. In particular, we have

δ { f, g} = d δf (Jδg) -d δg(Jδf ) + δf δg x -δg δf x .
Definition 3.5. The Hamiltonian of a regular function f , for a Poisson structure defined by J is defined as the vector field

X f (m) = J(m) δf (m).
Proposition 3.6. A necessary condition for a smooth vector field X on Vect * (S 1 ) to be Hamiltonian with respect to the Poisson structure defined by a constant linear operator K is the symmetry of the operator dX(m) • K for each m ∈ Vect * (S 1 ).

Proof. If X is Hamiltonian, we can find a regular function f such that

X(m) = Kδf (m).
Moreover, since K is a constant linear operator, we have

d K δf (m) M = K • dδf (m) M.
Therefore, we get

< dX(m) • K M, N > =< K • dδf (m) • K M, N > =< M, K • dδf (m) • K N > =< M, dX(m) • K N >,
since K is skew-symmetric and dδf (m) is symmetric.

A 2-cocycle on Vect(S 1 ) is a bilinear functional γ represented by a skewsymmetric operator

K : C ∞ 1 ) → C ∞ (S 1 ) such that γ(u, v) =< u, Kv >= S 1 u K v dx,
and satisfying the Jacobi identity

< [u, v] , Kw > + < [v, w] , Ku > + < [w, u] , Kv >= 0.
If K is a differential operator we call γ a differential cocycle. Gelfand and Fuks [START_REF] Gelfand | Cohomologies of the Lie algebra of vector fields on the circle[END_REF] observed that all differential 2-cocycles of Vect(S 1 ) belong to the one-dimensional cohomology class generated by [D 3 ]. Moreover, each regular 2-coboundary is represented by the skew-symmetric operator

m 0 D + Dm 0 ,
for some m 0 ∈ C ∞ (S 1 ). Therefore, each differential 2-cocycle of Vect(S 1 ) is represented by an operator of the form

(3.4) K = m 0 D + Dm 0 + βD 3
where m 0 ∈ C ∞ (S 1 ) and β ∈ R (see also [START_REF] Guieu | L'algèbre et le groupe de Virasoro[END_REF]).

For k ≥ 0 and u, v ∈ Vect(S 1 ) ≡ C ∞ (S 1 ), let us now define the H k (Sobolev) inner product by

< u, v > k = S 1 k i=0 (∂ i x u) (∂ i x v) dx = S 1 A k (u) v dx , where (3.5) A k = 1 - d 2 dx 2 + ... + (-1) k d 2k
dx 2k is a continuous linear isomorphism of C ∞ (S 1 ). Note that A k is a symmetric operator for the L 2 inner product since

S 1 A k (u) v dx = S 1 u A k (v) dx.
The operator A k gives rise to a Hamiltonian function on Vect * (S 1 ) given by

h k (m) = S 1 1 2 m(A -1 k m) dx.
The corresponding Hamiltonian vector field X k is given by

X k (m) = (mD + Dm)(A -1 k m) = 2mu x + um x , if we let m = A k u.
Theorem 3.7. The Hamiltonian vector field X k is bi-Hamiltonian relatively to a modified Lie-Poisson if and only if k ∈ {0, 1}.

Proof. It is well known (see [START_REF] Morrison | Hamiltonian description of the ideal fluid[END_REF]) that X 0 is bi-Hamiltonian with respect to the operator D which represents a coboundary. It is also known that X 1 is a bi-Hamiltonian vector field with respect to the cocycle represented by the operator D(1 -D 2 ) cf. [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Constantin | A shallow water equation on the circle[END_REF][START_REF] Fokas | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF]. Notice that this cocycle is not a coboundary.

We will now show that there is no differential cocycle

K = m 0 D + Dm 0 + βD 3
for which X k could be Hamiltonian unless k ∈ {0, 1}. We have

dX k (m) = 2u x I + uD + 2mDA -1 k + m x A -1
k , and in particular, for m = 1,

dX k (1) = D + 2DA -1 k . Letting P (m) = dX k (m) • K,
we obtain that

P (1) = D + 2DA -1 k • m 0 D + Dm 0 + βD 4 (1 + 2A -1 k ), whereas P (1) * = m 0 D + Dm 0 • D + 2DA -1 k + βD 4 (1 + 2A -1 k ). Therefore, denoting m ′ 0 = ∂ x m 0 , we have P (1) -P (1) * = m ′ 0 D + Dm ′ 0 + 2 A -1 k Dm 0 D -Dm 0 DA -1 k + + 2 A -1 k D 2 m 0 -m 0 D 2 A -1 k .
If this operator is zero, we must have in particular the relation

A k P (1) -P (1) * A k (e irx ) = 0, for all r ∈ Z. But, for r = ±1, A k (e irx ) = f k (r) e irx with f k (r) = r 2k+2 -1 r 2 -1 , and 
A k P (1) -P (1) * A k (e irx )
is of the form e irx times a polynomial expression in r with highest order term 2i m ′ 0 (x) r 4k+1 . Therefore, a necessary condition for X k to be Hamiltonian relatively to the Poisson operator K defined by (3.4) 

is that m 0 is a constant. Let α = 2m 0 ∈ R. Then P (m) = dX k (m) • K = α 2u x D + uD 2 + 2mD 2 A -1 k + m x DA -1 k + + β 2u x D 3 + uD 4 + 2mD 4 A -1 k + m x D 3 A -1
k because D and A k commute. By virtue of Proposition 3.6, a necessary condition for k to be Hamiltonian with respect to the cocycle represented by K is that P (m) is symmetric. That is

(3.6) < P (m)M, N >=< M, P (m)N >,
for all m, M, N ∈ C ∞ (S 1 ). Since this last expression is tri-linear in the variables m, M, N , the equality can be checked for complex periodic functions m, M, N where the L 2 inner product is extended naturally into a complex bilinear functional. That is, the extension is not a hermitian product, we just allow homogeneity with respect to the complex scalar field in both components. Let m = A k u, u = exp(iax), M = exp(ibx) and N = exp(icx) with a, b, c ∈ Z. We have

< P (m)M, N >= (2ab 3 + b 4 )β -(2ab + b 2 )α+ + (ab 3 + 2b 4 )β -(ab + 2b 2 )α f k (a) f k (b) S 1 e i(a+b+c)x dx , whereas < M, P (m)N >= (2ac 3 + c 4 )β -(2ac + c 2 )α+ + (ac 3 + 2c 4 )β -(ac + 2c 2 )α f k (a) f k (c) S 1 e i(a+b+c)x dx .
For a = n, b = -2n and c = n, we obtain (3.7)

< P (m)M, N >= (24n 4 β -6n 2 α) f k (n) f k (2n) , < M, P (m)N >= 6n 4 β -6n 2 α.
The equality of the two expressions in (3.7) for all n ∈ N is ensured by means of (3.6). For k = 1 this leads to the condition α + β = 0 and we recover the second Poisson structure given by K = D -D 3 for which X 1 is known to be Hamiltonian with Hamiltonian function

h1 (m) = 1 2 S 1 (A -1 1 m) 3 + (A -1 1 m) [(A -1 1 m) x ] 2 dx.
In the general case, if β = 0, the leading term with respect to n in the first expression in (3.7) is (-48 β 2 -2k ), whereas in the second it is (-12 β). This completes the proof.

Conclusion

We showed that among all H k Sobolev inner products on C ∞ (S 1 ), only for k ∈ {0, 1} is the associated vector field bi-Hamiltonian relatively to a modified Lie-Poisson structure. Endowing Diff(S 1 ) with the H 1 right-invariant metric, the associated geodesic equation turns out to be the Camassa-Holm equation [START_REF] Kouranbaeva | The Camassa-Holm equation as a geodesic flow on the diffeomorphism group[END_REF] (see also [START_REF] Kolev | Lie groups and mechanics: an introduction[END_REF])

u t + uu x + ∂ x (1 -∂ 2 x ) -1 (u 2 + 1 2 u 2 
x ) = 0, a model for shallow water waves (see [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] and the alternative derivations in [START_REF] Constantin | A Lagrangian approximation to the water-wave problem[END_REF][START_REF] Fokas | On a class of physically important integrable equations[END_REF][START_REF] Fokas | Asymptotic integrability of water waves[END_REF][START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF]) that accommodates waves that exist indefinitely in time [START_REF] Constantin | On the Cauchy problem for the periodic Camassa-Holm equation[END_REF][START_REF] Constantin | Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation[END_REF] as well as breaking waves [START_REF] Constantin | Wave breaking for nonlinear nonlocal shallow water equations[END_REF][START_REF] Constantin | On the blow-up rate and the blow-up set of breaking waves for a shallow water equation[END_REF]. The bi-Hamiltonian structure is reflected in the existence of infinitely many conserved integrals for the equation [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Constantin | A shallow water equation on the circle[END_REF][START_REF] Fokas | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF][START_REF] Lenells | The correspondence between KdV and Camassa-Holm[END_REF] which are very useful in the qualitative analysis of its solutions. Both global existence results and blow-up results can be obtained using certain conservation laws [START_REF] Constantin | On the Cauchy problem for the periodic Camassa-Holm equation[END_REF][START_REF] Constantin | Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation[END_REF][START_REF] Wahlén | A blow-up result for the periodic Camassa-Holm equation[END_REF], while the proof of stability of traveling wave solutions relies on the specific form of some conserved quantities [START_REF] Constantin | On the inverse spectral problem for the Camassa-Holm equation[END_REF][START_REF] Constantin | A shallow water equation on the circle[END_REF][START_REF] Constantin | Stability of peakons[END_REF][START_REF] Lenells | Stability of periodic peakons[END_REF]. On the other hand, the geodesic equation on Diff(S 1 ) for the L 2 right-invariant metric is the inviscid Burgers equation

u t + 3uu x = 0.
This model of gas dynamics has been thoroughly studied (see [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF] and references therein). In contrast to the case of the H 1 right-invariant metric [START_REF] Constantin | Geodesic flow on the diffeomorphism group of the circle[END_REF], the Riemannian exponential map is not a C 1 local diffeomorphism in the case of the L 2 right-invariant metric [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF]. This means that of the two bi-Hamiltonian vector fields X 0 and X 1 , the second generates a flow on Diff(S 1 ) with properties that parallel those of geodesic flows on finite-dimensional Lie groups.

2 <

 2 m ∈ C ∞ (S 1 ). The regular dual Vect * (S 1 ) is therefore isomorphic to C ∞ (S 1 ) by means of the L 2 inner product

Example 3 . 1 .

 31 Typical examples of regular functions are nonlinear functionals over the space C ∞ (S 1 ), like

Example 3 . 4 .

 34 The canonical Lie-Poisson structure on Vect * (S 1 ) given by

  Thus unless β = 0 we must have k = 1. On the other hand, if β = 0, from (3.6)-(3.7) we infer that αf k (n) = αf k (2n) for all n ∈ N. Thus α = 0 unless k = 0. For k = 0 we recover the Poisson structure given by K = D for which X 0 is Hamiltonian with Hamiltonian function h0 (m) = 1 2 S 1 m 3 dx.

  and called the Poisson bracket of the functions f and g.

	Example 2.3. In Example 2.2, the Poisson bracket is given by
	(2.3)	{ f, g} =	n i=1	∂f ∂q i	∂g ∂p i	-	∂f ∂p i	∂g ∂q i	.
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