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On the codimension-one foliation theorem of W. Thurston

FRANÇOIS LAUDENBACH

Abstract. We are dealing with an n-manifold equipped with a Γn-structure in the sense
of Haefliger with a transverse geometric structure. Here we mainly consider Γn-structures
transversally codimension-one foliated. We prove a regularization theorem which implies the
celebrated theorem of W. Thurston.

1. Introduction

The mentioned theorem [9] states that every (n − 1)-plane field on an n-dimensional compact
manifold Mn is homotopic to an integrable plane field, that is to a plane field which is tangent
to a foliation. Both proofs presented by Thurston consist of creating holes in M , foliating
the complement of the holes and finally filling the holes. In dimension 3 the holes are solid
tori and they are filled by Reeb components. One of the proofs brings triangulations to play
an important part. But, a posteriori, a fine enough triangulation cannot detect the existence
of Reeb components, even when they are forced to exist (according for instance to Novikov’s
theorem when Mn = S3). The aim of this paper is to produce a proof where no holes are
created, working more in the spirit of the h-principle of Gromov [4] (see 4.3).

There is an equivalent statement involving the concept of Γ-structure in the sense of A. Haefliger
[5]. A Γ-structure is something like a singular foliation; a precise definition will be recalled later.
At the beginning I was interested in Γ-structure equipped with some extra transverse structure
in the same way as a foliation may have a transverse geometric structure which is invariant by
the holonomy. In [8] W. Thurston proved a general theorem of deformation of Γ-structures to
regular Γ-structures. A natural question is to discuss such a theorem for Γ-structures equipped
with a transverse geometry. This is not true in general, for instance for transverse symplectic
structures. It should depend on the flexibility of the considered geometry. Here we limit
ourselves to prove the following theorems for which precise definitions will be introduced in the
next section.

Theorem A. Every Γn-structure ξ on Mn which is transversally codimension-one foliated and
whose normal bundle νξ is isomorphic to the tangent bundle τM is homotopic to a regular one.

Theorem B. (Thurston [9]) Every Γ1-structure ξ on Mn whose normal bundle νξ injects into
the tangent bundle τM is homotopic to a regular Γ1-structure, that is to a codimension-one
foliation H1 of M . The normal bundle of H1 is isomorphic to νξ as a sub-bundle of τM .
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As it is explained in section 5, Theorem B is an easy consequence of Theorem A.
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2. Γk-structures

Definition 2.1. A Γk-structure ξ on a manifold Mn is given by the following data:

(1) a (non-linear) R
k-bundle π : E → M provided with a zero section Z;

(2) a germ of codimension k foliation L of E along Z, transversal to the fibers of π.

The normal bundle of L restricted to Z will be denoted by νξ. It is isomorphic to (E, π, M).
As a matter of fact such a data is equivalent to a Chech cocycle on M with values in the
groupoid of germs of diffeomorphisms of R

k and for this reason the definition extends to all
CW-complexes.

Definition 2.2. A Γk-structure is said regular when the foliation L is transversal to Z.

In that case, Z (or M) is foliated by L ∩ Z. Conversely, if F is a foliation of codimension k
on M , it is induced by a regular Γk-structure whose underlying fiber bundle is νF , the usual
normal bundle of F . Indeed the exponential map νF → M is transversal to F along the zero
section and L := exp−1(F) meets the required conditions.

Definition 2.3. A homotopy between two Γk-structures ξ0 and ξ1 is a Γk-structure on M×[ 0, 1 ]
which induces ξi on M × {i} for i = 0, 1. It is not required that the zero section be Z × [0, 1].

Though it is not said in Thurston’s work (but it is used), the transversality to the fibers can
be relaxed from the definition of a homotopy, according to the following proposition.

Proposition 2.4. Let ξi = (E, Z,Li), i = 0, 1, be two Γk-structures on M with the same normal
bundle. If there exists a germ of codimension-k foliation L along Z × [ 0, 1 ] in E × [ 0, 1 ] which
is transversal to E × {0, 1} and induces Li on E × {i}, i = 0, 1, then ξ0 and ξ1 are homotopic
up to isomorphism.

Proof. The normal bundle νL over Z × [ 0, 1 ] ∼= M × [ 0, 1 ] is isomorphic to E × [ 0, 1 ]. An
exponential map associated with some Riemannian metric µ on the manifold E × [ 0, 1 ] yields
a codimension-k foliation L′ on the total space of νL near Z × [ 0, 1 ], transversal to the fibers.
If µ makes Li orthogonal to the fibers of E × {i}, i = 0, 1, then L′ induces Li there. �

Definition 2.5. A Γk-structure ξ = (E, Z,L) has a transverse geometric structure G if each
transversal T to L is endowed with a geometric structure GT invariant by holonomy: if T and
T ′ are two transversal discs and if ϕ : T → T ′ is some holonomy diffeomorphism then ϕ has to
be an isomorphism from GT to GT ′.
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The corresponding definition of homotopy is obvious: the foliation contributing to the homotopy
has to carry a transverse geometric structure G inducing the ones which are given at t = 0 and
t = 1. When ξ is homotopic to a regular structure, then Z (and hence M) carries a regular
foliation with a transverse G-structure; in particular when k = n = dim M , M itself carries the
geometric structure G.

Examples 2.6. 1) A Γn-structure transversally codimension-k foliated (k < n) is given by the
following data:

(1) A R
n-bundle π : E → M (dimE = 2n), with a zero section Z;

(2) A germ of codimension-n foliation L on E along Z;
(3) A germ of codimension-k foliation G on E along Z containing L in the sense that each

leaf of L is contained in a leaf of G.

2) If n = 2k + 1, a Γn-structure transversally contact is given by a Γn-structure and a germ
of hyperplane field along Z locally defined as the kernel of a 1-form α which is L-basic and
satisfies α ∧ (dα)k 6= 0.

3) If n = 2k, a Γn-structure transversally symplectic is given by a germ of 2-form ω which is
L-basic, closed and satisfies ωk 6= 0.

The definitions from examples 2 and 3 above have been introduced by D. McDuff [6]. Of course
when the normal bundle is trivial these three types of structure exist. Are they homotopic to
a regular one? Certainly not in the symplectic case. For instance S3 × S3 is parallelizable and
hence it has a Γ6-structure ξ transversally symplectic. If ξ would be homotopic to a regular one,
then S3 × S3 would carry a symplectic structure. It is not the case since H2(S3 × S3, R) = 0.
The case of Γn-structures transversally contact will be considered elsewhere. Here we only
consider the case of Γn-structures transversally codimension-one foliated.

3. Preparation for proving theorem A

3.1. We consider a Γn-structure ξ on Mn which is transversally codimension-one foliated.
The structure ξ = (E, Z,L,H) is made of a codimension-n foliation L on E near Z and a
codimension-one foliation H containing L. The goal is to construct a pair of foliations L ⊂ H,
on E × [0, 1] near Z × [0, 1], respectively of codimension n and 1, extending (L,H) and such
that L be transversal to Z × {1}. Hence H will be also transversal to Z × {1}.

As in Thurston’s paper [8], we have a codimension-n plane field L, defined near Z × [0, 1] in
E × [0, 1] which is tangent to L along E ×{0} and transversal to Z ×{1}. This is precisely the
place where the assumption on νξ is used. Such a field is for instance yielded by the following
formula

L(x, t) = R
∂

∂t
⊕ [t∆(x) + (1 − t)L(x)] .

In this formula L(x) stands for the tangent plane to L at point x and ∆(x) is the “diago-
nal” of TxE ∼= TxM ⊕ TxM ; the barycentric combination refers to the affine structure on the
set of n-planes in TxE which are transversal to the vertical tangent plane. Without loss of
generality, we may assume that L and H are already defined near Z × {0} in E × [0, 1], L
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being tangent to L there; of course it requires a slight change in the above formula. Clearly
L is contained in a codimension-one distribution H which is tangent to H where it makes sense.

3.2. Product triangulation, crystalline subdivision. One starts with a product triangulation θ
of a neighborhood of Z × [0, 1] in E × [0, 1] having Z × [0, 1] as a subcomplex. A product
triangulation means that, for each k-simplex σ of E × {0}, σ × [0, 1] is triangulated in a
crystalline way in the sense of Thurston - Whitney ([11], p. 365, and [8], p. 227). Before any
subdivision such a triangulation only depends on a triangulation of E with a numbering of its
vertices; it is figured below. Each (k+1)-simplex in σ× [0, 1] is obtained by “raising” one vertex
of σ, then another one, ...; the slogan is: at each step the “lowest” vertex (for the lexographic
order on {0, 1}×{numbering}) is raised first.

σ

[0, 1]

σ

21 2 1

3

Figure 1 – Here σ is 1- or 2-dimensional.

The first crystalline subdivision consists of adding vertices at the middle of each edge; each new
face lying in σ×[0, 1] is parallel to some face from the initial product triangulation. This process
can be iterated as many times as we want in order to produce an arbitrarily fine subdivision.
All these triangulations will be called product triangulations.

3.3. Different kind of simplices. A k-simplex of (Z × [0, 1]) is of second kind if it belongs to(
Z [k−1] × [0, 1]

)
where Z [k−1] denotes the (k − 1)-skeleton of Z. It is of first kind if it projects

onto a k-simplex of Z × {0}.

By definition of a crystalline subdivision, if σ0 is a k-simplex in Z × {0}, each (k + 1)-simplex
σ in σ0 × [0, 1] has exactly two k-faces of first kind; the one which lies the nearest to σ0 will be
called the base face and the other one will be called the free face. Moreover all the second kind
k-faces of σ have a common edge which projects onto a point; it is the unique second kind edge
of σ. Finally each 1st kind k-simplex is the face of exactly two 2nd kind (k + 1)-simplices.

3.4. Good position. The triangulation θ of Z × [0, 1] is said in good position with respect to
(H, L) when the following conditions hold for each (n + 1)-simplex σ and each point x ∈ σ:

(1) H(x) is transversal to σ and to any k-face σ′ ⊂ σ (k ≥ 1) when x ∈ σ′.
(2) L(x) is transversal to σ and to any n-face σ′ ⊂ σ up to parallel transport associated

with the affine structure of σ.

Good position is preserved when (H, L) is changed by a C0-small deformation.

If θ is fine enough it can be jiggled to θjig (it is the word used by Thurston meaning a slight
move of the vertices) so that θjig is in good position with respect to (H, L). After jiggling,
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Z × [0, 1] is no longer a subcomplex. The jiggling can be performed keeping Z × {1} invariant
since L is already transversal to it. In contrary Z × {0} is not preserved. The jiggling lemma
is proved in [8] for one plane distribution. The proof can be easily adapted to a pair made of
a distribution and a sub-distribution.

Let Z := (Z × [0, 1])jig denote the product subcomplex from the jiggled triangulation, which is
based on Z × {1}. Its own triangulation is a product triangulation but its product structure
is no longer compatible with the product E × [0, 1], due to the jiggling. The subcomplex

Z0 := (Z × {0})jig is required to coincide with Z ∩E×{0}. We can think of Z as a PL-section
of E × [0, 1] over M × [0, 1]. But as a section it can be smoothed yielding a zero section for a
homotopy of Γn-structure.

A simplex in Z is said of first kind (resp. second kind) when it comes from a simplex of the
same kind in Z × [0, 1] through the jiggling.

3.5. Security. Let (H, L) be defined on some open neighborhood U of Z. If Z is in good
position with respect to (H, L), there exists ε > 0 such that each move of the vertices of less
than ε, extended by linearity to each simplex, keeps Z inside of U and in good position with
respect to (H, L). In particular the edges of an ε-displaced Z remain transverse to H . For use
in the sequel it is convenient to make (H, L) constant in each ε-ball about the vertices of Z.

3.6. Integrability of L.
The trace of L on each (n + 1)-simplex is 1-dimensional, hence integrable. Then, using a
thickening of the triangulation (cf. [8] section 6), it is shown that after a C0-small perturbation
L becomes integrable near Z. The corresponding foliation is denoted by L and is defined on
some neighborhood U of Z. We observe that any change of the trace of L on Z whose support
avoids the thickening of the n-skeleton extends as a change of L over the same U ; one just
crosses the new trace by the fibers of the thickening. Nevertheless there is no reason that
the modified L be transversal to the fibers of E × [0, 1] → M × [0, 1]. It is the reason why
proposition 2.4 is useful.

3.7. Profile. Let σ be a (n + 1)-simplex in Z. The profile of σ is the quotient space of σ by
the 1-foliation L ∩ σ endowed with the image of the n-faces of σ. Let Π : σ → Π(σ) denote
the projection onto the quotient. Due to the definition of good position (3.4), the figure of the
profile is very simple: Π(σ) is an n-ball with corners; its boundary is the image of the apparent
contour C of Π, which is made of some (n − 1)-faces of σ. Indeed each leaf of L ∩ σ being
nowhere parallel to any n-face of σ makes at each point an angle with it which is positively
bounded from below. Hence each leaf which enters σ at a point of some n-face must get out
of σ through another face. The apparent contour has the following characterization: a leaf of
L ∩ σ which meets C consists of one point only.

The profile has n+2 vertices which all lie on Π(C) but at most one. Moreover C separates the
boundary of σ in two n-discs Σ+ and Σ−, and each 1-leaf from the foliation connects a point
of Σ+ to a point of Σ−. We have the following possibilities:
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a) In the case when C contains n + 1 vertices, one hemisphere, let us say Σ−, consists of
exactly one n-face; then Σ+ contains the last vertex v in its interior and all n-faces from
Σ+ have v as a common vertex.

b) In the case when C contains n + 2 vertices, Σ± is made of all n-faces containing some
k±-face τ±, where k+ + k− = n; τ+ and τ− lie opposite each other in σ. Moreover the
open face int τ± lies in the open hemisphere int Σ±.

In case b), here is the combinatoric structure of the apparent contour: C is the join ∂τ+ ∗ ∂τ−.
In particular, except when τ+ or τ− is 1-dimensional, each edge of σ is contained in the contour.

3.8. Weak good position. The triangulation θ of Z × [0, 1] is said in a weak good position with
respect to (H, L) if condition (2) in 3.4 is replaced with the following:

(2’) For every (n + 1)-simplex σ, L is transversal to σ and to its faces and, moreover, each
1-dimensional leaf of L ∩ σ traverses σ from boundary to boundary.

With that definition, σ has still a profile, with the same structure as above, though a leaf of
L ∩ σ might be somewhere parallel to one face.

3.9. An ordering. Another consequence of good position is that, for any simplex σ, there is a
total ordering on σ[0] (the set of its vertices) up to reversing. Indeed if a co-orientation of H is
chosen along σ, its edges are oriented allowing us to write a < b when an edge starts from a and
ends in b. This relation is transitive for the following reason: if a < b, b < c and c < a, then the
trace of H on the triangle [a, b, c] must have a singularity contradicting the transversality of H
to the 2-simplex [a, b, c]. Thus the vertices are ordered as the number of edges ending there.
A vertex a ∈ σ is called a min (resp. max) vertex of σ if all edges of σ passing through a
start from it (resp. point to it). Clearly each simplex contains one min and one max vertex;
they are respectively denoted vmin(σ) and vmax(σ). Moreover if σ is (n + 1)-dimensional both
distinguished vertices lie on the apparent contour. When H is integrable, as it is along Z0, good
position implies that H traces a foliation by (k − 1)-discs on each k-simplex (Reeb Stability
Theorem [7], [3]).

3.10. Embedding into an affine space. In the sequel it will be useful to embed E into R
N , the

fibers of E being mapped onto affine subspaces, and think of H (resp. L) as a codimension 1
(resp. codimension n) distribution in R

N × [0, 1] which are both obtained by summing with
the normal bundle to E. Let π : V → Z × [0, 1] be a tubular neighborhood of Z × [0, 1] in
R

N × [0, 1], whose fibers Vz are open sets in affines subspaces; we may arrange V ∩ Ez ⊂ Vz.
We think of Z as a Lipschitz graph, that is the image of a Lipschitz section s of the fibration
π; s is smooth on each simplex. If the product triangulation is fine enough, one can replace
Z by its secant approximation (same vertices and recilinearsimplices); it is still a graph noted
Z. The new Z1 := Z ∩ R

N × {1} is no longer smooth. But, according to Whitehead [10], Z
has a C0-approximation which is a smooth graph. For the arguments of genericity which will
be used in the next section we take N very large, for instance larger than the total number of
simplices in Z.
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4. proof of theorem A

We start in the setting of 3.10. The codimension-one foliation H is given near Z0 := Z ∩R
N ×

{0}. We will extend it along Z so that it contains L. Hence, roughly speaking, the transversally
foliated Γn-structure induced by (H,L) on a smoothing of Z1 will be regular and theorem A
will be proved. We refer to 4.12 for a more precise explanation.

We emphasize the role played by the codimension-n foliation: if we only have a codimension-
one foliation transversal to each simplex of Z, then it has no reason to be transversal to a
smoothing of Z1. But transversality of L to a smoothing of Z1 implies the same for H.

The construction of H will need in general to change L into a new codimension-n foliation L ′

inside the (n + 1)-simplexes of Z. But we insist to keep L = L ′ near the n-th skeleton, in
particular near Z1, so that the above conclusion remains true. As L ′ could be not transversal
to the fibers of E × [0, 1] we apply proposition 2.4 as it is said in 3.6.
We are going to construct H step by step along Z by taking the simplices in a convenient order
which is defined below. Actually we shall explain later that the simplices of Z will be not
themselves foliated but there is a pleated version of them that will be foliated.

4.1. Second kind skeleta. For 1 ≤ k ≤ n + 1, Z
[k,2]

will denote the union of the 2nd kind

k-simplices in Z. We will successively foliate Z
[k,2]

, k = 1, 2, . . . , n + 1. When we speak
of foliating a domain K we think of foliating a neighborhood of K with a codimension-one

foliation, containing L when k ≤ n. When we foliate Z
[k+1,2]

we do not change the foliation

near Z
[k,2]

∪ Z0. Therefore if σ1 and σ2 are two k-simplices in Z, foliating
(
σ1 × [0, 1]

)jig
and(

σ2 × [0, 1]
)jig

can be performed independently. On the other hand foliating
(
σ1 × [0, 1]

)jig
is

performed step by step for each of its (k + 1)-simplices in the obvious order: if we are going to

foliate a new (k + 1)-simplex from
(
σ1 × [0, 1]

)jig
its base is assumed to be already foliated.

At the beginning H is given along Z0 ∪ Z
[0]

. We extend it to Z
[1,2]

and then to Z
[2,2]

. The

distribution H has an integrable trace on Z
[2,2]

. So, after a C0-small deformation of H keeping

L fixed, it becomes integrable near Z0 ∪ Z
[2,2]

.

4.2. About foliating a 3-simplex, the main difficulty. Let us now consider a 2nd kind 3-simplex
σ = [a, a∗, b, c] whose base is [a, b, c] and free face is τ := [a∗, b, c]. The base is assumed to be
foliated. Let ∂ ′σ denote the union of its 2-faces except τ ; it is foliated. We have a∗ > a for
some local co-orientation of H . According to 3.9 there are two distinguished vertices vmin and
vmax in σ; certainly a 6= vmax. We have different cases according to vmin = a or not.

Case 1: vmin 6= a. The free face contains vmin and vmax. In that case there is an isotopy
ρt : σ → σ fixing a neighborhood of ∂ ′σ and pushing τ into a foliated neighborhood of ∂ ′σ
transversally to the foliation. Pulling H back by ρ1 yields the trace on σ of an extended H
which is non-singular and transversal to the faces of σ. In order to foliate a neighborhood of σ
we just have to insist that the enlarged foliation should contain L.

Case 2: vmin = a. In that case H traces on ∂ ′σ a foliation which is made of circles just above
a because this region lies in a foliation chart, but which, higher, may look spiraling. In case
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2 we assume that there are no spiraling leaves traced on ∂ ′σ. Let us say b is the min vertex
of the free face τ (the other cases work alike). The foliation traced on ∂ ′σ is made of circles
crossing [a, b] and intervals whose end points lie in the frontier of τ . Near a, σ is foliated by
2-discs because we are inside a foliation chart. As the circle leaves on ∂σ are all isotopic, by an
isotopy extension we get a foliation by 2-discs of some domain A ⊂ σ which contains all circle
leaves of ∂ ′σ. Let Â ⊂ σ be the union A ∪ ∂ ′σ. There is an isotopy (ρt) of σ into itself, fixing

Â and pushing τ into a foliated neighborhood of Â transversally to the foliation. Pulling back
the foliation by ρ1 yields the wanted foliation of σ. The germ of H along σ is chosen so that it
contains L.

Case 3: We now consider the case when spiraling leaves do exist on ∂ ′σ. In that case, the Reeb
stability theorem prevents us from any extension of H over σ transversally to its faces. We
then appeal the pleating process which will be defined below (4.3) and, instead of foliating σ
we do it for the pleated simplex σpl associated to σ.

4.3. Pleating and foliating a 2nd kind 3-simplex. The following construction is very much in
the spirit of the zig-zag construction which appears in the h-principle of Gromov [4], as it is
revisited by Eliashberg and Mishachev [2].
Let σ := [x1, x2, x3, x4] be a 3-simplex of Z and τ = [x2, x3, x4]. The numbering and the
co-orientation of H are so that the sequence of vertices is increasing: x1 < x2 < x3 < x4.
Assume that all 2-faces through x1 are foliated; spiraling leaves may exist around x1 making
an obstruction for foliating σ. We are going to cancel the obstruction by the pleating process.
We first define the pleated simplex σ̃pl which is isomorphic to a double stellar subdivision of σ.
We add a pair of new vertices {v, w}; v ∈ τ defines the first stellar subdivision and w ∈ [v, x3, x4]
defines the second one. Actually v and w are chosen in the ε-ball about x3 (see 3.5) and a small
jiggling is performed on them meeting some generic conditions which are precised below. We
define τ̃pl as τ subdivided by {v, w} and jiggled, and we set σ̃pl = x1 ∗ τ̃pl (Figure 2), where ∗
stands for the affine join operation. Our pleated 3-simplex associated to σ will be the union

σpl := σ̃pl ∪ x2 ∗
(
[x3, x4, w] ∪ [v, x3, w] ∪ [v, x4, w]

)
.

This polyhedron is also isomorphic to another double stellar subdivision of σ: take v in the
interior of [x1, x2, x3, x4] for the first stellar subdivision and w ∈ [v, x3, x4] for the second one.
Observe that σpl is not starshaped at x3. The boundary of σpl is unpleated as it coincides with
∂σ. The jiggling conditions are the following:

1) σpl is embedded in R
N × [0, 1];

2) σpl takes place in the open set U of R
N × [0, 1] where L and H are defined; in particular

the edges of σpl are oriented (up to reversing);
3) σpl is in good position with respect to (H,L).

These conditions are generic for {v, w}. Notice that, when n = 3, σpl might not embed into
the quotient modulo L; more precisely, if U(σ) denotes the ε-neighborhood of σ in R

N × [0, 1],
only each of its 3-simplices embeds into U(σ)/

L ∩ U(σ)
. But, in any dimension, this quotient

is convenient for proving the genericity of property 3).
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x4

x2

x1

x3

x2

x3

x4

w

v

v

w

(σ̃pl on the left and the closure of σpl \ σ̃pl on the right)
Figure 2

For the co-orientation of H making x1 < x2 < x3 < x4 we require the following condition:

4) w < x3 < v < x4.

Here it is understood that the order of two points is induced by the co-orientation of H on the
edge joining them. Observe that by taking {v0, w0} ⊂ σ it is easy to fulfill x3 < w0 < v0 < x4

and impossible to fulfill 4). Recall the tubular neighborhood π : V → Z× [0, 1]; Z is a Lipschitz
graph, that is the image of a Lipschitz section of π. If we allow w to move in the (N − n)-
dimensional fiber Vπ(w0) one can cross the affine hyperplane x3 + H(x3) and get x3 > w; indeed
both affine subspaces are mutually transverse. As we shall prove below, condition 4) can be
fulfilled at the same time as:

(P3) σpl is a Lipschitz graph over π(σpl).

Proof. Let α(w0) = w0 ∗ β be a simplex in σ subdivided by {v0, w0} ∈ σ; we set α(w) := w ∗ β,
where w runs inside of Vπ(w0). Assume first that x3 is a vertex of β. Hence the angle
A(α(w), Vπ(w0)) is bounded below by a constant depending on the angle A([x3, w0], β) only.
Therefore, if the crystalline subdivision θ is fine enough, the fibers Vz are almost parallel when
z ∈ π(σ) and the angle A(α(w), Vz) is positive for every z ∈ π(σ). The same is true (and
easier) when x3 /∈ β; in that case α(w) rotates very few as long as w0 is very close to x3. In
the same way one can check that the distribution of the Vz’s is transverse to σpl in the sense
of Whitehead, making sure that π|σpl is bilipschitz (or regular Lipschitz, as Whitehead says in
[10] Section 2). In particular that projection is injective and σpl is a Lipschitz graph. �

Doing the same for all the 2nd kind 3-simplices we get a pleated copy if the skeleton Z
[3,2]

which
is a Lipschitz graph in the tube V .

About foliating. We are now going to extend H, first over σ̃pl and then over σpl. We observe
that we are free to foliate the 2-simplices through [x1, v] and [x1, w] as we want, as long as

the orientation of the edges is preserved, because these 2-simplices are not contained in Z
[2,2]

.
For instance we keep the trace of H as a foliation of [x1, v, x3]; we then choose the foliation of
[x1, x2, v] so that there are no spiraling leaves on ∂[x1, x2, x3, v]. Hence we can apply 4.2 case
2 and foliate [x1, x2, x3, v]. Similarly we choose the foliation of [x1, v, x4] so that there are no
spiraling leaves on ∂[x1, x2, v, x4] and then we are able to foliate [x1, x2, v, x4].
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Concerning foliating of [x1, x3, v, x4], stellarly subdivided by w and jiggled, we argue as follows.
The possibility of foliating this polyhedron transversally to its faces does not depend on the
position of w as long as the order of its vertices is preserved. For instance we can look at
the case where w is very close to x1 and x1 < w. In that case the considered polyhedron is
foliated by the germ of H previously constructed. Observe that the tetrahedra [v, x2, x3, x4]
and [v, w, x3, x4] do not belong to σ̃pl (nor σpl) and remain unfoliated.

In order to extend H over σpl, we observe the following. The edge [x2, w] is oriented by
H like its neighbor [x2, x3]; we foliate [x2, v, w] in a way compatible with this orientation.
We choose this foliation so that no spiraling leaves appear on ∂[x2, x3, v, w] whose triangles
[v, w, x3] and [v, x2, x3] are already foliated. That condition uniquely determines the holonomy
map h : [v, w] → [v, x2[ on [v, z], where z belongs to the leaf going through x3 in [v, w, x3]. So
we can foliate [x2, x3, v, w] according to case 2 of 4.2 and we are still free to choose h on the
interval [z, w].

The mentioned freedom allows us to fulfill condition (∗) below which will be used later on:

(∗) The star of x3 in ∂[x3, x1, x2, w] is foliated without spiraling leaves.

Indeed, h|[z, w] allows us to choose the holonomy k : [x3, w] → [x3, x2[ in the foliated triangle
[x2, x3, w] exactly as we want (h|[z, w] and k are in 1-1 correspondence).

The three faces of [x2, v, w, x4] through v are now foliated and the edge orientation allows us
to foliate this 3-simplex according to case 1 of 4.2. Finally, in the 3-simplex [x2, x3, w, x4] the
faces through w are now foliated and, once more, the edge orientation allows us to foliate it
together with its free face [x2, x3, x4]. Once σpl is foliated, the germ of H along σpl is chosen so
that it contains L; such a germification can be easily performed since L is transversal to each
simplex of σpl.

Conclusion. After this construction we keep in mind the following important facts.

1) ∂σpl = ∂σ; in particular the free face is unpleated.
2) The foliation H is transversal to all faces in σpl and orientates the edges as H does.

3) Iterating the construction, we can pleat and foliate the skeleton Z
[3,2]

. In particular
the 2-skeleton of Z1 is foliated without any pleating, as it is made of free faces from

3-simplices in Z
[3,2]

.

4.4. Higher dimension. For codimension-one foliating the k-simplices of Z, k ≥ 4, we need the
following proposition whose proof mainly relies on the Reeb stability theorem.
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Proposition.

1) Let σ = a ∗ τ be a k-simplex, k ≥ 4. Assume that a germ of codimension-one foliation F is
given along the partial boundary ∂ ′σ = a ∗ ∂τ transversally to each ℓ-face, 1 ≤ ℓ ≤ k− 1. Then
F extends over σ transversally to τ .
2) When k = 4 and a = vmin(σ) for some local co-orientation of F , we have the following
reinforced statement. Let δ1, δ2, δ3 denote the three 2-faces of τ through b := vmin(τ) and let δ0

be its fourth face. Assume that F is only given along a ∗ (δ0 ∪ δ1 ∪ δ2) transversally to its faces.
Then F extends over a ∗ δ3 and thus over σ transversally to its faces.

Proof. Let us only consider the case k = 4. Each foliated 3-face γ is foliated by 2-discs. Indeed
it is true near vmin(γ) and Reeb stability theorem forces it globally.

Case 1: vertex a is not a distinguished vertex in σ. In that case ∂ ′σ has a foliated smoothing
without critical points in its interior. Hence we can argue exactly as in case 1 from 4.2.

Case 2: a = vmin(σ). Each leaf of F ∩ (a ∗ δi), i = 0, 1, 2, is a 2-disc. Then each leaf of F
crossing ]a, b[ is a 2-disc whose boundary is a circle in a ∗ ∂δ3. Therefore F ∩ ∂(a ∗ δ3) has no
spiraling leaves and F extends over a ∗ δ3. After this extension, all leaves of F crossing ]a, b[
are 2-spheres. When they are close to a they bound 3-disc leaves in the germ of F ∩ σ near a.
By an extension of isotopy, one extends F to some domain A ⊂ σ foliated by 3-discs, such that
each 2-sphere leaf in F ∩ ∂ σ is the boundary of a 3-disc leaf in A. One easily checks that the
leaves of F ∩ (∂ ′σ \A), except the singular ones through b and vmax(σ), are 2-discs. Then one
extends F to σ by the already used pulling back process. Namely there is an isotopy ρt : σ → σ,
t ∈ [0, 1], which is stationary near Â := A ∪ ∂ ′σ and pushes τ into a foliated neighborhood of

Â transversally to the codimension-one foliation. Point 2) is now proved. �

In the next corollary we are going to use the above-stated proposition for foliating a pleated
4-simplex obtained by slightly moving one vertex from a pleated 3-simplex: xi 7→ xd

i ; xd
i is

called a displaced vertex from xi. We use the notations of 4.3 and look at σpl = [x1, x2, x3, x4]
pl,

edge oriented as on figure 2, and pleated by {v, w} near x3. In next corollary we choose a
generic xd

3. Let Σ := xd
3 ∗ σpl be the (embedded) affine join; it is a pleated 4-simplex whose

3-faces through xd
3 are not pleated (since the 2-faces of ∂σpl are not) and it is a small simplex

as the edge [x3, x
d
3] is short.

Corollary 4.5. By taking xd
3 < w with respect to the (locally) co-oriented hyperplane field H,

then we can foliate the polyhedron Σ transversally to all its simplices.

Proof. We choose foliations of the triangles through [x3, x
d
3] in a way compatible with the

edge orientation. One checks that 3-simplices of Σ through [x3, x
d
3] are relevant to case 1 of 4.2,

except σ1 := [x1, x2, x3, x
d
3], σ2 := [x1, w, x3, x

d
3] and σ3 := [x2, w, x3, x

d
3]. We choose the foliation

of [x1, x3, x
d
3] arbitrarily and those of [x2, x3, x

d
3] and [w, x3, x

d
3] so that no spiraling leaves appear

on the boundaries of σ1 and σ2. In σ3, all faces through x3 are now foliated. But we recall
condition (∗) from 4.3 and see that 2) of proposition 4.4 applies to ∆ := [x1, x2, w, x3, x

d
3].

Indeed, condition (∗) allows one to foliate [x1, x2, w, x3] (though it is not a simplex from σpl),
w is the max vertex of the face [x1, x2, x

d
3, w] which is opposite to x3 in ∆ and w belongs to σ3.

As a consequence there are no spiraling leaves on ∂σ3. Hence σi, i = 1, 2, 3, can be foliated.
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If we look at the 4-simplices of Σ through [x3, x
d
3], all their 3-faces through x3 are now foliated.

Hence, by applying proposition 4.4 1), they can be foliated.
One checks that the edge orientation allows us to extend the foliation to the 3-simplices of Σ
through [w, xd

3] (case 1 of 4.2)1 and then to the 4-simplices through [w, xd
3]. Finally, concerning

the 3-simplices through [v, xd
3] not previously considered, they are already foliated as free faces

of foliated 4-simplices. Hence all 4-simplices through [v, xd
3] can be foliated. �

4.6. Pleating a 2nd kind 4-simplex. We now explain how to pleat and foliate a 2nd kind 4-
simplex σ = a ∗ τ , whose free face is τ . The base face is assumed to be unpleated and foliated;
the three 2nd kind 3-faces are pleated (when necessary) and foliated. The main property of
this pleating and foliating process of σ is to keep the free face τ = [a∗, b, c, d] unpleated. As a

consequence the process can be repeated for foliating the skeleton Z
[4,2]

, up to pleating.
The pleating of σ is chosen generic with respect to L so that each simplex in the pleated simplex
σpl will be transversal to L. Here are details for the construction of σpl; we refer to the next
subsection for foliating.

The boundary of σ has a pleated version, noted (∂σ)pl, which is a piecewise linear 3-sphere; it
is made of the base and free face (unpleated) and the possibly pleated 2nd kind 3-faces. We
will associate a pleated simplex σpl with (∂σ)pl as boundary. As a polyhedron σpl will consist
of the union of a displaced 4-simplex σd and some small 4-simplices (small meaning that there
is at least one edge in a ball of radius ε). The vertices of σd which are not vertices of σ (they
are really displaced) will be the interior pleating points of σpl.
Let x be a vertex of τ and τ1, τ2, τ3 be the other 3-faces of σ through x; we suppose that at
least one of them has been pleated near x. Let τpl

i denote the pleated 3-simplex associated to

τi with the convention τpl
i = τi when no pleating is necessary for foliating it; say that τpl

i is
pleated near x for 1 ≤ i ≤ ℓ (check ℓ ≤ 2). We choose some generic point xd in the ε-ball

about x. We define Xi := xd ∗ τpl
i when 1 ≤ i ≤ ℓ, and Xi := xd ∗ star(x, τ pl

i ) when i ≥ ℓ + 1.
Set also X := xd ∗ τ . Generically the union of X and the Xi’s is an embedded 4-ball ∆(x). Its
boundary consists of two hemispheres Σ±, with Σ− ⊂ S := (∂σ)pl. By replacing Σ− with Σ+

we change S into a new pleated 3-sphere S ′ which passes through xd instead of x. Moreover S ′

has no pleating points near xd.
Suppose that y is another vertex of ∂σ having pleating points nearby; at most one such new
vertex exists. Starting from S ′ we repeat the previous construction about y instead of x. It
yields a third sphere S ′′ with only five vertices and no pleating points. The convex hull of S ′′ is
the wanted displaced simplex σd. Vertex a belongs to σd (no pleating points near a in (∂σ)pl);
the opposite face τd, called the free face, differs from τ by the displacements x 7→ xd and y 7→ yd,
which generate small 4-simplices X and Y . We recover τ from τd by applying the inverse dis-
placements which are taken in the inverse order. Finally σpl is the union σd ∪ ∆(x) ∪ ∆(y).
The genericity of xd, yd, viewed in the quotient U(σ)/

L
(notations of 4.3), guaranties that σpl

is embedded in U(σ) transversally to L; only each of its simplices embeds in the quotient.

For foliating we want that xd and yd meet some inequalities; here the edge orientation is chosen
so that a < a∗, where [a, a∗] is the 2nd kind edge of σ. Let {vi, wi} be the pair of pleating

1For instance [x1, x2, w, xd
3
] does not meet this property, but it is not a simplex of Σ.
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points of τi near x, (same notations as in 4.3). We ask for xd < wi for every 1 ≤ i ≤ ℓ, and
similar inequalities for y. As for the pleated 3-simplices, we can fulfill these conditions together
with the following:

(P4) σpl is a Lipschitz graph in the tube V over its π-projection into Z × [0, 1].

The proof of this statement is similar to the one for property (P3). We also get a global pleating

of the skeleton Z
[4,2]

which is a Lipschitz graph in the tube V .

4.7. Foliating a 2nd kind pleated 4-simplex. We use notations of the preceding subsection.
We also denote ∆′(x) (resp. ∆′(y)) the closure of ∆(x) \ X (resp. ∆(y) \ Y ). We succes-
sively foliate ∆′(x), ∆′(y), σd, Y and X. Suppose both first foliatings are done. Then the
closure of ∂σd \ τd is foliated; proposition 4.4 1) applies for foliating σd. Now all 3-faces of Y
but one are foliated and the same proposition applies; finally the same works for X. So we are
reduced to foliate ∆′(x) which is a cone whose top vertex is xd and base, noted B(x), is foliated.

All edges in ∆′(x) ending at xd are oriented; the long ones are oriented as their neighbors ending
at x and the short ones are oriented by the inequalities xd < wi < x < vi when 1 ≤ i ≤ ℓ.
Foliating X1 directly follows from corollary 4.5. If ℓ = 2, what we assume in the sequel, it is
also done for X2. But we have to check that the algorithm given in 4.5 allows one to foliate
both simultaneously. It is true as it starts in foliating some triangles [z, x, xd] submitted to
some no-holonomy condition. If such a triangle lies in X1 ∩ X2, the 3-simplex [a, z, x, xd] lies
also in that intersection and the no-holonomy condition is the same for foliating both parts.

We have now to extend H to X3 = xd ∗ star(x, τ pl
3 ) where τpl

3 is unpleated near x. Its common
faces with X1 and X2 are already foliated; they are unpleated and contain a; we denote them
[x, xd, a, x1] and [x, xd, a, x2]. The link L of x in τpl

3 is [a, x1, x2] possibly pleated at {v3, w3}.
Anyway L collapses onto L0 := [x1, a] ∪ [a, x2]. We have first a sequence of collapsings of
L through 2-simplices onto a maximal tree L1 followed by L1 ց L0. One can use the inverse
sequence for foliating. If [z1, z2] is an edge in L1 and [x, xd, z1] is foliated, foliating [x, xd]∗ [z1, z2]
requires to foliate [x, xd, z1] with some no-holonomy condition which can easily fulfilled. If δ
is a 2-simplex in L with two edges in L1 then the 4-simplex [x, xd] ∗ δ meets the condition of
proposition 4.4 which allows us to foliate it. Repeating this argument we can finish to foliate
∆′(x). When ℓ = 1 the argument is very similar.
Recalling that L is tranversal to σpl, when n ≥ 4, L ∩ σpl is a foliation by points. Hence, once
H ∩ σpl is constructed, it is easy to deduce a germ of H along σpl containing L. When n = 3,
we refer to 4.10.

4.8. Pleating and foliating the 2nd kind k-simplices, 5 ≤ k ≤ n + 1. One can essentially repeat

the same process for pleating and codimension-one foliating the k-skeleton Z
[k,2]

, successively
for k = 5, . . . , n + 1. We do it explicitly for k = 5. Actually there is very little change with
respect to k = 4. Let σ = a ∗ τ be a 2nd kind 5-simplex with free face τ . From 4.6 we have
a pleated boundary S := (∂σ)pl made of the unpleated base and free face, and the possibly
pleated 2nd kind 4-faces. Let x be a vertex of τ and τ1, . . . , τ4 be the four other 4-faces of σ
through x. We suppose that one of them is pleated near x; let τ1, . . . , τℓ be the faces which are
pleated near x and τℓ+1, . . . , τ4 the other ones; we have ℓ ≤ 3. For 1 ≤ i ≤ ℓ, xi denotes the
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interior pleating point of τi near x. We choose a generic point xd in the ε-ball about x. We
define Xi := xd ∗ star(xi, τ

pl
i ) when 1 ≤ i ≤ ℓ, and Xi := xd ∗ star(x, τ pl

i ) when ℓ + 1 ≤ i ≤ 4
(notice the difference with k = 4); we also set X = xd ∗ τ . Generically, the union of X and
the Xi’s is an embedded 5-ball ∆(x). Its boundary has two hemispheres Σ± with Σ− ⊂ S.
By replacing Σ− with Σ+ we change S into S ′ which is a pleated 4-sphere passing through xd

instead of x; S ′ has no pleating points near xd. Starting from this new sphere we repeat the
above construction with another vertex y of σ having pleating points nearby. By repeating
this process we get a 4-sphere with six vertices and no pleating points. Its convex hull is the
wanted displaced 5-simplex σd. Vertex a belongs to σd and the opposite face τd is called its free
face. It differs from τ by the displacements x 7→ xd, y 7→ yd, . . . So we recover τ from τd by
applying the inverse displacements which are taken in the inverse order. They generate small
5-simplices; X is the last of them. Finally σpl is the union of σd and all small 5-simplices in
∆(x), ∆(y), . . . Generically it is a piecewise linear 5-ball which is embedded transversally to L.
The interior pleating points are xd, yd, . . . (at most 3).

For foliating it is useful that the interior pleating points of σpl meet some inequalities. Those
related to xd are: xd < xi for 1 ≤ i ≤ ℓ; in particular xd meets the ordering condition of
corollary 4.5 with respect to every 3-face of σ which is pleated near x. At the same time it is
possible to fulfill condition (P5) similar to (P4), and recursively until (P(n+1)). The last one

yields a global pleating of Z
[n+1,2]

= Z, noted Z
pl
, which is a Lipschitz graph in the tube V .

4.9. Codimension-one foliating the pleated 2nd kind 5-simplices . As for k = 4, the only dif-
ficulty arises for foliating ∆′(x), the closure of ∆(x) \ X. It is a cone with top vertex xd; its
base is B(x) := ∆′(x)∩S. There is a slight difficulty with the fact that B(x) is not starshaped,
due to the pleating of the 3-simplices with a pair of points. So we foliate in two steps: firstly
xd ∗ star(x, B(x)) and secondly the rest of the Xi’s, 1 ≤ i ≤ ℓ.

First step. Let L be the link of x in star(x, B(x)); we have xd ∗ star(x, B(x)) = [x, xd] ∗ L.
That link is a piecewise linear 3-disc since it is the link of x in S with one open simplex
removed (opposite to x in τ). More precisely, if τ = x ∗ γ, we have L = (a ∗ ∂γ)pl. The effect
of pleating can be deduced from the rule of pleating. For instance, with the notation of 4.3,
link(x3, [x1, x2, x3, x4]

pl) is isomorphic as a polyhedron to [x1, x2, x4] doubly stellar subdivided,
firstly by w and secondly by v in the interior of [x1, x2, w]. The link of x in a pleated 4-simplex

like τpl
i is obtained from the preceding rule and a cone operation with xi when 1 ≤ i ≤ ℓ; for

i > ℓ, we have link(x, τ pl
i ) = link(x, τd

i ) where τd
i is the displaced associated 4-simplex (see

4.6). One can check the following facts:

1) There is a maximal tree L1 in L rooted at a with branches with one edge only (as in
the unpleated case).

2) Each edge not in L1 belongs to a triangle whose other sides are in L1. Let L2 denote
the union of these triangles.

We are now ready for foliating [x, xd] ∗L. We foliate the triangle [a, x, xd] in a way compatible
with the edge orientation. We now look at [a, z1, z2] ∗ [x, xd] where z1 and z2 belong to L1. Are
there spiraling leaves on ∂[z1, z2, x, xd]? Certainly not, except when z1 < x and z2 < x. But in
that case proposition 4.4 applies and answers no. As a consequence we can foliate [x, xd] ∗ L2,
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in particular [x, xd] ∗ L
[1]
1 (where exponent [1] stands for the 1-skeleton). Foliating is continued

by taking the simplices of L, firstly the 2-dimensional and secondly the 3-dimensional. If α is
one of them, proposition 4.4 applies for foliating [x, xd] ∗ α.

Second step. We are concerned with extending to Xi, 1 ≤ i ≤ ℓ, the foliation previously
constructed on Xi ∩ L ∗ [x, xd]. Let Li be the link of xi in B(x); it is a 3-sphere since xi lies
in the interior of the piecewise linear 4-ball B(x) and we have Xi = Li ∗ [xi, x

d]. The already
foliated part reads λi ∗ [xi, x

d] where λi = star(x, Li). We have to extend the foliation to
λ′

i ∗ [xi, X
d] where λ′

i is the closure of Li \ λi. One checks a property similar to the one in the
previous step. Every edge whose a is not a vertex is a side in a triangle whose a is a vertex. It
allows us to achieve foliating as before.

When k ≥ 6, it goes recursively in the same way. As usual the germ of the extended H
is required to contain the one of L along σpl; it is easy to do when k 6= n + 1, since σpl is
transversal to L; for k = n + 1, we refer to proposition 4.10.

4.10. A new codimension-n foliation inside the (n + 1)-simplices. For the (n + 1)-simplices
there is something special to do because we want H ⊃ L. In general this condition is not
fulfilled since L traces a 1-foliation on each of them. Let S be a 2nd kind (n + 1)-simplex of
Z with free face T . We have associated a pleated (n + 1)-simplex Spl with free face T which
remains unpleated; it is made of a displaced (n + 1)-simplex Sd with free face T d and small
simplices. We succeeded in codimension-one foliating Spl transversally to all its simplices (4.9).
We will prove the following proposition.

Proposition. There exists a codimension-n foliation L ′ near Spl meeting the following prop-
erties:
1) L ′ ⊂ H.
2) L ′ = L near the n-skeleton of Spl.

Lemma. 1) Each (n + 1)-simplex σ in Spl is equipped with a “free” n-face. When σ = Sd, this
free face is T d.
2) Simplex σ is in a weak good position with respect to (H,L) in the sense of 3.8.

Proof of the lemma. 1) There is a collapsing Spl ց ∂ ′Spl (= the closure of ∂Spl \ T ). Each
(n + 1)-simplex σ supports an elementary step of that collapsing. The free face of σ is defined
as the free face for the elementary collapsing; it depends of course on the chosen sequence of
elementary collapsings.
In the construction of Spl we have an intermediate (n + 1)-polyhedron Sd ∪ S1, where S1 is the
union of all small (n + 1)-simplices encountered during the construction of Sd (see 4.9). We
may factor the total collapsing through

Spl ց Sd ∪ S1 ∪ ∂ ′Spl ց S1 ∪ ∂ ′Spl ց ∂ ′Spl .

Taking such a sequence of collapsings makes Sd to have T d as a free face of collapsing; therefore
for that simplex both definitions of free face coincide.
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2) We recall that U(S) is a neighborhood of S. Looking at the image in the quotient of U(S)
modulo L, one sees that, generically on the interior pleating points of Spl, L is transversal to the
faces of σ. We have now to check that the leaves of L∩ σ traverse σ. Consider A(S), the affine
space generated by S and, on the open set U(S), consider a codimension-(n + 1) foliation K,
with K ⊂ L and whose leaves cross A(S) in one point. So we have a projection q : U(S) → A(S)
mapping each leaf of K to a crossing point. For σ in Spl, q embeds σ into U(S)∩A(S) which is
an ε-enlargment of S that each 1-leaf of L∩A(S) traverses; indeed σ embeds into U(S)/

L
and

the projection onto this quotient factors through q. Since L is transversal to the faces of σ, it
is also transversal to those of q(σ). Hence, due to these facts, each leaf of L ∩ A(S) entering
q(σ) must get out through another face. Therefore the same holds for σ itself. �

4.11. Codimension-n foliating continued. Let σ be a (n + 1)-simplex in a weak good position
with respect to (H,L) and τ be its free face in the above sense. Let a be the min vertex of
σ, the edge orientation being chosen so that the max vertex belongs to τ . Let us consider the
most difficult case when a /∈ τ . We recall from 3.7 that a belongs to the apparent contour
C of σ. The leaves of H ∩ σ are n-discs. Each leaf of H ∩ σ is 1-foliated by L ∩ σ near C
and it is entirely 1-foliated near a. Let A be the union of the n-disc leaves not touching the
interior of τ . Because they are all isotopic by an isotopy keeping C and the germ of L invariant
(transversality of H to the subsimplices), each n-disc leaf in A can be continuously foliated
by intervals; we arrange these 1-leaves to be contained in L near their end points and near C.
That yields L ′ ∩ A.

For going further and get rid a pseudo-isotopy problem2 which could arise if we do it careless,
we will make use of the free face and a convenient retraction as in case 2 of 4.2. But here it
is a little more complicated because we have to take the profile into account. Let us recall its
structure (3.7): ∂σ is made of the union of two hemispheres denoted by Σ+ ∪Σ−, with τ ⊂ Σ+,
Σ+ ∩ Σ− = C and each hemishere Σ± is made of the n-faces sharing some simplex τ±. The
vertex a belongs to τ−, as it lies in the contour but not in τ+ (a /∈ τ). Let τ ′ be the closure of
Σ+ \ τ . The n-faces in τ ′ have the form τ+ ∗ γ, where γ is a hyperface of τ− containing a (if
a /∈ γ, thus γ ⊂ τ and γ ∗ τ+ = τ which is absurd). The (n − 1)-faces of τ ′ ∩ τ are exactly the
(n − 1)-faces which contain τ+ and not a. The other (n − 1)-faces in the boundary of τ ′ lie in
the contour. So, the boundary of τ ′ is

∂τ ′ = (τ ′ ∩ τ) ∪ (τ ′ ∩ C).

Let Â be the union A ∪ Σ−. The codimension-n foliation L ′ ⊂ H can be extended near Â in
requiring L ′ = L along Â \ A.

Claim. There exists an isotopy ρt : σ → σ, t ∈ [0, 1], meeting the following conditions:

i) for each t ∈ [0, 1], ρt fixes pointwise a small neighborhood of Â;

ii) ρ1 maps τ into a neighborhood of Â where the pair (H,L ′) is already defined and ρ1(τ)
is transversal L ′);

iii) ρt maps τ ′ into itself preserving the germ of L = L ′ along it; so ρ1(τ
′) lies in a neigh-

borhooh of the contour C;

2This problem is more or less the problem of classification of the non-singular 1-dimensional foliations of the
(n + 1)-ball which have no minimal sets and which are “standard” near the boundary [1].



17

iv) ρ∗
1 keeps H ∩ τ ′ invariant.

Proof of the claim. The existence of such an isotopy is easy, knowing that ∂ ′σ \A is foliated by
(n − 1)-discs, which are transversal to C and whose boundaries lie in ∂τ . Indeed, if R denotes
such a leaf, one easily checks that R ∩ τ ′ collapses onto R ∩ C. �

We finish to foliate σ using the isotopy ρt. Namely, pulling back (H,L ′) by ρ1 almost yields
the wanted (H,L ′) in σ \ A; we only have to make L ′ coinciding with L near τ , which is easy
since they are both transversal to τ .

4.12. End of the proof of Theorem A. We use both following facts:

1) The free faces of the pleated 2nd kind simplices are never pleated. As a consequence
the pleating process keeps Z0 and Z1 unchanged.

2) Both codimension-n foliations L ′ and L coincide near the n-skeleton of the pleated

polyhedron Z
pl

associated to Z, in particular near Z0 ∪ Z1.

We look at the tubular neighborhood π : V → Z × [0, 1] (see 3.10). As a consequence of

conditions (P3),. . . (P(n+1)), Z
pl

is a graph in V (it crosses each fiber in one point). Along V
we have two integrable distributions ζ and ν: for x ∈ V , ζx is parallel to Eπ(x) and νx is parallel

to E⊥

π(x), the normal space to Eπ(x) in span(Vπ(x)). We may require L ′ to contain ν. On the

other hand, for i = 0, 1, we define (Hi,Li) as the trace of (H,L ′) (or (H,L) since it yields
the same trace) on Vi := π−1(Z × {i}). Since L1 is transversal to Z × {1}, if tube V is fine
enough the leaves of L1 are discs, each one crossing Z1 and Z ×{1} in exactly one point. As a
consequence, H1, which a priori is only defined near Z1 and contains L1, canonically extends
to V1 by prolongating a leaf K by the union of the leaves of L1 ∩ V1 passing through K. The

initial data makes that the same is true on V0. Now it is possible to change Z
pl

into a new

pleated manifold Ẑ, transversal to the fibers of π in the sense of Whitehead ([10] section 1),
bounded by Z×{0} and Z×{1} (take for instance a homotopy, for t ∈ [0, η] (resp. t ∈ [1−η, 1]
from the 0-section to Z0 (resp. Z1).

Let U be an open set in V , containing V0, V1 and Ẑ, on which (H,L ′) is defined. According

to theorem (1.9) of Whitehead in [10], Ẑ can be smoothed and changed into the image Ẑsm

of a new section of π with values in U and vanishing on Z × {0, 1}. There is a smooth little

thickening Ê of Ẑsm in the direction of ζ . By construction Ê is transversal to distribution ν.
Since ν ⊂ L ′ ⊂ H, L ′ and H are transversal to Ê. Finally, (Ê, Ẑsm,L ′ ∩ Ê,H ∩ Ê) yields a
homotopy from the initial data ξ = (E, Z,L,H) to a regular Γn-structure transversally foliated.
Theorem A is now proved. �
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5. Proof of Theorem B

5.1. Let us denote Γfol
n (M) the space of Γn-structures transversally codimension-one foliated

and Γ1(M) the space of Γ1-structures. There is a forgetful map

U : Γfol
n (M) −→ Γ1(M)

(E, Z,L,H) 7→ (E1, Z,H1)

defined as follows: E1 is the total space of the bundle νH|Z which can be thought of as a
sub-bundle of E; H1 is the transversal trace of H on E1.

Proposition 5.2. Let ξ ∈ Γ1(M). If νξ meets Thurston’s condition to embed into τM , then
ξ = U(η) for some η ∈ Γfol

n (M) with νη ∼= τM .

5.3. We can achieve the proof of Theorem B. According to Theorem A, η is homotopic to a
regular structure η′ = (TM, Z,L′,H′). As L′ is transversal to Z, H′ is alike. Applying U to
the homotopy from η to η′ we get a homotopy from ξ to ξ′ := (E1, Z,H′

1) = U(η′). One checks
easily that H′

1 is transversal to Z. �

5.4. Proof of Proposition 5.2. Let ξ = (E, Z,H) ∈ Γ1(M). Here E is the total space of the
1-bundle ν := νξ which is assumed to be a sub-bundle of τM . Let ν⊥ be a complementary

sub-bundle. If p : E → M denotes the projection, p∗(ν⊥) is a bundle q : Ẽ → E whose total

space is also the one of ν ⊕ ν⊥ = τM , that is Ẽ ∼= TM . The pulled-back foliation q∗H is the
wanted codimension-one foliation on TM . We have to discover the codimension-n foliation.
Let x ∈ E be a point close to Z. Let H(x) denote the leaf of H through x. The projection p is a
local diffeomorphism from H(x) onto an open set in M . It allows us to lift the line distribution
ν ⊂ τM as a line distribution tangent to H(x) and which integrates as a 1-foliation Ix of H(x).
The projection also allows us to lift the usual exponential map ν⊥(p(x)) → M , yielding

expH : p∗ν⊥(x) → H(x)

which is transversal to Ix near the 0-section Z.
More globally we have expH : p∗ν⊥|H(x) → H(x) which is transversal to Ix near the 0-section
Z. Hence exp−1

H
(Ix) is a codimension-(n−1) foliation of q−1(H(x)) near the 0-section. Moreover

it is transversal to the fibers of p∗ν⊥|H(x), due to the transversality property of expH. Doing
the same simultaneously for every point x, we get a codimension-n foliation with the wanted
properties. �

5.5. Final comment. There is no relative version of Theorem A stating that, if we start with
a structure ξ ∈ Γfol

n (M) which is regular along K ⊂ M , ξ can be regularized relatively to K.
In contrary of what Thurston states in [8], it is already wrong for usual Γn-structures. The
homotopy formula from 3.1 has no relative version; more precisely there is an obstruction at
the level of codimension-n plane fields lying in πk(Gl(n)), k ≤ n − 1; here we think of Gl(n) as
the space of the n-planes in R

n × R
n which are transversal to both factors.
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