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Orbits of triples in the Shilov boundary of a bounded symmetric domain

Jean-Louis Clerc*, Karl-Hermann Neeb

Abstract. Let D be a bounded symmetric domain of tube type, S its Shilov boundary, and G
the neutral component of its group of biholomorphic transforms. We classify the orbits of G in the

set S × S × S .
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Introduction

Let D be a bounded symmetric domain, realized as a circular domain in a (finite dimen-
sional) complex vector space V . Let G := Aut(D)0 be the identity component of its group
of biholomorphic transforms of D and let S be the Shilov boundary of D . The action of any
element of G extends to a neigbourhood of D , and hence G acts on S . It is well known that
this action is transitive. The main result of the present paper is a classification of the G-orbits
in the set S × S × S of triples in S , when D is of tube type.

The action of G on S × S can be easily studied as an application of Bruhat theory, and
the description of the orbits is the same, whether D is of tube type or not. But for triples, there
is a drastic difference between tube type domains and non tube type domains. In the first case,
there is a finite number of orbits in S×S×S , whereas there are an infinite number of orbits for
a non tube type domain.

Let r be the rank of D . The notion of r -polydisc (and its corresponding Shilov boundary
called r -torus) plays an important role in the analysis of the orbits. On one hand they are
the “complexifications” of the maximal flats of D (in the sense of the geometry of Riemannian
symmetric spaces). On the other hand, a r -polydisc in the usual sense is a set of the form

∆r =
{ r∑

j=1

ζjxj : |ζj | < 1, 1 ≤ j ≤ r
}
,

where the xj are linearly independent elements in V . The space V has a natural structure of
a positive hermitian Jordan triple system, and in particular, it has a natural (Banach) norm,
called the spectral norm, for which the domain D is realized as the open unit ball. One of the
results we prove is that such a polydisc, constructed on vectors xj of norm 1 lies in D if and
only if the (xj)1≤j≤r form a Jordan frame for V .

Fix an r -torus T ⊆ S arising as the Shilov boundary of an r -polydisc associated to a
Jordan frame. The main step towards the classification of the orbits of G in S × S × S is the
result that any triple in S can be sent by an element of G to a triple in T . This requires that
D is of tube type, and this property really distinguishes tube type domains from non tube type

* The first author acknowledges partial support from the EU (TMR Network Harmonic
Analysis and Related Problems)
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domains. Once this result is obtained, the classification becomes easy, because the problem is
reduced to the case of a polydisc, and further, using the product structure, to the case of the
unit disc in C , where the situation is easy to analyze. The generalized Maslov index (see [CØ01],
[Cl04]) comes in as a subtle invariant for triples.

A special case of this theorem was known before. If D is the Siegel domain (the unit
ball in the space of complex symmetric matrices Symr(C)), then the group G is the projective
symplectic group PSp2r(R) := Sp2r(R)/{±1} , and the Shilov boundary of D can be identified
with the Lagrangian manifold (the set of Lagrangian subspaces of R

2r ). Then the orbits of
triples of Lagrangians have been described (see [KS90, p.492]), using linear symplectic algebra
techniques. Related results can be found in [FMS04], and in particular their Proposition 4.3
(which they deduce from [KS90]) is, for this specific example, equivalent to our Theorem III.1.
The main point of [FMS04] is a description of the orbits of the action of the maximal compact
subgroup group Un(C) of Sp2n(R) on triples of Lagrangians are classified, but this is a different
problem.

As explained in the appendix, the bounded symmetric domain of tube type can be described
in terms of euclidean Jordan algebras E . More precisely, the irreducible ones are in one-to-one
correspondence with simple euclidean Jordan algebras. From the table in [FK94, p. 213] (see also
[Be00]) it is easy to give the following table, where for each simple euclidean Jordan algebra E ,
we list the group L of linear transforms of E preserving the cone Ω, the group G of holomorphic
diffeomorphisms of the bounded symmetric domain D and the Shilov boundary S as compact
Riemannian symmetric space. There are four infinite series and one exceptional case. From the
point of view of flag manifold (see below), S is realized as G/P , where the (maximal) parabolic
subgroup P is the semi-direct product of L (Levi component) and E (unipotent radical).

Table 1.

E Symn(R) Hermn(C) Hermn(H) R1,n−1 Herm3(O)
L GLn(R) GLn(C) GLn(H) SO0(1, n− 1) × R∗ E6(−26) × R∗

G PSp2n(R) PUn,n(C) PSO∗(4n) SO2,n(R)0 E7(−25)

S Lag(R2n) ≃ Un(C)/On(R) Un(C) U2n(C)/ SU(n,H) S1 × Sn−1/Z2 U(1)E6/F4

The Shilov boundary S of a bounded domain is in particular a generalized flag manifold
of G , i.e. of the form G/P , where P is a parabolic subgroup of G . A nice description of P is
obtained after performing a Cayely transform. The domain D is transformed to an unbounded
domain DC which is a Siegel domain of type II and the group P is the group of all affine
transformations preserving DC (see section 1 for details). The group P has some specific
properties : it is a maximal parabolic subgroup of G , conjugate to its opposite. Moreover,
one can show that the domain D is of tube type if and only if the unipotent radical U of P
is abelian. A natural question arises to which extent results similar to the ones obtained in
this paper could be valid for other generalized flag manifolds. The natural background for this
problem is the following. If P1, . . . , Pk are parabolic subgroups of a connected semisimple group
G′ , then the product manifold

M := G′/P1 × . . .×G′/Pk

is called a multiple flag manifold of finite type if the diagonal action of G′ on M has only finitely
many orbits. For k = 1 we always have only one orbit, and for k = 2 the finiteness of the set of
orbits follows from the Bruhat decomposition of G′ . For G′ = GLn(K) or G′ = Sp2n(K) and K

is an algebraically closed field of characteristic zero, it has been shown in [MWZ99/00] that finite
type implies k ≤ 3, and for k = 3 the triples of parabolics leading to multiple flag manifolds
of finite type are described and the G′ -orbits in these manifolds classified. The main technique
to achieve these classifications was the representation theory of quivers. In [Li94], Littelmann
considers general simple algebraic groups over K and describes all multiple flag manifolds of
finite type for k = 3 under the assumption that P1 is a Borel subgroup and P2 , P3 are maximal
parabolics. Actually Littelmann considers the condition that B = P1 has a dense orbit in
G′/P2 ×G′/P3 , but the results in [Vi86] show that this implies the finiteness of the number of
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B -orbits and hence the finiteness of the number of G′ -orbits in G′/B × G′/P2 ×G′/P3 . From
Littelmann’s classification one can easily read off that for a maximal parabolic P in G′ the
triple product (G′/P )3 is of finite type if and only if the unipotent radical U of P is abelian
and in two exceptional situations. If U is abelian, then P is the maximal parabolic defined by
a 3-grading of g′ = L(G′), so that G′/P is the conformal completion of a Jordan triple (cf.
[BN05] for a discussion of such completions in an abstract setting). This case was also studied in
[RRS92]. The first exceptional case, where U is not abelian, corresponds to G′ = Sp2n(K), where
G′/P = P2n−1(K) is the projective space of K2n , U is the (2n−1)-dimensional Heisenberg group
and the Levi complement is Sp2n−2(K)× K× . In the other exceptional case G′ = SO2n(K) and
G′/P is the highest weight orbit in the 2n -dimensional spin representation of the covering group

G̃′ = Spin2n(K) of G′ . Here U ∼= Λ2(Kn) ⊕ Kn also is a 2-step nilpotent group and the Levi
complement acts like GLn(K) on this group. It seems that the positive finiteness results have a
good chance to carry over to the split forms of groups over more general fields and in particular
to K = R , but for real groups not much seems to be known about multiple flag manifolds of
finite type.

If M = (G′/P )3 is a multiple flag manifold of finite type, P is conjugate to its opposite,
and P = U ⋊ L is a Levi decomposition of P , then L is the simultaneous stabilizer of a pair in
(G′/P )2 with an open orbit, and this implies that the conjugation action of L on U has only
finitely many orbits. A closely related but different problem is the question when the conjugation
action of P on U has finitely many orbits. According to a result of Richardson, every parabolic
P has a dense orbit in its unipotent radical U , but this does not imply finiteness. For more
specific results on this question we refer to [RRS92], [PR97] and [HR99].

It is perhaps worthwhile to stress that the proofs we give are one more occurrence of the
interaction between complex analysis of a bounded symmetric domains and the geometry of
convex sets in the normed space V . The notions of extremal points or faces of a convex set do
play an important role in our study.

The contents of the paper is as follows. In Section I we first recall several facts on
bounded symmetric domains. Our main sources are Loos’ lecture notes [Lo77] and Satake’s
book [Sa80]. For results concerning euclidean Jordan algebras we use [FK94]. The main result
of Section I is a classification of the G-orbits in the set of quasi-invertible (=transversal) pairs in
D (Theorem I.18). For this classification, there would be no gain in assuming that D is of tube
type, so that the theorem is proved in full generality. However, for the analysis of G-orbits in
S×S×S (assuming D to be of tube type), we only need the classification result for transversal
pairs (x, y), where x ∈ S and y ∈ D . For this case we give a more direct shorter proof (see
Lemma I.20), but we think that the general case might also be useful in other situations.

The main tool for the classification of G-orbits in S × S × S is the characterization of the
transversality relation on D in terms of faces of the compact convex set D : Two elements x, y ∈ D
are transversal if and only if they are not contained in a proper face of D (Theorem II.12). This
characterization is also valid for non tube type domains. A key concept for the classification is
the notion of the rank of a face F of D . For an irreducible domain D of rank r it takes values
in the set {0, 1, . . . , r} and classifies the G-orbits in the set of faces of D . It is normalized in
such a way that the rank of D as a face is zero and that the extreme points, i.e., the elements in
the Shilov boundary, are faces of rank r . If Face(x1, . . . , xn) denotes the face generated by the
subset {x1, . . . , xn} of D , then the function

Dn → {0, 1 . . . , r}, (x1, . . . , xn) 7→ rankFace(x1, . . . , xn)

is an invariant for the G-action on Dn
.

In these terms, two elements x, y ∈ D are transversal if and only if rankFace(x, y) = 0.
In Section III we use this fact to show that for a domain D of tube type every triple in S is
conjugate to a triple in the Shilov boundary T of a maximal polydisc ∆r defined by a Jordan
frame. This reduces the classification of G-orbits in S×S×S to the description of intersections
of these orbits with T 3 . This is fully achieved in Section V by assigning a 5-tuple of integer
invariants to each orbit and by showing that triples with the same invariant lie in the same orbit.
The first four components of this 5-tuple are

(rankFace(x1, x2, x3), rankFace(x1, x2), rankFace(x2, x3), rankFace(x1, x3)).
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The fifth component is defined as the Maslov index ι(x1, x2, x3) which is discussed in some detail
in Section IV. Note that if (x1, x2, x3) is transversal in the sense that all pairs (x1, x2), (x2, x3),
(x3, x1) are transversal, then the first four components of the invariant vanish, which implies
that the G-orbits in the set of transversal triples are classified by the Maslov index.

We conclude the paper (Section VI) with a brief discussion of how the classification of the
G-orbits in S × S can be interpreted in terms of the Bruhat decomposition of G . Note that,
although S always is a generalized flag manifold of the real group G , the unipotent radical of
the corresponding parabolic is abelian if and only if the domain D is of tube type. If this is
the case, then [Li94] and [RRS92] imply that the complexification GC acts with finitely many
orbits on (GC/PC)3 . For each GC -orbit M ⊆ (GC/PC)3 meeting the totally real submanifold
(G/P )3 the intersection M ∩ (G/P )3 is totally real in M , hence a real form of M , and [BS64,
Cor. 6.4] implies that G has only finitely many orbits in M ∩ (G/P )3 . Alternatively one can
argue with Whitney’s Theorem ([Wh57]) that the set of real points of a complex variety has only
finitely many connected components which coincide with the G-orbits in our case. In view of
this argument, its not the finiteness of the G-orbits but their classification and the relation to
the Maslov index that is the main point of the present paper.

In [RRS92, Th. 1.2(b)] one also finds a classification of the GC -orbits in (GC/PC)2 which
turns out to be the same as in the real case (cf. Theorem VI.1).

A final appendix gives a short presentation of the relation between positive hermitian
Jordan triple systems and bounded symmetric domains on one hand, between euclidean Jordan
algebras and tube type domains on the other hand. This appendix is designed for readers not
familiar with the language of Jordan algebra and/or Jordan triple system.

We thank L. Kramer and H. Rubenthaler for comments and references concerning multiple
flag manifolds of finite type. We also thank several anonymous editors of this journal for numerous
remarks and for pointing out the reference [RRS92].

I. Classification of orbits of transversal pairs in the boundary

Let D be an irreducible circular bounded symmetric domain, so that D is the open unit
ball for a norm on a complex vector space V ([Lo77, Th.4.1]). In this section we describe the
G-orbits in the set of quasi-invertible pairs of elements in the closure of D (cf. Theorem I.18
below). Here we do not have to assume that D is of tube type.

I.1. The associated Jordan triple. On V we consider the hermitian Jordan triple product
{·, ·, ·}:V 3 → V that is uniquely determined by the property that for each v ∈ V the vector field
given by the function

ξv:V → V, z 7→ v − {z, v, z}
generates a one-parameter group of automorphisms of D ([Lo77, Lemma 4.3]). Note that for
each v ∈ V the map (z, w) 7→ {z, v, w} is symmetric and complex bilinear, and that, for each
a, b ∈ V the map z 7→ {a, z, b} is antilinear. For x, y ∈ V we define Q(x) and x�y ∈ End(V )
by

Q(x).y := {x, y, x} and x�y.z := {x, y, z}.
The Jordan triple structure on V used by Loos is {x, y, z}′ = 2{x, y, z} , so that his quadratic
representation is given by Q′(x, y) = 2{x, y, z} , but since Loos defines Q′(x) as 1

2Q
′(x, x), we

obtain the same operators Q(x) = Q′(x).

I.2. Tripotents and Peirce decomposition. An element e ∈ V is called a tripotent if
e = {e, e, e} . For a tripotent e ∈ V let Vj := Vj(e) denote the j -eigenspace of the operator
2e�e . Then we obtain the corresponding Peirce decomposition of V :

V = V0 ⊕ V1 ⊕ V2

([Lo77, Th. 3.13]). Since e�e is a Jordan triple derivation, we have the Peirce rules

(1.1) {Vi, Vj , Vk} ⊆ Vi−j+k ,
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which imply in particular that each space Vj is a Jordan subtriple. In addition, we have

(1.2) V0�V2 = V2�V0 = {0}.

The Jordan triple V also carries a Jordan algebra structure, denoted V (e) , given by

ab := L(a).b := {a, e, b}.

Then e is an idempotent in V (e) because ee = {e, e, e} = e , and the Peirce decomposition of
V with respect to the tripotent e coincides with the Peirce decomposition of the Jordan algebra
V (e) with respect to the idempotent e .

The multiplication operators in V (e) are given by L(a) = a�e , so that L(e) |V2
= idV2

implies that (V2, e) is a unital Jordan subalgebra of V (e) . For the quadratic representation in
V (e) we have

P (e) = 2L(e)2 − L(e2) = 2L(e)2 − L(e) = (2L(e) − 1)L(e),

so that P (e) = Q(e)2 vanishes on V0 ⊕ V1 and restricts to the identity on V2 . It follows in
particular that (V2, e, Q(e)) is an involutive Jordan algebra (cf. [Lo77, Th. 3.13]).

I.3. Orbits in D . Two tripotents e, f ∈ V are said to be orthogonal if f ∈ V0(e). In view
of the Peirce rules (1.2), this implies {f, f, e} = {e, f, f} = (e�f).f = 0, so that we also have
e ∈ V0(f), i.e., orthogonality is a symmetric relation. If this is the case, then e + f also is a
tripotent because the relations e�f = f�e = 0 lead to

{e+ f, e+ f, e+ f} = {e, e, e+ f} + {f, f, e+ f} = {e, e, e}+ {f, f, f} = e+ f.

We call a non-zero tripotent e primitive if it cannot be written as a sum of two non-zero
orthogonal tripotents and e is said to be maximal if there is no non-zero tripotent orthogonal
to e . A maximal tuple (c1, . . . , cr) of mutually orthogonal primitive tripotents is called a Jordan
frame in V and r = rankD is called the rank of D . We fix a Jordan frame (c1, . . . , cr). For
k = 0, 1, . . . , r we then obtain tripotents

ek := c1 + . . .+ ck,

where it is understood that e0 = 0.

We recall that each bounded symmetric domain D can be decomposed in a unique fashion
as a direct product of indecomposable, also called irreducible, bounded symmetric domains:

(1.3) D = D1 × . . .×Dm.

Then the connected group G := Aut(D)0 satisfies

(1.4) G ∼= G1 × . . .×Gm, where Gj := Aut(Dj)0.

If D is irreducible, then G has exactly r + 1 orbits in the closure D of D in V and e0, . . . , er

form a set of representatives (cf. [Sa80, Th. III.8.7]). For k = 0 we have G.e0 = D and for k = r
we obtain the Shilov boundary G.er = S ([Sa80, Th. III.8.14]). We define the rank of x ∈ D by

rankx = k for x ∈ G.ek

and observe that the rank function is G-invariant and classifies the G-orbits in D .

If D is not irreducible, then (1.3/4) imply that the orbit of x = (x1, . . . , xm) ∈ D =∏m

j=1 Dj is determined by the m-tuple

(rankx1, . . . , rankxm) ∈ N
m
0 .

Here (0, . . . , 0) corresponds to elements in D and (rkD1, . . . , rkDm) to elements in the product
set S = S1 × . . .× Sm .
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I.4. Spectral decomposition and spectral norm. Let K be the stabilizer of 0 ∈ D in G .
Then K acts as a group of automorphisms on the Jordan triple V and each element z ∈ V is
conjugate under K to an element in spanR{c1, . . . , cr} . For k.z =

∑r
j=1 λjcj the number

|z| := max{|λ1|, . . . , |λr|}

is called the spectral norm of z . Then the elements c̃j := k−1.cj are orthogonal tripotents with

z =
∑

j=1

λj c̃j ,

which is the spectral decomposition of z . The spectral norm | · | is indeed a norm on V with

(1.5) D = {z ∈ V : |z| < 1}.

The following theorem relates the holomorphic arc-components in ∂D to the tripotents
in V .

Theorem I.5. ([Lo77, Th. 6.3]) For each holomorphic arc-component A of ∂D there exists a
tripotent e in A such that

A = Ae := e+ De, where De := D ∩ V0(e)

is a bounded symmetric domain in V0(e) . The map e 7→ Ae yields a bijection from the set of non-
zero tripotents of V onto the set of holomorphic arc-components of ∂D . The Shilov boundary S
coincides with the set of maximal tripotents.

An element x ∈ D is contained in Ae if and only if

(1.6) e = lim
n→∞

Q(x)n.x.

I.6. Conformal completion of V . Let GC denote the universal complexification of the
connected real Lie group G and τ the anti-holomorphic involution of GC for which G is the
identity component of the fixed point group Gτ

C
. Then the Lie algebra gC of GC has a faithful

realization by polynomial vector fields of degree ≤ 2 on V , which leads to a 3-grading

gC = g+ ⊕ g0 ⊕ g−,

where V ∼= g+ is the space of constant vector fields, g0 consists of linear vector fields, and g−
is the set of quadratic vector fields corresponding to the maps z 7→ Q(z).v = {z, v, z} for v ∈ V .
By construction of the triple product, the vector fields ξv correspond to elements of the real Lie
algebra g = L(G), which implies that τ maps the constant vector field v to the quadratic vector
field z 7→ −{z, v, z} . Hence τ reverses the grading of gC , i.e., τ(gj) = g−j for j ∈ {+,−, 0} .
The Jordan triple structure on V ∼= g+ then satisfies

(1.7) {x, y, z} =
1

2
[[x, τ.y], z].

The subgroups

G± := exp g± and G0 := {g ∈ GC : (∀j) Ad(g)gj = gj}

satisfy
G± ∩G0 = {1} and (G±

⋊G0) ∩G∓ = {1}.
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Therefore P± := G±G0 ∼= G± ⋊G0 are subgroups of GC , and we obtain an embedding

V →֒ X := GC/P
−, v 7→ exp v · P−,

called the conformal completion of V . The elements of G+ act on V ⊆ X by translations

(1.8) tv:x 7→ x+ v

because exp v expxP− = exp(v + x)P−. We further have τ(G±) = G∓ and τ(G0) = G0 .

For w ∈ V we write t̃w for the map X → X induced by the element exp(−τ(w)) =
(τ(expw))−1 . For v ∈ V the condition t̃w.v ∈ V , where V is considered as a subset of X , is
then equivalent to the invertibility of

(1.9) 1 + ad v ad(−τ.w) +
1

4
(ad v)2(ad τ.w)2 = 1− ad v ad(τ.w) +

1

4
(ad v)2 ◦ τ ◦ (ad τ)2 ◦ τ

([BN05, Cor. 1.10]). In view of (1.7), this is precisely the Bergman operator

B(v, w) = 1− 2v�w +Q(v)Q(w).

We further have in V the relation

(1.10) t̃w.v = B(v, w)−1.(v −Q(v).w).

I.7. Quasi-invertibility and transversality. A pair (x, y) ∈ V is called quasi-invertible if
B(x, y) ∈ End(V ) is invertible. We write x⊤y if (x, y) is quasi-invertible and say that x is
transversal to y . We write x⊤ := {y ∈ V :x⊤y} for the set of all elements in V transversal to x .

In the Jordan algebra V (y) with the product ab := {a, y, b} we have L(a) = a�y and
P (a) = Q(a)Q(y) ([NØ04, App. A]), so that

B(x, y) = idV −2L(x) + P (x),

and in the unital Jordan algebra V (y) × R with the identity element 1 := (0, 1) we have

1 − 2L(x) + P (x) = P (1,1) − 2P (1, x) + P (x, x) = P (1 − x),

i.e., the quasi-invertibility of (x, y) is equivalent to the quasi-invertibility of x in the Jordan
algebra V (y) .

I.8. The sl2 -triple associated to a tripotent. Let e ∈ V be a tripotent, f := τ(e),
h := [e, f ] and ge := spanR{h, e, f} . Then

[h, e] = 2{e, e, e} = 2e and [h, f ] = τ [τh, e] = −τ [h, e] = −2τe = −2f,

so that ge
∼= sl2(R) is a 3-dimensional subalgebra of g with gτ

e = R(e+ f).

(a) The operator adV h = 2e�e is diagonalizable with possible eigenvalues 0, 1, 2. The
corresponding eigenspace decomposition V = V0 ⊕ V1 ⊕ V2 is the Peirce decomposition of the
Jordan algebra V (e) with multiplication ab := {a, e, b} with respect to the idempotent e , i.e.,
2L(e).vj = jvj for j = 0, 1, 2.

(b) We observe that P (e) = 2L(e)2 − L(e2) = (2L(e) − 1)L(e). For λ ∈ R we therefore
have for

B(e, (1 − λ)e) = B((1 − λ)e, e) = 1− (1 − λ)2e�e+ (1 − λ)2Q(e)2

= 1 − (1 − λ)2L(e) + (1 − λ)2P (e) = 1 − (1 − λ)2L(e) + (1 − λ)2(2L(e) − 1)L(e)

the relation
B(e, (1 − λ)e)vj = λjvj , j = 0, 1, 2.
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(c) From Q(e) = Q(Q(e)e) = Q(e)3 we conclude that the antilinear map Q(e) is diagonal-
izable over R with eigenvalues in {1, 0,−1} , so that Q(e)2 = P (e) = (2L(e) − 1)L(e) implies
that

(1.11) kerQ(e) = kerP (e) = V0 ⊕ V1.

From V0�V2 = V2�V0 = {0} we obtain for x, y ∈ V0 :

B(e+ x, e+ y).e = e− 2(e+ x)�(e+ y).e+Q(e+ x)Q(e+ y)e

= e− 2e− 2x�y.e+Q(e+ x)(Q(e).e+Q(y).e+ 2{e, e, y})
= −e− 2(e�y).x+Q(e+ x).e = −e+ (Q(e).e+Q(x).e+ {e, e, x}) = 0.

Theorem I.9. ([Lo77, Th. 8.11]) Let e ∈ V be a tripotent and V (e) the corresponding Jordan
algebra with product ab = {a, e, b} . Identifying e ∈ V with an element of g+ , the partial Cayley

transform corresponding to e is defined by Ce := exp
(

π
4 (e−τ.e)

)
∈ GC , and in Jordan theoretic

terms it is given as a partially defined map on V by

Ce = te ·B(e, (1 −
√

2)e) · t̃e.

In particular
C−1

e (V ) ∩ V = {v ∈ V :B(e, v) ∈ GL(V )} = e⊤.

In [Lo77] Loos writes B(e,−e)
1
2 instead of B(e, (1 −

√
2)e), which makes sense because

B(e, (1 −
√

2)e)2 = B(e, (1 − 2)e) = B(e,−e)

is diagonalizable and the eigenvalues 1,
√

2 and 2 of B(e, (1 −
√

2)e) are positive (I.8).

I.10. The preceding theorem implies in particular that the condition for an element x ∈ V to
lie in the domain of the Cayley transform is precisely the transversality condition e⊤x . If x2

is the Peirce component of x in V2 , then [Lo77, Prop. 10.3] says that e⊤x is equivalent to the
invertibility of e− x2 in the unital Jordan algebra (V2, e).

Definition I.11. A hermitian scalar product 〈·, ·〉 on V is said to be associative if for
x, y, z, w ∈ V we have

〈{x, y, z}, w〉 = 〈x, {y, z, w}〉,

which is equivalent to
(z�y)∗ = y�z for y, z ∈ V.

According to [Lo77, Cor. 3.16], a scalar product with this property is given by

〈x, y〉 := tr(x�y),

and for 0 6= x ∈ V the operator x�x is non-zero and positive semidefinite. In this sense
(V, {·, ·, ·}) is a positive hermitian Jordan triple.

Lemma I.12. Let e ∈ V be a tripotent, Vj := Vj(e) its Peirce spaces, and z ∈ V0 with |z| ≤ 1 .
Further let f := limn→∞Q(z)n.z denote the unique tripotent contained in the holomorphic
arc-component of z . Then ϕ(z) := Q(z + e) |V1

:V1 → V1 is an antilinear operator which is
symmetric with respect to the real scalar product (z, w) := Re tr(z�w) , and for z ∈ V1 we have
ϕ(z)v = 2{z, v, e} .

If |z| < 1 , then ϕ(z) + 1 is injective (1 stands for idV1
), and for |z| = 1 its kernel is

Fix(−Q(e+ f)) ∩ V1(f) ∩ V1(e).
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Proof. For v ∈ V1 we have

ϕ(z)v = {z + e, v, z + e} = Q(z)v +Q(e)v + 2Q(z, e)v,

and Q(e)v ∈ V4−1 = V3 = {0} as well as Q(z)v ∈ V0−1 = V−1 = {0} by the Peirce relations
(1.1), so that ϕ(z)v = 2{z, v, e}.

According to [Lo77, Lemma 6.7], the operator ϕ(z) on V1 is symmetric with respect to the
real scalar product (·, ·) on V1 , hence diagonalizable over R with real eigenvalues.

Let v ∈ V1 be an eigenvector for ϕ(z) corresponding to the eigenvalue λ ∈ R , i.e.,
Q(z + e).v = λv . Inductively we get

Q(Q(z + e)n.(z + e)).v = λ2n+1 · v

for all n ∈ N0 from

Q(Q(z + e)n.(z + e)).v = Q(Q(z + e)Q(z + e)n−1.(z + e)).v

= Q(z + e)Q(Q(z + e)n−1.(z + e))Q(z + e).v

= Q(z + e)Q(Q(z + e)n−1.(z + e)).λv = λQ(z + e).(λ2n−1.v) = λ2n+1v.

Since the inclusion V0 →֒ V is isometric with respect to the spectral norm ([Lo77, Th. 3.17]),
we have

e+ z ∈ e+ De = Ae ⊆ D,

and the limit f = limn→∞Q(z)n.z is a tripotent in V0(e) (Theorem I.5).

As a consequence of the Peirce relations (1.2), we obtain

Q(e+ z).(e+ z) = Q(e)e+Q(z)z = e+Q(z)z,

and inductively

Q(e+ z)n.(e+ z) = e+Q(z)n.z → e+ f.

Therefore

lim
n→∞

λ2n+1v = lim
n→∞

Q(Q(z + e)n.(z + e)).v = Q(e+ f).v,

and the existence of the limit implies that |λ| ≤ 1. If |λ| < 1, then Q(e+f).v = 0, and otherwise
Q(e + f).v = λv . It follows in particular that each eigenvector for Q(e + z) on V1 also is an
eigenvector of Q(e+ f).

Suppose that |λ| = 1. As a consequence of the Peirce rules, the sum e + f is a Jordan
tripotent (I.3), and from Q(e + f).v = λv and kerQ(e + f) = V0(e + f) ⊕ V1(e + f) (I.8), we
derive v ∈ V2(e+ f), so that (e+ f)�(e+ f) = e�e+ f�f implies that v ∈ V1(f).

On the other hand Q(e+ f) is an antilinear involution of V2(e+ f) ⊇ V1(e) ∩ V1(f). We
conclude that

ker(ϕ(z) + 1) = ker(ϕ(f) + 1) = Fix(−Q(e+ f)) ∩ V1(f) ∩ V1(e).

To classify the G-orbits of transversal pairs in D , we need a more explicit description of
the image

DC := Ce(D)

of D under the partial Cayley transform Ce in terms of the Peirce decomposition of V . To this
end, we introduce the following notation:
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Definition I.13. Let e ∈ V be a tripotent.

(1) (V2, e, Q(e)) is a unital involutive Jordan algebra. We write v∗ := Q(e)v for the involution
on V2 and observe that V2 = E ⊕ iE for E := {v ∈ V : v∗ = v} . In this sense

Re v = 1
2 (v + v∗) = 1

2 (v +Q(e)v)

is the component of v in the real form E of V2 . The real Jordan algebra E is euclidean
and we write E+ := {a2: a ∈ E} for its closed positive cone. For v, w ∈ E we write v > w
for v − w ∈ int(E+) and v ≥ w for v − w ∈ E+ .

(2) For z ∈ V0 we define the antilinear map

ϕ(z):V1 → V1, v 7→ 2{e, v, z} = Q(e+ z).v

(Due to the different normalization, the factor 2 not present in [Lo77]).

(3) We also define a hermitian map

F :V1 × V1 → V2, (z, w) 7→ {z, w, e}

with
F (z, w)∗ = F (w, z) and F (z, z) > 0 for 0 6= z ∈ V1.

For u ∈ V0 with |u| < 1 we further define a real bilinear map

Fu(z, w) = F (z, (1 + ϕ(u))−1.w),

where we recall from Lemma I.12 that 1 + ϕ(u) is invertible.

In the following proposition the missing factor 1
2 in front of F , compared to [Lo77], is due

to our different normalization of the triple product.

Proposition I.14. ([Lo77, Th. 10.8]) We have

DC = Ce(D) = {v = v2 + v1 + v0 ∈ V2 ⊕ V1 ⊕ V0: |v0| < 1,Re(v2 − Fv0
(v1, v1)) > 0}.

To determine the closure of DC , we need the following lemma, because there might be
elements x0 ∈ ∂D ∩ V0 for which the operator ϕ(x0) + 1 is not invertible.

Lemma I.15. Let F be a finite-dimensional euclidean vector space, (An)n∈N a sequence of
positive definite operators on F converging to A and (vn)n∈N a sequence of elements of F

converging to v . If the sequence A
−

1
2

n vn is bounded, then v ∈ im(A).

Proof. Since A is symmetric, we have im(A) = ker(A)⊥ . Let w ∈ ker(A). We have to show

that 〈v, w〉 = 0. Since the sequence A
−

1
2

n vn is bounded, it contains a convergent subsequence,
and we may thus assume that it converges to some u ∈ F . Then we get

〈v, w〉 = lim
n→∞

〈vn, w〉 = lim
n→∞

〈A
1
2
nA

−
1
2

n vn, w〉 = lim
n→∞

〈A−
1
2

n vn, A
1
2
nw〉 = 〈u,A

1
2w〉 = 〈u, 0〉 = 0.

This completes the proof.

Lemma I.16. For each element v = v2 + v1 + v0 ∈ DC we have v1 ∈ im(1 + ϕ(v0)).

Proof. Let (vn)n∈N be a sequence in DC converging to v and write vn
j , j = 0, 1, 2, for its

Peirce components.

We pick a linear functional f ∈ E∗ in the interior of the dual cone of E+ , so that f(x) > 0
holds for 0 6= x ∈ E+ , and observe that this implies that

(v, w) := f(ReF (v, w))
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defines a real scalar product on V1 . The argument in [Lo77, p.10.6] shows that for each z ∈ V0

the operator ϕ(z) is symmetric with respect to this scalar product. According to Lemma I.12,
all its eigenvalues λ satisfy |λ| ≤ 1 and even |λ| < 1 for |z| < 1, so that 1 + ϕ(z) is a positive
semidefinite symmetric operator which is positive definite for |z| < 1.

From vn ∈ DC we get

|vn
0 | < 1 and ReFvn

0
(vn

1 , v
n
1 ) ≤ Re vn

2 ,

which implies that

f(vn
2 ) ≥ f(ReFvn

0
(vn

1 , v
n
1 )) = f(ReF (vn

1 , (1 + ϕ(vn
0 ))−1vn

1 ))

= (vn
1 , (1 + ϕ(vn

0 ))−1vn
1 ) = ((1 + ϕ(vn

0 ))−
1
2 vn

1 , (1 + ϕ(vn
0 ))−

1
2 vn

1 ).

Therefore the sequence (1 + ϕ(vn
0 ))−

1
2 vn

1 in V1 is bounded, and Lemma I.15 implies that

v1 = lim
n→∞

vn
1 ∈ im(1 + ϕ(v0)).

I.17. From the preceding lemma one easily derives an explicit description of the closure of DC

because the operator (1 + ϕ(v0))
−1 is well-defined on im(1 + ϕ(v0)). This leads to

DC =
{
v ∈ V : |v0| ≤ 1, v1 ∈ im(ϕ(v0) + 1),Re

(
v2 − F (v1, (1 + ϕ(x0))

−1v1)
)
≥ 0

}
.

Since we do not need this description in the following, we leave the details of its verification to
the reader.

Theorem I.18. (Orbits of transversal pairs) Let D be an irreducible bounded symmetric
domain, not necessarily of tube type. If (x, y) ∈ D is a transversal pair with rkx = k , then there
exists a g ∈ G with g.(x, y) = (ek, z) with

ek = c1 + . . .+ ck and z = −(cj+1 + . . .+ ck) +

r∑

l=k+1

λlcl, −1 ≤ λk+1 ≤ . . . ≤ λr ≤ 1.

Proof. Since D is irreducible, G acts transitively on the set of elements of rank k , so that
we may w.l.o.g. assume that x = e := ek . We then have to show that each Ge -orbits in e⊤ ∩ D
contains an element of the form

−(cj+1 + . . .+ ck) +

r∑

l=k+1

λlcl, −1 ≤ λk+1 ≤ . . . ≤ λr ≤ 1.

We recall the notation from Definition I.13. For y > 0 in E we then find with (I.7)

(1.12) B(e− y, e) = idV −2L(e− y) + P (e− y) = P (e− (e− y)) = P (y).

Let Q := GAe
denote the stabilizer of the holomorphic arc-component Ae of e in ∂D

(which is a maximal parabolic subgroup of G). Then the group QC := Ce ◦ Q ◦ C−1
e acts

naturally on DC = Ce(D) and we also put

QC
e := Ce ◦Ge ◦ C−1

e ⊆ QC ,

where Ge is the stabilizer of e in G .

From [Lo77, Lemma 10.7] we now obtain

QC = {tb ◦ tv+F (v,v) exp(2e�v)P (y) exp(ξw) · k: b ∈ iE, v ∈ V1, 0 < y ∈ E,w ∈ V0, k ∈ Ke},
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where Ke := {g ∈ G : g.0 = 0, g.e = e} ⊆ Aut(V )e is the set of all automorphisms of the Jordan
triple V fixing e and P (y) is the quadratic representation of the Jordan algebra V (e) (cf. I.7).
From the proof of [Lo77, Thm. 9.15] and the description of the Lie algebra L(QC) in [Lo77,
Prop. 10.6] it follows that for b ∈ iE, v ∈ V1, 0 < y ∈ E and k ∈ Ke we have

tb ◦ tv+F (v,v) exp(2e�v)P (y)k ∈ QC
e .

Moreover, the explicit calculations in the proof of [Lo77, Th. 10.8] further imply that the map

V0 → Ae = e+ (D ∩ V0), w 7→ exp(ξw).e

is bijective and that the Cayley transform fixes each ξw . This implies that

QC
e = {tb ◦ tv+F (v,v) exp(2e�v)P (y) · k: b ∈ iE, v ∈ V1, 0 < y ∈ E, k ∈ Ke}.

We observe that for v ∈ V1 the Peirce rules imply that e�v is a nilpotent operator on V
mapping Vj → Vj+1 . For x = x2 + x1 + x0 ∈ DC the V1 -component of

tv+F (v,v) exp(2e�v).x

is given by
x1 + v + ϕ(x0).v,

and since −x1 ∈ im(1 + ϕ(x0)) by Lemma I.16, there is a unique v ∈ im(1 + ϕ(x0)) with

tv+F (v,v) exp(2e�v).x ∈ V2 ⊕ V0.

From that we conclude that each QC
e -orbit in V through an element y = y2 + y1 + y0 ∈ DC

contains an element of the form

x2 + x0 with |x0| ≤ 1 and Rex2 ≥ 0.

Applying elements of the form tv , v ∈ iE , we may further assume that x2 ∈ E , so that we have
an element in E+ × De . From the explicit description of QC

e we derive that the intersection
of the orbit of x2 + x0 ∈ E + V0 with E + V0 contains the orbit of x2 + x0 under the group
Q′′ := P (E+)Ke .

The orbits of Q′′ on the set E+ × De are products of orbits of the automorphism group
G(E+) of the symmetric cone E+ in E and orbits of the identity component of the group Ke on
De . Since the action of the group Ke preserves the Peirce decomposition, it acts on De ⊆ V0 as a
subgroup of Aut(V0). The identity component of the latter group is obtained by exponentiating
elements of the Lie subalgebra V0 + τ(V0) + [V0, τ(V0)] ⊆ gC (here we use that De = D ∩ V0 is
an irreducible bounded symmetric domain; cf. Th. I.5), and all the elements of this subalgebra
commute with the element e ∈ V2 by the Peirce rules (I.2). Hence the image of Ke in Aut(V0)
contains the identity component of Aut(V0).

For e = ek = c1 + . . .+ ck , the orbits of G(E+)0 , which coincide with the orbits of the full
group G(E+), are represented by the elements

e0 = 0, e1 = c1, . . . , ej = c1 + . . .+ cj , . . . , ek = e

([FK94, Prop. IV.3.2]). Since (ck+1, . . . , cr) is a Jordan frame in V0 , each orbit of Aut(V0)0 in
V0 contains an element of the form

r∑

l=k+1

λlcl, λk+1 ≤ . . . ≤ λr

(cf. [FK94, Prop. X.3.2]).

Next we transfer this information back to the bounded picture, i.e., to Ge -orbits in D .
According to [Lo77, Prop. 10.3], we have

(1.13) Ce(x2 + x0) = Ce(x2) + x0 = (e+ x2)(e− x2)
−1 + x0 for x2 ∈ V2, x0 ∈ V0.

For ej = c1 + . . . + cj , j ≤ k , the element e + ej is invertible in V2 , and we obtain for
ẽj := (ej − e)(ej + e)−1 = −Ce(−ej) = C−1

e (ej) that Ce(ẽj) = ej . An explicit calculation in the
associative Jordan algebra generated by c1, . . . , ck quickly shows that

ẽj = −(e− ej) = −e+ ej = −cj+1 − . . .− ck.

This completes the proof.
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I.19. For the special case k = r , i.e., e ∈ S , we have V0 = {0} , so that DC is the Siegel domain

DC = {v = v2 + v1 ∈ V2 ⊕ V1 = V : Re(v2 − F (v1, v1)) > 0}

of type II. In this case the orbits of Q′′
e are represented by elements of the form −e + ej ,

j = 0, . . . , r , so that we obtain only finitely many orbits. Observe that rk(−e+ ej) = r − j , so
that, even if Q′′ is not connected, it cannot have less orbits in e⊤ than its identity component.

There would be no substantial gain in the proof of Theorem I.18 by assuming that D is of
tube type. However, in the sequel we will need only a special case of the theorem, for which an
easy direct proof (independant of the proof of Theorem I.18) can be offered.

Lemma I.20. Suppose that D is irreducible and of tube type, let x ∈ S and z ∈ D , and assume
that x⊤z . There exists g ∈ G and an integer k, 0 ≤ k ≤ r (†) such that

g(x) = er and g(z) = −
r∑

j=k+1

cj = ek − er .

Proof. As G is transitive on S , there is no restriction in assuming that x = e := er . Now
the transversality condition is equivalent to z belonging to the domain V × + e of the Cayley
transform C(z) := Ce(z) := (e + z)(e − z)−1 (cf. (1.13)). Set ζ = C(z) (Theorem I.9). Then
ζ ∈ E+ + iE . The point e is sent by the Cayley transform “to infinity”, in such a way that
the stabilizer of e in G corresponds via conjugation by the Cayley transform to a subgroup of
the affine group of EC , denoted by QC

e , namely the semi-direct product of the translations by
an element of iE and the group G(E+) (after complexification to EC of its action on E ). By
using a translation, we see that in the QC

e -orbit of ζ , there is an element of the form η ∈ E+ .
Since D is irreducible, the G(E+)-orbits in E+ are known to be exactly the r + 1 orbits of

the elements ek =
∑k

j=1 cj , with k = 0, 1, . . . r (see [FK94, Prop. IV.3.2]). But now the inverse

Cayley transform of the element
k∑

j=1

cj is the element ek − e = −
r∑

j=k+1

cj . Hence the result.

II. Transversality and faces

In this section we keep the notation from Section I. In particular D is a circular irreducible
bounded symmetric domain of rank r in V . The main result of this section is that transversality
of two elements x, y ∈ D is equivalent to the geometric property that x and y do not lie in a
proper face of the compact convex set D (Theorem II.12).

Definition II.1. (a) We call a non-empty convex subset F of a convex set C a face if for
0 < t < 1 and c, d ∈ C the relation tc + (1 − t)d ∈ F implies c, d ∈ F . We write F(C) for
the set of non-empty faces of C . A face F is called exposed if there exists a linear functional
f :V → R with

F = f−1(max f(C)).

An extreme point e ∈ C is a point for which {e} is a face, i.e., tc+(1− t)d = e for c, d ∈ C and
0 < t < 1 implies c = d = e . We write Ext(C) for the set of extreme points of C .

The set of all faces of C has a natural order structure given by set inclusion whose maximal
element is C itself. All extreme points of C are minimal elements of this set, but C need not
have any extreme points.

(†) If k = r , use the convention that
∑r

j=r+1 cj = 0 .
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Obviously, the intersection of any family of faces is a face. We thus define for a subset
M ⊆ C the face generated by M by

Face(M) :=
⋂

{F ⊆ C:F ∈ F(C),M ⊆ F}.

(b) For a convex set C in the vector space V we write

algint(C) := {x ∈ C: (∀v ∈ C − C)(∃ε > 0) x+ [0, ε]v ⊆ C}
for its algebraic interior. If V is finite-dimensional, then algint(C) is the interior of C in the
affine subspace it generates.

Remark II.2. (a) Suppose that C is a convex subset of a finite-dimensional vector space
having non-empty interior. Then all proper faces of C are contained in the boundary ∂C and,
conversely, the Hahn–Banach Separation Theorem implies that each boundary point is contained
in a proper exposed face.

(b) For any non-empty convex subset of a finite-dimensional real vector space the algebraic
interior is non-empty. Hence, if x belongs to the algebraic interior of a face F , then F is
generated by {x} .

(c) Since every face E of a face F of C is also a face of C , faces of exposed faces of C
are faces of C . On the other hand, every proper face is contained in an exposed face (see (a)),
so that we obtain inductively, that for each face F there exists a sequence of faces

F0 = F ⊆ F1 ⊆ . . . ⊆ Fn = C

for which Fi is an exposed face of Fi+1 for i = 0, . . . , n− 1.

Proposition II.3. The proper faces of the convex set D are the closures of the holomorphic
arc-components in ∂D and the Shilov boundary is the set of extreme points of D .

In particular the group G acts on the set F(D) of faces of D .

Proof. For the fact that S is the set of extreme points of D we refer to [Lo77, Th. 6.5].

Next we use [Sa80, Lemma III.8.11, Th. III.8.13] to see that the proper exposed faces F
of D are the closures of the holomorphic arc-components in ∂D . Since the action of the group
G on D permutes the holomorphic arc-components in ∂D , it also permutes the exposed faces
of D .

We now claim that each face of D is exposed. Since every face F of D is generated by a
suitable element x ∈ F (Remark II.2), it suffices to show that the face generated by any element
x ∈ ∂D is exposed. Let Ax be the holomorphic arc-component of ∂D containing x . Then Ax

is an exposed face of D with algint(Ax) = Ax (Theorem I.5). Therefore the face generated by
x coincides with Ax , showing that every face of D is exposed.

Remark II.4. From the preceding proposition we know that the map F 7→ algint(F ) is a
G-equivariant bijection between the set F(D) of faces of D and the set of holomorphic arc-
components in D .

If D is irreducible, we define the rank of a face by rkF := k if algint(F ) consists of
elements of rank k . Since two holomorphic arc-components are conjugate under G if and only
if their elements have the same rank (cf. Theorem I.5), the rank function

rk:F(D) → {0, . . . , r}
classifies the G-orbits in F(D). The stabilizer of a proper face, resp., a holomorphic arc-
component in ∂D , is a maximal parabolic subgroup of G ([Sa80, Cor. III.8.6]).

If D = D1 × . . .×Dm is a direct product of the irreducible domains Dj , then each face F
of D is a product F1 × . . .× Fm of faces Fj ∈ F(Dj), so that the G-orbits in

F(D) ∼= F(D1) × . . .×F(Dm)

are classified by the m-tuple (rkF1, . . . , rkFm).

In the following we shall prove that for two elements x, y ∈ D transversality is equivalent
to the geometric transversality relation Face(x, y) = D . We start with the easy implication.
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Proposition II.5. If x, y ∈ D are transversal, then they are not contained in a proper face,
i.e., Face(x, y) = D.
Proof. If x and y are not geometrically transversal, then F := Face(x, y) is a proper face of
D , hence of the form

F = Fe = e+ (D ∩ V0(e)) = (e+ V0(e)) ∩ D
for some tripotent e ∈ V (Theorem I.5, Prop. II.3 and [Sa80, Lemma III.8.10] for the second
equality). Then x, y ∈ F implies that x, y ∈ e+ V0(e), so that I.8 leads to B(x, y).e = 0. Thus
x and y are not transveral. This proves the assertion.

Example II.6. We consider the r -dimensional polydisc

D := ∆r := {z ∈ C
r: max

j
|zj| < 1} ⊆ V = C

r.

Let (c1, . . . , cr) denote the canonical basis of C
r . The corresponding Jordan triple structure is

given by
{x, y, z} = (x1y1z1, . . . , xryrzr).

An element z ∈ C
r is a tripotent if |zj |2zj = zj holds for each j , which means that either zj = 0

or |zj | = 1. We have
rk z = |{j: |zj| = 1}|,

and the tripotents of maximal rank form the n-dimensional torus S = T
n , the Shilov boundary

of ∆r .

Since the faces of D = ∆
r

are cartesian products of faces of the closed unit disc

∆ = {z ∈ C: |z| ≤ 1},

each face F ∈ F(∆r) is a product F1 × · · · ×Fr of closed unit discs and points in the boundary
of ∆. For a subset M ⊆ ∆

r
, it follows that the face generated by M is given by

Face(M) = F1 × · · · × Fr, Fj =
{ {s} if mj = s ∈ ∂∆ for all m ∈M

∆ otherwise.

It follows in particular that x, y ∈ D are contained in a proper face if and only if xj = yj ∈ ∂∆
holds for some j .

For k ≤ r we consider the tripotent ek := c1 + . . .+ ck . Then

V2 = C
k × {0}r−k and V0 = {0}k × C

r−k.

An element x ∈ ∆r is transversal to ek if and only if ek − (x1, . . . , xk, 0, . . . , 0) is invertible in
the unital Jordan algebra (V2, ek), which means that the first k components of x are different
from 1 (I.10). That this is not the case means that one component xj , j ≤ k , equals 1, and
therefore Face(ek, x) 6= D . If, conversely, Face(ek, x) 6= D , then ek, x are contained in a proper
face of ∆r which implies that xj = 1 for some j ≤ k .

Proposition II.7. Let e ∈ V be a tripotent, V =
∑2

j=0 Vj the corresponding Peirce
decomposition and pj :V → Vj the projection along the other Peirce components. Then each
Vj is a positive hermitian Jordan triple and we have

Dj = Vj ∩ D = pj(D).

In particular, each map pj :V → Vj is a contraction with respect to the spectral norms determined
by the domains D and Dj .

Proof. Let 〈·, ·〉 be an associative hermitian scalar product on V (Definition I.11). Then
the Peirce decomposition is orthogonal with respect to 〈·, ·〉 , so that it provides an orthogonal
decomposition of V into 3 Jordan subtriples ([Lo77, Th. 3.13]).
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Clearly the restriction of the scalar product to each Vj provides an associative scalar
product on Vj and for each v ∈ Vj the operator v�v is positive semidefinite on V, which implies
in particular that its restriction to Vj is positive semidefinite. Hence each Vj is a positive
hermitian Jordan triple.

According to [Lo77, Th. 3.17], the inclusion maps Vj →֒ V are isometric with respect to
the spectral norm, which means that

Dj = Vj ∩D = {z ∈ Vj : |z| < 1}

holds for the corresponding bounded symmetric domains.

To see that the projections pj are contractive with respect to the spectral norm, let v ∈ V
and vj = pj(v) its component in Vj . For each unit vector w ∈ Vj the orthogonality of the Peirce
decomposition implies that

〈v�v.w,w〉 =

2∑

k,l=0

〈vk�vl.w, w〉 =

2∑

k=0

〈vk�vk.w, w〉 ≥ 〈vj�vj .w, w〉,

which leads for the spectral norm |vj | to

|vj |2 = ‖vj�vj‖Vj
= sup{〈vj�vj .w, w〉:w ∈ Vj , 〈w,w〉 = 1}

≤ sup{〈v�v.w,w〉:w ∈ Vj , 〈w,w〉 = 1} ≤ sup{〈v�v.w,w〉:w ∈ V, 〈w,w〉 = 1} = |v|2.

Since the inclusion Vj →֒ V is isometric, pj is a contraction with respect to the spectral norm,
and therefore Dj ⊆ pj(D) ⊆ Dj proves equality.

Corollary II.8. If F is a proper face of Dj , then p−1
j (F ) is a proper face of D .

Definition II.9. Suppose that e ∈ V is a tripotent with V2(e) = V , so that Q(e) is an
antilinear involution on V turning (V, e,Q(e)) into an involutive unital Jordan algebra. As in
Section I, we endow V with the spectral norm |z| whose open unit ball is D .

A state of the unital involutive Jordan algebra V is a linear functional f :V → C with

1 = f(e) = ‖f‖ := sup |f(D)|.

Remark II.10. If f is a state on V and y ∈ D with f(y) = 1, then e and y lie in the proper
face {z ∈ D: Re f(z) = 1} .

Proposition II.11. If y ∈ D and e− y is not invertible in the unital Jordan algebra (V, e) ,
there exists a state f of V with f(y) = 1 .

Proof. We endow V with the associative scalar product 〈z, w〉 := tr(z�w) (cf. Def. I.11).

By assumption e− y is not invertible, which implies that the left multiplication L(e− y) =
(e − y)�e is not invertible. Pick v ∈ kerL(e − y) with 〈v, v〉 = 1. We consider the linear
functional

f :V → C, f(z) := 〈L(z).v, v〉
satisfying f(e) = 〈v, v〉 = 1 and

f(y) = 〈L(y).v, v〉 = 〈L(e).v, v〉 = f(e) = 1.

It remains to show that f is a state. Let E := {z ∈ V : z∗ = Q(e)z = z} denote the
euclidean Jordan algebra with V ∼= E ⊗R C and unit element e . We write E+ for the closed
positive cone in E . This is the set of all those elements z for which there exists a system
c1, . . . , ck of orthogonal idempotents with e = c1 + . . . + ck and non-negative real numbers λj

with

z =

k∑

j=1

λjcj .
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For such elements z ∈ E+ we then have

f(z) =

k∑

j=1

λj〈L(cj).v, v〉 =

k∑

j=1

λj〈cj�cj.v, v〉 ≥ 0

because L(cj) = cj�e = cj�cj follows from cj�(e− cj) = 0 (I.2) and the operators cj�cj are

positive semidefinite on V ([Lo77, Cor. 3.16]). We conclude that f(E) ⊆ R , so that f(z∗) = f(z)
for all z ∈ V .

From Q(e)−1 = Q(e) we derive Q(Q(e).z) = Q(e)Q(z)Q(e) = Q(e)Q(z)Q(e)−1 , so that
Q(e): z 7→ z∗ is a Jordan triple automorphism of V , hence an isometry for the spectral norm | · |
on V . This implies that Q(e)D = D and therefore that for z = x+ iy ∈ D , x, y ∈ E , we have

|x| = 1
2 |z + z∗| ≤ 1

2 (|z| + |z∗|) = |z|.

For the map Re:V → E, z 7→ 1
2 (z + z∗) this means that DE := D ∩E = Re(D).

For the functional f we thus obtain

‖f‖ = sup |f(D)| = sup Re f(D) = sup f(ReD) = sup f(DE).

In view of the Spectral Theorem for euclidean Jordan algebras ([FK94]), we have

DE = (e− E+) ∩ (−e+ E+) ⊆ e− E+,

so that f(z) ≥ 0 for z ∈ E+ leads to ‖f‖ = sup f(DE) = f(e) = 1. This means that f is a
state.

Theorem II.12. Two elements x, y ∈ D are transversal if and only if they are not contained
in a proper face, i.e.,

x⊤y ⇐⇒ Face(x, y) = D.
Proof. In view of Proposition II.3, geometric transversality is also invariant under the action
of the group G . On the other hand transversality is invariant under G ([CØ01]), so that it
suffices to assume that x = e is a Jordan tripotent. In view of Proposition II.5, it suffices to
show that if e is not transversal to y ∈ D , then both e and y lie in a proper face of D .

For e = 0 we have Face(x, e) = D because e ∈ D = algint(D) and also e⊤x for all x ∈ D
because B(x, e) = idV .

We may therefore assume that e 6= 0. We have to show that if e and y are not transversal,
then they are contained in a proper face of D . That y is not transversal to e is equivalent to
the element e − y2 being not invertible in the unital Jordan algebra V2(e) (I.10). In view of
Proposition II.11, combined with Remark II.10, e and y2 are contained in a proper face F of the
convex set D2 . Hence e and y are contained in the proper face p−1

2 (F ) of D (Corollary II.8).

Example II.13. Let p, q ∈ N , r := min(p, q), and ‖·‖ denote the euclidean norm on C
p , resp.,

C
q . On the matrix space V := Mp,q(C) ∼= Hom(Cq,Cp) we write |X | for the corresponding

operator norm. Then
D := {X ∈Mp,q(C): |X | < 1}

is a bounded symmetric domain. The pseudo-unitary group Up,q(C) acts transitively on D by

(
a b
c d

)
.z := (az + b)(cz + d)−1,

the effectivity kernel of this action is T1 , so that G = Aut(D)0 ∼= PUp,q(C). The 3-grading of
gC is induced by the 3-grading of glp+q(C) given by

glp+q(C)+ =

(
0 Mp,q(C)
0 0

)
, glp+q(C)0 =

(
glp(C) 0

0 glq(C)

)
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and

glp+q(C)− =

(
0 0

Mq,p(C) 0

)
.

We further have

up,q(C) =
{(

a b
b∗ d

)
: a∗ = −a, d∗ = −d

}
.

The vector field associated to the one-parameter group given by exp
(
t

(
a b
c d

) )
is given

by z 7→ b − az − zd − zcz, so that the Jordan triple structure on V = Mp,q(C) satisfies
Q(z)(w) = zw∗z , which leads to

{a, b, c} = 1
2 (ab∗c+ cb∗a).

In particular the Bergman operator satisfies

B(v, w)z = z − 2v�w.z+Q(v)Q(w)z = z− (vw∗z+ zw∗v) + v(wz∗w)∗v = (1− vw∗)z(1−w∗v).

From that it follows that v⊤w is equivalent to the invertibility of 1−w∗v in the algebra Mq(C).

An element e ∈Mp,q(C) is a tripotent if and only if ee∗e = e , which implies that ee∗ and
e∗e are orthogonal projections, and that e defines a partial isometry C

q → C
p . If K := ker(e)

and R := im(e), then the face Fe of D consists of all matrices z ∈ D with z.v = e.v for
v ∈ ker(e)⊥ . For k = rank(e) and an orthonormal basis v1, . . . , vk of ker(e)⊥ and wi := e.vi ,
we have

Fe = {z ∈ D: (∀i) 〈zvi, wi〉 = 1}.
From this description of the faces of D it follows that an element z ∈ D is contained in a proper
face if and only if its restriction to some one-dimensional subspace of C

q is isometric, i.e., if and
only if |z| = 1. Two elements z, w generate a proper face if and only if there exists a unit vector
v ∈ C

q for which z.v = w.v is a unit vector in C
p .

A Jordan frame is given by the matrices cj := Ejj , j = 1, . . . , r , with a single non-zero
entry 1 in position (j, j). The rank of D is r and er := c1 + . . .+ cr is a maximal tripotent with

S = G.er =

{
{z ∈Mp,q(C): z∗z = 1} if q ≤ p
{z ∈Mp,q(C): zz∗ = 1} if p ≤ q.

For q ≤ p this is the set of isometries C
q →֒ C

p and for p ≤ q this is the set of all adjoints of
isometries C

p → C
q .

Let ek := c1+. . .+ck be the canonical tripotent of rank k . Writing an element z ∈Mp,q(C)
as a block matrix

z =

(
z11 z12
z21 z22

)
with z11 ∈Mk(C), z12 ∈Mk,q−k(C), z21 ∈Mp−k,k(C), z22 ∈Mp−k,q−k(C),

we have

2{e, e, z} = ee∗z + ze∗e =

(
1 0
0 0

) (
z11 z12
z21 z22

)
+

(
z11 z12
z21 z22

) (
1 0
0 0

)
=

(
2z11 z12
z21 0

)
.

This shows that

V2(ek) ∼= Mk(C), V1(ek) ∼= Mk,q−k(C) ⊕Mp−k,k(C) and V0(ek) ∼= Mp−k,q−k(C),

and therefore

Fe =
{(

1 0
0 z

)
: z ∈Mp−k,q−k(C), |z| ≤ 1

}
.

For k = r we see in particular that V0(er) = 0.
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III. Orbits of triples in the Shilov boundary

In this section we obtain the key result for our classification of triples in S in the tube
type case. We show that if (c1, . . . , cr) is a Jordan frame in E , then each G-orbit in S × S × S
meets the Shilov boundary T ∼= Tr of the corresponding polydisc. We further show that the
polydiscs arising in this result can also be characterized directly as the intersections of D with
r -dimensional subspaces of V , or, equivalently, as isometric images of polydiscs under affine
maps C

r → V , mapping ∆r isometrically into D . In particular we show that any such affine
map is linear.

Theorem III.1. Suppose that D ⊆ V is of tube type, (c1, . . . , cr) is a Jordan frame in V ,
and

T := S ∩ span{c1, . . . , cr} =
{ r∑

j=1

λjcj : (∀j) |λj | = 1
}

is the corresponding r -torus in S . Then for each triple (e, f, g) ∈ S there exists a g ∈ G with
g.e, g.f, g.h ∈ T .

Proof. Since Jordan frames and G decompose according to the decomposition of D into
products of irreducible domains, it suffices to prove the assertion for irreducible domains. We
prove the assertion by induction on the rank r of D . Observe that the algebraic interior of
any face F of D is a bounded symmetric space of tube type. In fact, let E be a euclidean
Jordan algebra which has V as its complexification. Let F be a face of rank k . Then F
contains a tripotent c of rank k and there exists a Jordan frame (c1, c2, . . . , cr) in E such that

c =
∑k

j=1 λjcj , with |λj | = 1 for 1 ≤ j ≤ k . Then V0(c) is the complexification of the euclidean
Jordan algebra E0(c) = E0(c1 + c2 + . . .+ ck). For z ∈ V0(c), the spectral norm relative to V0(c)
coincides with the spectral norm in V , and so V0(c)∩D = D0 is the bounded symmetric domain
of tube type associated to the euclidean Jordan algebra E0(c). As

algint(F ) = algint(Fc) = c+ (D ∩ V0(c)) = c+ D0,

we see that algint(F ) is a bounded symmetric domain of tube type.

Case 1: If Face(e, f, h) is proper, then its algebraic interior is a bounded symmetric
domain of tube type D′ of smaller rank and (e, f, h) are contained in its Shilov boundary. In
fact, according to Theorem I.5 and Proposition II.3, for each face F of D corresponding to the
holomorphic arc-component A = algint(F ), the Shilov boundary of A is given by

SA = Ext(A) = Ext(F ) = Ext(D) ∩ F = S ∩ F.

Since every element of Aut(D′)0 is the restriction of an element of Aut(D) ([Sa80,
Lemma III.8.1]), in this case the result follows from the induction hypothesis if r > 1. If
r = 1, then each proper face of D is an extreme point, so that the assumption that e, f, h lie
in a proper face implies e = f = h . In this case we further have c1 ∈ S , so that the assertion
follows from the transitivity of the action of G on S .

Case 2: We assume that some pair (e, f), (f, h) or (e, h) is transversal. We may w.l.o.g.
assume that (e, f) is transversal. Then Face(e, f, h) ⊇ F (e, f) = D by Theorem II.12, and
G.(e, f) contains (e,−e) because rk f = rk e = r (Lemma I.20). Therefore the orbit of (e, f, h)
contains an element of the form (e,−e, h). Now the assertion follows from the Spectral Theorem
for unitary elements in V (cf. [FK94, Prop. X.2.3]) and (A.5) in the appendix.

Case 3: Face(e, f, h) = D , but neither (e, f), nor (f, h) or (e, h) is transversal. Since G
acts transitively on S , we may w.l.o.g. assume that e = er = c1 + . . .+ cr . Consider the proper
face F := Face(f, h) of D . Then we have

D = Face(e, f, h) = Face({e} ∪ F ),
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and for any x ∈ algint(F ) we obtain

D = Face({e} ∪ F ) = Face(e, x),

which means that e and x are transversal (Theorem II.12).

Now we need the classification of G-orbits in the set of transversal pairs, which shows that
the pair (e, x) is conjugate to an element of the form (e,−e+ ej) (Lemma I.21). The face

F ′ = Face(−e+ ej) = −Face(e− ej) = −(e− ej) + (V0(e− ej) ∩ D) = (ej − e) + (V2(ej) ∩D)

is a bounded symmetric domain of tube type of rank j , and (e, f, h) is conjugate to a triple of
the form (e, f ′, h′) where f ′, h′ are two elements in the Shilov boundary of F ′ , where they are
transversal because they generate F ′ as a face (Theorem II.12). Next we observe that the Peirce
rules imply that by exponentiating elements of the centralizer of e − ej in g we generate the
identity component G0 of the group Aut(D∩V0(e− ej)) and its elements g act on ej − e+ z by

g.(ej − e+ z) = (ej − e) + g.z

because they commute with the translation tej−e . Now we conclude the proof by applying the
special case of transversal elements which has already been taken care of, to see that the G0 -orbit
of (e, f ′, h′) intersects T .

Remark III.2. If D is not of tube type, then the Cayley transform C = Ce leads to a
realization of D as a Siegel domain DC of type II , and since Ce(−e) = 0, the stabilizer Ge,−e

of ±e in G corresponds to the stabilizer QC
e,−e := Ce(Ge,−e) of 0 in the affine group QC

e , and
the identity component of this group is G(E+)0Ke (see the proof of Theorem I.18). The Shilov
boundary of DC is the set

{(v2, v1) ∈ V = V2 ⊕ V1: Re v2 = F (v1, v1)},
and from this description it is clear that no element v2 + v1 with v1 6= 0 is conjugate under
QC

e,−e to an element in spanR{c1, . . . , cr} ⊆ V2 . Therefore the condition that D is of tube type
is necessary for the conclusion of Theorem III.1.

Example III.3. The simplest example of a bounded symmetric domain not of tube type is
the matrix ball D ⊆ C

n for n > 1. Its rank is r = 1 and in this case G ∼= PSUn,1(C) (cf.
Example II.13).

To z ∈ D we assign the one-dimensional subspace Lz := C

(
z
1

)
∈ C

n+1 . Endowing C
n+1

with the indefinite hermitian form h given by

h(z, w) := z1w1 + . . .+ znwn − zn+1wn+1,

we see that D corresponds to the set of lines on which h is negative definite, and its Shilov
boundary, the sphere S ∼= S2n−1 , corresponds to the set of isotropic lines. In this picture the
action of SUn,1(C) on D comes from the natural action of this group on the one-dimensional
subspaces of C

n+1 .

Fixing a unit vector e ∈ S , the pair (e,−e) corresponds to two different isotropic lines
Le and L−e in C

n+1 , and the stabilizer of this pair in Un,1(C) fixes the non-degenerate
subspace Le + L−e , and also its orthogonal complement of dimension n − 1. We conclude
that Un,1(C)e,−e

∼= R× × Un−1(C), and that no line Lz 6⊆ Le + L−e can be moved by Un,1(C)
into the plane Le + L−e . On the other hand, the set of isotropic lines in the plane Le + L−e

corresponds to the circle in S obtained by intersecting S with the boundary of a one-dimensional
disc ∆ ⊆ D of size 1, which in particular is a polydisc of maximal rank. This shows quite directly
that there are triples in S that cannot be moved into the one-dimensional space Ce , so that
Theorem III.1 does not hold.

That Theorem III.1 fails in this context, can be expressed quantitatively by the observation
that

F (Cv1,Cv2,Cv3) :=
h(v1, v2)h(v2, v3)h(v3, v1)

h(v2, v1)h(v3, v2)h(v1, v3)

is a well-defined function on the set of triples of pairwise different isotropic lines in C
n+1 which

is invariant under the pseudo-unitary group Un,1(C). The function F is related to the Cartan
invariant (for a presentation and a generalization of this invariant we refer to [Cl05]).
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Example III.4. The matrix ball D ⊆ Mn(C) is a symmetric domain of tube type with
Shilov boundary S = Un(C), the unitary group. The maximal polydiscs in D are obtained
by intersecting D with the set of all matrices that are diagonal with respect to some fixed
orthonormal basis of C

n with respect to the standard scalar product. A particular Jordan frame
consists of the matrix units cj := Ejj , j = 1, . . . , n , whose span is the set of diagonal matrices.
Therefore Theorem III.1 states that each triple (s1, s2, s3) of unitary matrices can be diagonalized
by an element g ∈ Un,n(C), acting on Un(C) by

(
a b
c d

)
.z = (az + b)(cz + d)−1.

The compact subgroup Un(C) × Un(C) acts linearly by (a, d).z = azd−1 , and under this
group each pair (s1, s2) is conjugate to a pair of the form (1, s′2), where the stabilizer of
1 is the diagonal subgroup, acting on the second component by (a, a−1).s2 = as2a

−1 , so
that s′2 can be diagonalized by conjugating with a suitable element a ∈ Un(C). This means
that diagonalizability of pairs reduces to classical linear algebra, but diagonalizability of triples
requires the non-linear action of Un,n(C) and Theorem III.1.

A classification of the conjugation orbits of Un(C) in Un(C)2 is given in [FMS04], but
since Un(C) is much smaller than Un,n(C), this classification leads to infinitely many orbits.

Polydisc in bounded symmetric domains

Let D ⊆ V be a bounded symmetric domain of rank r and ∆r ⊆ C
r the r -dimensional

unit polydisc. We endow C
r with the metric defined by the sup-norm

|z| := max{|z1|, . . . , |zr|}

and V by the metric defined by the spectral norm, also denotes |z| .

Theorem III.5. Any affine isometric map f : Cr → V mapping ∆
r

into D is linear and
preserves the rank, i.e., for each x ∈ ∆

r
we have

rk f(x) = rkx.

Moreover, it is a morphism of Jordan triples and f(e1, . . . , er) is a Jordan frame.

Proof. Let x0 := f(0). Then ℓ(x) := f(x) − x0 defines an isometric linear map ℓ: ∆
r → V .

Since ℓ is linear and isometric, it maps the open unit ball ∆r in C
r into the open unit ball D

of (V, | · |), so that it also maps ∆
r

isometrically into D .

Let f1, . . . , fr denote the images of the canonical basis in C
r under ℓ . Then the coordinate

projections

χj :L := span{f1, . . . , fr} = im(ℓ) → C,
∑

j

λjfj 7→ λj

are linear maps with ‖χj‖ = 1 because ℓ: Cr → L is an isometric inclusion. Using the Hahn–
Banach Theorem, we find extensions χj :V → C with the same norm. Then the map

χ := (χ1, . . . , χr):V → C
r

satisfies ‖χ‖ = 1 and χ ◦ ℓ = id. It follows in particular that χ(D) ⊆ ∆r .

Since χ maps D into ∆
r
, we have an order-preserving map

χ∗:F(∆
r
) → F(D), F 7→ χ−1(F )

and the corresponding map

ℓ∗:F(D) → F(∆
r
), F 7→ ℓ−1(F )
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satisfies
ℓ∗ ◦ χ∗ = (χ ◦ ℓ)∗ = id .

We conclude that χ∗ is an order preserving injection. This entails in particular, that for each
strictly increasing chain

F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fr

of faces of ∆
r
, the images under χ∗ form a strictly increasing chain of faces of D . Since r is

the rank of D , the maximal chains in F(D) are of length r , which implies that χ∗ preserves
the rank of faces. Since the rank of an element x ∈ D coincides with the rank of the face it
generates, we further see that for z ∈ ∆

r
we have

rk ℓ(z) = rk Face(ℓ(z)) = rk ℓ∗(Face(z)) = rk(Face(z)) = rk z.

Therefore ℓ preserves the rank.

Moreover, ℓ maps the Shilov boundary Tr , consisting of the elements of maximal rank,
into the Shilov boundary S of D . The relation

f(∆
r
) = x0 + ℓ(∆

r
) ⊆ D

implies
−x0 + ℓ(∆

r
) = −(x0 + ℓ(∆

r
)) ⊆ D,

so that for each z ∈ T
r we have

ℓ(z) = 1
2 ((ℓ(z) + x0) + (ℓ(z) − x0)) ∈ S,

so that S = Ext(D) implies x0 = 0, and hence f = ℓ is linear.

For i ∈ {1, . . . , r} we consider the corresponding face

F := {z ∈ ∆
r
: zi = 1} ∈ F(∆

r
).

Then F is the closure of an (r − 1)-dimensional affine polydisc, and f |F :F → D is an affine
isometry into a face Fc ∈ F(D), where c is a primitive tripotent (Theorem I.5, Prop. II.3).
Applying the first part of the proof with D replaced by algint(F ′) to the corresponding map

∆
r−1 → Fc − c, z 7→ f(z1, . . . , zi−1, 1, zi, . . . , zr) − c,

we see that this map is linear, hence maps 0 to 0, which leads to f(ei) = c . For i 6= j the element
ei+ej ∈ ∆

r
is contained in the face generated by ei , which implies that f(ei+ej) = f(ei)+f(ej)

is contained in the face generated by f(ei). From Theorem I.5 we now derive

f(ej) = f(ei + ej) − f(ei) ∈ V0(f(ei)),

so that the primitive tripotents f(ei), i = 1, . . . , r , are mutually orthogonal. Hence the linear
map f : Cr → V is a morphism of Lie triples systems.

Corollary III.6. Suppose that D1 ⊆ V1 and D2 ⊆ V2 are circular bounded symmetric domains
of the same rank. Then any affine isometric map f :V1 → V2 mapping D1 into D2 is linear and
rank-preserving.

Proof. Let r := rkD1 = rkD2 and fix a polycylinder D0 := ∆r ⊆ D1 defined by a Jordan
frame (c1, . . . , cr). For V0 := span{c1, . . . , cr} we then obtain by restriction an isometric map
f0:V0 → V2 mapping D0 → D2 . In view of Theorem III.5, this map is linear, which implies
f(0) = f0(0) = 0, and thus f is linear.

Moreover, f0 is rank-preserving by Theorem III.5, which implies that f is also rank-
preserving.
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Corollary III.7. If r = rankD , then any isometric linear embedding f : ∆r →֒ D is equiv-
ariant in the sense that there exists a subgroup G1 ⊆ Aut(D0) and a surjective homomorphism
G1 → Aut(∆r)0 ∼= PSU1,1(C)r such that f is equivariant with respect to the action of G1 on
∆r and D .

Proof. If (e1, . . . , er) is the canonical basis in C
r , then (c1, . . . , cr) := (f(e1), . . . , f(er)) is a

Jordan frame, so that

g1 :=

r∑

j=1

gcj
⊆ g

is isomorphic to su1,1(C)r ∼= sl2(R)r (see (I.8)), the Lie algebra of the group Aut(∆r)0 ∼=
PSU1,1(C). We may now put G1 := 〈exp g1〉 ⊆ G , and the assertion follows.

IV. The Maslov index

To define the integers classifying the G-orbits in S × S × S , we need in particular the
Maslov index, a certain G-invariant function ι:S × S × S → Z . In this section we explain how
the Maslov index can be defined for bounded symmetric domains of tube type which are not
necessarily irreducible, hence extending the definition given in [CØ01], [CØ03], [Cl04b]. Using
Theorem III.1, we further derive a list of properties of the Maslov index and show that it can
be characterized in an axiomatic fashion by these properties. Actually this was our original
motivation to prove Theorem III.1.

Let us first consider the case of the unit disc ∆. Then the group G is PSU1,1(C) acting
by homographies on ∆, and its Shilov boundary is the unit circle T . The Maslov index

ι = ιT : T × T × T −→ Z

is defined by

• ι(x, y, z) = 0 if two of the elements of the triplet coincide.

• ι(x, y, z) = ±1 if (x, y, z) is conjugate under G to (1,−1,∓i).
If ∆r denotes the r -polydisc, then the identity component of Aut(∆r) is G = PSU1,1(C)r

and the Shilov boundary of ∆r is Tr . The Maslov index ι = ιTr : Tr −→ R is defined by

ι((x1, x2, . . . , xr), (y1, y2, . . . , yr), (z1, z2, . . . , zr)) := ι(x1, y1, z1)+ ι(x2, y2, z2)+ . . .+ ι(xr, yr, zr) .

Now consider an irreducible bounded symmetric domain D of tube type with Shilov
boundary S . The Maslov index ι = ιS : S × S × S −→ Z is defined in [CØ01], [CØ03],
[Cl04b]. As the definition is involved, we won’t repeat it here, but it has the following property,
which, in the light of Theorem III.1 and because of the invariance of this index under G , is
characteristic: For any Jordan frame (c1, c2, . . . , cr), let

T =
{ r∑

j=1

tjcj : |tj | = 1, 1 ≤ j ≤ r
}

be the r -torus which is the Shilov boundary of the associated r -polydisc. Then for any three
points x, y, z in T , one has

(4.1) ιS(x, y, z) = ιT (x, y, z).

Last, we extend now the definition of the Maslov index to any bounded symmetric domain
D in the following way. Assume that D = D1 × D2 × . . . × Dm is the decomposition of D as
a product of irreducible domains. Then the identity component of the group of biholomorphic
automorphisms of D is the product

G = Aut(D1)0 × Aut(D2)0 × . . .× Aut(Dm)0,



24 Orbits of triples in the Shilov boundary of a bounded symmetric domain September 29, 2005

and the Shilov boundary S of D is the product S = S1 × S2 × . . . × Sm of the corresponding
Shilov boundaries. Then the Maslov index ι = ιS is defined by

ι(x, y, z) := ιS1
(x1, y1, z1) + ιS2

(x2, y2, z2) + . . .+ ιSr
(xl, yl, zl) .

Theorem IV.1. The Maslov index has the following properties :

(M1) It is invariant under the group G .

(M2) It is an alternating function with respect to any permutation of the three arguments.

(M3) It satisfies the cocycle property ι(x, y, z) = ι(x, y, w) − ι(x, z, w) + ι(y, z, w) .

(M4) It is additive in the sense that if D = D1 ×D2 , so that S = S1 × S2 , then

ιS(x, y, z) = ιS((x1, x2), (y1, y2), (z1, z2)) = ιS1
(x1, y1, z1) + ιS2

(x2, y2, z2) .

(M5) If Φ : D1 −→ D2 is an equivariant holomorphic embedding of bounded symmetric domains
of tube type of equal rank, then ιS2

◦ Φ = ιS1
.

(M6) It is normalized by ιT(1,−1,−i) = 1 for the Shilov boundary T of the unit disc ∆ .

Proof. Properties (M1)-(M3) are known for irreducible domains ([CØ01], [Cl04]), and the
extension of these properties to products of irreducible domains is obvious. Property (M4)
obviously holds by the way we have defined the Maslov index.

For Property (M5), let r be the common rank of the two domains. We may assume that D1

and D2 are given in a circular realization as unit balls in spaces V1 , resp., V2 . Then ϕ(0) ∈ D2 ,
and there is some g2 ∈ G2 := Aut(D2)0 with g2.ϕ(0) = 0. Then ψ(z) := g2.ϕ(z) defines an
equivariant embedding D1 → D2 which is linear because ψ(0) = 0.

Let (x, y, z) ∈ S1 and pick g1 ∈ G1 := Aut(D1)0 such that g1.(x, y, z) is contained in the
span of a Jordan frame (c1, . . . , cr) (Theorem III.1), hence in the Shilov boundary T1 of the
corresponding polydisc ∆r in D1 . From the equivariance of ϕ we derive the existence of some
g̃1 ∈ G2 with ϕ ◦ g1 = g̃1 ◦ ϕ . Then ψ(∆r) is a maximal polydisc in D2 with Shilov boundary
T2 := ψ(T1), so that (4.2) implies that

ιS1
(x, y, z) = ιS1

(g1.x, g1.y, g1.z) = ιT1
(g1.x, g1.y, g1.z)

= ιT2
(ψ(g1.x), ψ(g1.y), ψ(g1.z)) = ιS2

(ψ(g1.x), ψ(g1.y), ψ(g1.z))

= ιS2
(g2ϕ(g1.x), g2ϕ(g1.y), g2ϕ(g1.z)) = ιS2

(ϕ(g1.x), ϕ(g1.y), ϕ(g1.z))

= ιS2
(g̃1ϕ(x), g̃1ϕ(y), g̃1ϕ(z)) = ιS2

(ϕ(x), ϕ(y), ϕ(z)).

Property (M6) is a consequence of the definition.

Remark IV.2. Note that (M2) and (M3) mean that ιS is a Z-valued Alexander–Spanier 2-
cocycle on S .

Before we turn to the general case in the following section, we recall the classification of
triples in the circle, the Shilov boundary of the unit disc:

Example IV.3. We consider the case ∆ := {z ∈ C: |z| < 1} . Then G = PSU1,1(C) acts by

[(
a b
c d

) ]
.z = (az + b)(cz + d)−1.

The Shilov boundary is S = T = {z ∈ C: |z| = 1} . Identifying S with the projective line
P1(R) and G with PSL2(R), we immediately see that there are exactly two G-orbits in S × S ,
represented by

(1, 1) and (1,−1),

i.e., the diagonal in S×S and the set (S×S)⊤ of transversal pairs. Since the action of G on S
preserves the orientation of a triple, it follows that we have 6 orbits in S × S × S , represented
by

(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1), (1,−1,−i) and (1,−1, i).
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Remark IV.4. As a function assigning to any triple in the Shilov boundary of any bounded
symmetric domain D an integer, the Maslov index is uniquely determined by the properties
(M1), (M2) and (M4)-(M6).

In view of Example IV.3, the Maslov index for D = ∆ is uniquely determined by (M1),
(M2) and (M6). By (M4) it is also determined for polydiscs.

If D is any bounded symmetric domain of rank r and (s1, s2, s3) ∈ S × S × S , then
Theorem III.1 implies that it can be conjugate by some g ∈ G to a triple in the Shilov boundary
T ∼= Tr of a maximal polydisc, so that Corollary III.7, (M1) and (M5) lead to

ιS(s1, s2, s3) = ιS(g.s1, g.s2, g.s3) = ιT (g.s1, g.s2, g.s3).

We conclude that ιS is determined uniquely by (M1), (M2), together with (M3)-(M6).

A classical case: the Lagrangian manifold

Let E be a real vector space of dimension 2r and ω be a symplectic form on E . The
symplectic group Sp(E,ω) is the group of linear automorphisms which preserve ω . A Lagrangian
is a maximal totally isotropic subspace of E , hence of dimension r . The set Λr of all Lagrangians
is a compact submanifold of the Grassmannian Grr(E) of r -dimensional subspaces of E . Then
the group G := PSp(E,ω) := Sp(E,ω)/{±1} acts transitively and effectively on Λr . Choosing a
symplectic basis in E , we may identify E with Rr ×Rr , the symplectic form being the standard
one, namely

(4.2) ω((ξ, η), (ξ′, η′)) = ξ⊤η′ − η⊤ξ′.

Let us consider the complex vector space V = Symr(C) of complex r × r symmetric
matrices, and let D be the unit ball with respect to the operator norm. The space V is an
involutive unital Jordan algebra with real form Symr(R), involution z∗ = z and Jordan product
x∗y := 1

2 (xy+yx). The spectral norm on V coincides with the operator norm, and the unit ball is
then a bounded symmetric domain. To make connection with symplectic geometry, observe that
the graph of a symmetric matrix is a complex isotropic subspace in C

r × C
r for the symplectic

structure (4.2). Let moreover h be the hermitian form on C
r × C

r given by

h((ξ, η), (ξ′, η′)) = ξ⊤ξ′ − η⊤η′ = (ξ′)∗ξ − (η′)∗η.

The hermitian form h has signature (r, r). Now to any x ∈ V , associate its graph

ℓx = {(ξ, x.ξ): ξ ∈ C
r}.

The condition that x is in the unit ball is equivalent to the fact that 1−xx∗ is positive definite,
which in turn implies that the restriction of h to ℓx is positive definite. Conversely, any (complex)
Lagrangian in C

r × C
r on which the restriction of h is positive definite is the graph of some

complex symmetric matrix in the unit ball. The Shilov boundary of D is the manifold of unitary
symmetric matrices, and the corresponding graphs are the (complex) Lagrangians on which the
restriction of the form h is identically 0. Let C be the map from Rr ×Rr to C

r ×C
r given by

C(ξ, η) =
(ξ + iη√

2
,
ξ − iη√

2

)
.

Then an elementary computation shows that the complexification of the image under C of a (real)
Lagrangian is a (complex) Lagrangian on which the restriction of h is identically 0, and vice
versa. This gives a one-to-one correspondence between Λr and S . Moreover the natural action of
G on Λr is transferred to an action on S and realizes an isomorphism of the real symplectic group
and the group Sp2r(C) ∩ Ur,r(C), which generalizes the isomorphism of SL2(R) and SU1,1(C).
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The matrices E11, . . . , Err form a Jordan frame in Symr(C). The corresponding r -torus
is

T :=

{



eiθ1 0 . . . 0
0 eiθ2 . . . 0
...

...
. . .

...
0 0 . . . eiθr


 : θj ∈ R, 1 ≤ j ≤ r

}
.

The graph of an element of T is the r -space generated by

(e1, e
iθ1e1), (e2, e

iθ2e2), . . . , (er, e
iθrer),

or equivalently by

(e−i
θ1

2 e1, e
i

θ1

2 e1), (e
−i

θ2

2 e2, e
i

θ2

2 e2), . . . , (e
−i

θr
2 er, e

i
θr
2 er).

Observe that (e−i
θj

2 ej, e
i

θj

2 ej) = C(cos
θj

2 ej, sin
θj

2 ej) to get that the corresponding Lagrangian
ℓ(θ1, θ2, . . . , θr) in Λr is generated by

(
cos

θ1
2
e1,− sin

θ1
2
e1

)
,
(

cos
θ2
2
e2,− sin

θ2
2
e2

)
, . . . ,

(
cos

θr

2
er,− sin

θr

2
er

)
.

In this case, one can then reformulate Theorem III.1 as follows.

Theorem IV.5. Let ℓ1, ℓ2, ℓ3 be three arbitrary Lagrangians in a symplectic vector space E
of dimension 2r . Then there exists a symplectic basis e1, e2, . . . , er, f1, f2, . . . , fr such that each
of the three Lagrangians is generated by

cos θ1e1 + sin θ1f1, cos θ2e2 + sin θ2f2, . . . , cos θrer + sin θrfr

for appropriate choices of the (θj)1≤j≤r .

The classification result (Theorem V.4 below) for the case S = Λr can also be found in
[KS90, p.492].

V. The classification of triples

In this section we complete the classification of G-orbits in the set S × S × S of triples in
S by first assigning to each triples an increasing 5-tuple of integers N = (n1, n2, n3, n4, n5) ∈
{0, . . . , r}5 depending only on its orbit. Then we exhibit for each such 5-tuple a standard triple
with this invariant, and finally we show that two different standard triples belong to different
orbits.

Definition V.1. To any triple (x1, x2, x3) in S × S × S , we may associate five integers:

(1) the ranks of the three faces (cf. Remark II.4):

n12 = rankFace(x1, x2), n2,3 = rankFace(x2, x3), n3,1 = rankFace(x3, x1)

(2) the rank of the face generated by the triple

n1,2,3 = rankFace(x1, x2, x3)

(3) the Maslov index ι(x1, x2, x3).

Clearly the action of G preserves these integers.

When x1, x2, x3 are contained in the boundary of a polydisc (cf. Section III), then these
integral invariants are easy to compute (cf. Example II.6).



27 triples.tex September 29, 2005

Lemma V.2. Let e =
∑r

j+1 cj be a Peirce decomposition of the unit, and, for κ = 1, 2, 3, let

xκ =

r∑

j=1

ξ
(κ)
j cj , where |ξ(κ)

j | = 1 for all j ∈ {1, . . . , r}.

Then
nκ,κ′ = |{j: ξ(κ)

j = ξ
(κ′)
j }|, n1,2,3 = |{j: ξ(1)j = ξ

(2)
j = ξ

(3)
j }|,

and

ι(x1, x2, x3) =
r∑

j=1

ι(ξ
(1)
j , ξ

(2)
j , ξ

(3)
j ).

Definition V.3. We now describe the standard triples associated to a (fixed) Jordan frame
(c1, . . . , cr). Let N = (n1, n2, n3, n4, n5) be a 5-tuple of integers such that

0 ≤ n1 ≤ n2 ≤ n3 ≤ n4 ≤ n5 ≤ r .

Then the standard triple of type N is the triple (xN
1 , x

N
2 , x

N
3 ) defined by

xN
1 = er = c1 + . . .+ cr, xN

2 = c1 + c2 + . . .+ cn2
− cn2+1 − . . .− cr,

xN
3 = c1 + . . .+ cn1

− cn1+1− . . .− cn3
+ cn3+1 + . . .+ cn4

− icn4+1− . . .− icn5
+ icn5+1 + . . .+ icr .

For this triple, one has

n1,2,3 = n1, n1,2 = n2, n1,3 = n1 + n4 − n3, n2,3 = n1 + n3 − n2,

and
ι(xN

1 , x
N
2 , x

N
3 ) = n5 − n4 − (r − n5) = 2n5 − n4 − r.

Theorem V.4. If D is an irreducible bounded symmetric domain of tube type, then any triple
in S is conjugate to one and only one of the standard triples.

Proof. For the standard triples we have

(5.1) n1 = n1,2,3, n2 = n1,2, n3 = n2,3 + n2 − n1 = n2,3 + n1,2 − n1,2,3,

(5.2) n4 = n1,3 + n3 − n1 = n1,3 + n2,3 + n1,2 − 2n1,2,3,

and

(5.3) n5 = 1
2 (ι(xN

1 , x
N
2 , x

N
3 ) + n4 + r) = 1

2 (ι(xN
1 , x

N
2 , x

N
3 ) + r + n1,3 + n2,3 + n1,2 − 2n1,2,3).

Since the numbers n1,2,3 , n1,2 , n2,3 , n3,1 and the Maslov index are G-invariant, it follows that
for different values of N , the corresponding standard triples are not conjugate under G .

To show, conversely, that each triple (e, f, h) ∈ S×S×S is conjugate to a standard triple,
we first use Theorem III.1 to see that we may w.l.o.g. assume that (e, f, h) is contained in the
torus

T :=
{ r∑

j=1

λjcj : (∀j) |λj | = 1
}

defined by the Jordan frame (c1, . . . , cr). It is the Shilov boundary of the polydisc

∆r :=
{ r∑

j=1

λjcj : (∀j) |λj | < 1
}
.
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We write

e =
r∑

j=1

ξe
j cj , f =

r∑

j=1

ξf
j cj and h =

r∑

j=1

ξh
j cj .

From I.8 it follows that every element of Aut(∆r)0 ∼= PSU1,1(C)r is the restriction of an element
of Aut(D)0 , because

gc1
+ . . .+ gcr

∼= su1,1(C)r = L(Aut(∆r))

is a subalgebra of g = L(G). We may therefore assume that ξe
j = 1 for each j . Let

n2 := |{j: ξe
j = ξf

j }| = |{j: ξf
j = 1}|.

Since each permutation of the set {c1, . . . , cr} is induced by an element of K , which acts
transitively on the set of Jordan frames, we may w.l.o.g. assume that

f = c1 + c2 + . . .+ cn2
− cn2+1 − . . .− cr

because the Aut(∆)0 -orbits in T × T are represented by (1, 1) and (1,−1) (Example IV.3).

Let n1 := |{j: ξe
j = ξf

j = ξh
j }| and write

n4 := |{j: ξe
j = ξf

j or ξe
j = ξh

j or ξf
j = ξh

j }|

for the number of components in which at least two elements of {e, f, h} have the same entries.
Then h has precisely n1 entries 1 among the first n2 , and we may w.l.o.g. assume that they
arise in position j = 1, . . . , n1 . We may likewise assume that the components of e, f and h are
mutually different for j > n4 . Then the entries of h in positions n1 +1, . . . , n2 can be moved by
elements of the group Aut(∆)n2−n1

0 acting on these components to −1. For j ∈ {n2 +1, . . . , n4}
the j -th component of h equals either 1 or −1. Moving the 1-entries with some element of Ke

permuting {c1, . . . , cr} to the rightmost positions, we get entries −1 for j = n1 + 1, . . . , n3 for
some n3 satisfying n2 ≤ n3 ≤ n4 . For j > n4 we then have Im ξh

j 6= 0, and after permuting the

Jordan frame, we may assume that for some n5 ≥ n4 we have Im ξh
j < 0 for j = n4 + 1, . . . , n5

and Im ξh
j > 0 for j > n5 . We finally use elements of Aut(∆)0 fixing 1 and −1 to move each

entry with negative imaginary part to −i and the others to i (cf. Example IV.3). This proves
that each triple is conjugate to a standard triple.

Remark V.5. In Theorem V.4, we have classified the G-orbits in the space of triples in S by
the set of all 5-tuples N = (n1, n2, n3, n4, n5) ∈ {0, . . . , r} satisfying the monotonicity condition

n1 ≤ n2 ≤ n3 ≤ n4 ≤ n5.

The description the standard triples shows that each such tuples arises via (5.1)-(5.3). We claim
that for the 5-tuple

(r0, r1, r2, r3, d) :=
(
n1,2,3, n1,2, n2,3, n3,1, ι(x

N
1 , x

N
2 , x

N
3 )

)

of integers we then have

(P1) 0 ≤ r0 ≤ r1, r2, r3 ≤ r .

(P2) r1 + r2 + r3 ≤ r + 2r0 .

(P3) |d| ≤ r + 2r0 − (r1 + r2 + r3).

(P4) d ≡ r + r1 + r2 + r3 mod 2.

In fact, (P1) is clear,

r1 + r2 + r3 = n4 + 2r0 ≤ r + 2r0,

|d| = |n5 − n4 − (r − n5)| ≤ n5 − n4 + r − n5 = r − n4 = r + 2r0 − r1 − r2 − r3,
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and
d = n5 − n4 − (r − n5) ≡ n4 + r ≡ r + r1 + r2 + r3 mod 2.

Suppose, conversely, that (r0, r1, r2, r3, d) ∈ Z5 satisfies (P1)-(P4). We then define

n1 := r0, n2 := r1, n3 := r2 + r1 − r0, n4 := r3 + r2 + r1 − 2r0

and
n5 = 1

2 (d+ r3 + r2 + r1 + r) − r0.

Then (P4) implies n5 ∈ Z . From (P1/2) we immediately get 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4 ≤ r.
Further (P3) leads to |d| ≤ r − n4 , and n4 ≤ n5 follows from

2n5 = d+ r3 + r2 + r1 + r − 2r0 = d+ r + n4 ≥ r + n4 − (r − n4) = 2n4.

This is turn implies n5 = 1
2 (r + d+ n4) ≤ r.

The conditions (P1)-(P4) are well known conditions describing the classification of triples
of Lagrangian subspace of symplectic vector spaces ([KS90]).

VI. Classification of orbits in S × S

In this section we describe how the classification of G-orbits in S× S can be derived from
the Bruhat decomposition of G , resp., the description of the orbits of the maximal parabolic
subgroup Ge in G with G/Ge

∼= S .

Throughout this section we assume D to be irreducible. Let (c1, c2, . . . , cr) be a Jordan
frame and put

εk = c1 + c2 . . .+ ck − ck+1 − . . .− cr for k = 0, . . . , r.

Moreover let e = c1 + . . .+ cr = εr , and observe that ε0 = −e . The vector space

a =

r⊕

j=1

Rcj

is a maximal flat in V in the sense of Loos ([Lo77]) and can be thought of as a Cartan subspace
in the tangent space of D at the origin. The corresponding vector fields form a Cartan subspace
of p . Denoting by γj the j -th coordinate in a with respect to the basis (c1, c2, . . . , cr), it is
known that the (restricted) roots of (g, a) are ±γj ± γk,±2γj, 1 ≤ j 6= k ≤ r and, in addition,
±γj , 1 ≤ j ≤ r in the non tube type case. We choose as positive Weyl chamber in a the one
defined by the inequalities

γ1 ≥ γ2 ≥ . . . ≥ γr ≥ 0,

so that the corresponding simple roots are

γ1 − γ2, γ2 − γ3, . . . , γr−1 − γr, γr .

The Weyl group W is isomorphic to the semi-direct product Sr ⋉ Zr
2 , where Sr acts by

permutation of the coordinates γj , and the j -th factor Z2 acts by changing the sign of the
j -th coordinate.

The stabilizer Ge of the point e ∈ S is known to be a maximal parabolic subgroup
(cf. Sect. I). It is the standard parabolic subgroup associated to the subset

Θ = {γ1 − γ2, γ2 − γ3, . . . , γr−1 − γr}

of the set of simple roots. The subgroup WΘof W generated by the reflections associated to the
roots in Θ is just Sr , and double cosets in WΘ\W/WΘ correspond to orbits of Sr in Zr

2 , which
are characterized by their number of sign changes. In particular, this shows that the elements
εj , 0 ≤ j ≤ r , form a set of representatives of the WΘ -orbits in W.e .
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Theorem VI.1. There are r+1 orbits of G in S×S . A set of representatives of these orbits
is given by the pairs (e, εk), 0 ≤ k ≤ r .

Proof. As G acts transitively on S , any orbit of G in S × S meets the subset {e} × S . So
the statement amounts to show that a Ge -orbit in S contains εk for some k, 0 ≤ k ≤ r . By
Bruhat’s theory, the orbits of the parabolic subgroup Ge of G are in one-to-one correspondence
with the WΘ -double cosets in W . In view of the preceding discussion, this shows the result.

Remark VI.2. The open orbit in S under the Ge -action (the big Bruhat’s cell) corresponds
to the point −e and is nothing but the set of all points in S transversal to e .

Definition VI.3. For (x, y) ∈ S × S we define their transversality index µ(x, y) to be the
unique number k ∈ {0, . . . , r} such that (x, y) belongs to the G orbit of (e, εk). Clearly, the
transversality index is invariant by the action of G , and two pairs are conjugate if and only if
they have the same transversality index. Moreover, a pair (x, y) is transversal if and only if its
transversality index is 0.

Theorem VI.4. A pair (x, y) ∈ S × S has transversality index k if and only if the face
F (x, y) generated by x and y has rank k .

Proof. For 0 ≤ k ≤ r let ek = c1 + c2 + . . .+ ck . Then the face generated by e and εk is

Face(e, εk) = (ek + V0(ek)) ∩ D,

which has rank k . As any pair in S × S is conjugate to one of the pairs (e, εk), the theorem
follows immediately.

Appendix: Bounded symmetric domains and tube type domains

In this appendix, we briefly review the relation between bounded symmetric domains and
positive hermitian Jordan triple systems on one hand, and the relation between bounded symmet-
ric domains of tube type and euclidean Jordan algebras on the other hand. Main references are
[Lo77] for (hermitian) Jordan triples and [FK94] for (euclidean) Jordan algebras.

A hermitian Jordan triple system V is a finite dimensional complex vector space, together
with a map {·, ·, ·} : V × V × V −→ V , such that {x, y, z} is complex linear in x and z ,
conjugate-linear in y , and such that

(JT 1) {x, y, z} = {z, y, x}

(JT 2) {a, b, {x, y, z}} = {{a, b, x}, y, z}− {x, {b, a, y}, z}+ {x, y, {a, b, z}}

for all a, b, x, y, z ∈ V .

For x, y ∈ V denote by x�y the linear endomorphism of V defined by

(x�y) z = {x, y, z}

and by Q(x) the conjugate linear endomorphism of V defined by Q(x)z = {x, z, x}. Define
the trace form B on V by B(x, y) = tr(x�y). The Jordan triple system V is said to be non
degenerate if, as a sesquilinear form, B is non degenerate. If this is the case, then B is hermitian
(i.e. B(x, y) = B(y, x) for all x, y ∈ V ). If moreover B is positive definite, then V is said to be
a positive hermitian Jordan triple system.

Let V be a positive hermitian Jordan triple system. An element c ∈ V is said to be a
tripotent if {c, c, c} = c . For a tripotent e ∈ V let Vj := Vj(e) denote the j -eigenspace of the
operator 2e�e . Then we obtain the corresponding Peirce decomposition of V :

V = V0 ⊕ V1 ⊕ V2
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([Lo77, Th. 3.13]).

There is a (partial) order relation on tripotents. For two tripotents c, d ∈ V , we define
c ≺ d if there exists a tripotent c′ , such that

(i) c�c′ = 0 (orthogonality of c and c′ )

(ii) d = c+ c′ .

A non zero tripotent is said to be primitive if it is minimal among non zero tripotents for
this order. Any tripotent c can be written as a sum of parwise orthogonal primitive tripotents,
say c = c1 + c2 + . . . + ck . The number k of primitive tripotents in such a decomposition of c
depends only on c and is called the rank of c .

A Jordan frame of V is a maximal family (c1, c2, . . . , cr) of orthogonal primitive tripotents.
All Jordan frames have the same number of elements called the rank of V . For any Jordan frame
(c1, c2, . . . , cr), the sum e =

∑r

j=1 cj is a maximal tripotent of V , and all maximal tripotents
are obtained this way.

One of the main results in the theory of positive hermitian Jordan triple system is the
spectral theorem.

Proposition A.1. For any x ∈ V , there exists a Jordan frame (c1, c2, . . . , cr) and positive
real numbers λj , 1 ≤ j ≤ r , such that

(A.1) x =

r∑

j=1

λjcj .

The λj are unique up to a permutation.

The identity (A.1) is called a spectral decomposition of x . The λj are called the eigenvalues
of x . The largest eigenvalue is the spectral norm of x , denoted by |x| . As notation suggests, the
map x 7→ |x| is a complex Banach norm on V .

Theorem A.2. The unit ball of (V, | · |) is a bounded symmmetric domain. Conversely, any
bounded symmetric domain is holomorphically equivalent to such a unit ball.

There is a subclass of symmetric bounded domains, the domains of tube type. They are
associated to a subclass of positive hermitian Jordan triple systems, obtained by complexification
from euclidean Jordan algebras.

A euclidean Jordan algebra E is a real finite dimensional euclidean vector space E with
an inner product 〈·, ·〉 , a bilinear map E × E −→ E and an element e ∈ E such that

xy = yx, ex = x, x2(xy) = x(x2y) and 〈xy, z〉 = 〈y, xz〉

for all x, y, z ∈ E . Let V = EC be the complexification of E , and extend the Jordan product
from E in a C-bilinear way to V . Denote by z 7→ z the conjugation of V with respect to E .
For x, y, z ∈ V , let

(A.3) {x, y, z} := (xy)z + x(yz) − y(xz) .

This endows V with a structure of positive hermitian Jordan triple system. The element e is a
tripotent of V . It satisfies e�e = idE , so that V0(e) = {0} (hence e is a maximal tripotent),
V1(e) = {0} and V = V2(e).

Among positive hermitian Jordan triple sytems, those coming from euclidean Jordan alge-
bras are characterized by this last property. Let V be a positive hermitian Jordan triple system,
and let e be a maximal tripotent. By maximality of e , V0(e) = {0} . Assume further that
V1(e) = {0} , so that V = V2(e). Now Q(e) is a conjugate linear involution of V . Its fixed
points set E = {x ∈ V : Q(x) = x} is a real vector space. For x, y ∈ E , define

(A.4) xy = {x, e, y} .
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With the product defined by (A.4) and the inner product induced by B , E is then a euclidean
Jordan algebra, V is the complexification of E and the Jordan triple product on V can be
recovered by formula (A.3) from the Jordan algebra product on E .

An element c ∈ E is called an idempotent if c2 = c . A Jordan frame in E is a maximal set
of orthogonal minimal idempotents. The number of elements in a Jordan frame is equal to r , the
rank of the Jordan algebra E , and if (c1, c2, . . . , cr) is a Jordan frame, then e = c1+c2+. . .+cr . A
tripotent c for the associated triple Jordan system structure on V is of the form c =

∑r
j=1 λjcj ,

for a certain Jordan frame (c1, c2, . . . , cr) of E and for each j, 1 ≤ j ≤ r , |λj | = 1 or λj = 0. A
maximal tripotent z of V is of the form with x =

∑r
j=1 λjcj , with |λj | = 1 for all j, 1 ≤ j ≤ r ,

so that z as an element of the complex Jordan algebra V is invertible, and satisfies z = z−1 .

The corresponding bounded symmetric domain is described as before by

D = {z ∈ V : |z| < 1} .

The domain D can be shown to be holomorphically equivalent to a tube domain. If E+ is the
interior of the cone of squares of E , then by the Cayley transform Ce , the domain D is mapped
to

DC = Ce(D) = {v ∈ V, Re(v) > 0} = E+ ⊕ iE

The domain DC is a tube domain in V , which is the justification for calling D a bounded
symmetric domain of tube type.

The description of maximal tripotents of V we gave supra shows that the Shilov boundary can
be described as

(A.5) S = {z ∈ V : z = z−1} .

Hence the Shilov boundary S is a totally real submanifold of V with dimR S = dimC V . This
last condition is another characterization of bounded symmetric domains of tube type inside the
family of bounded symmetric domains. In fact if D is a bounded symmetric domain, then its
Shilov boundary S is a real submanifold of V , and its dimension satisfies

dimR S ≥ 1

2
dimR V = dimC V .

Equality is obtained if and only if D is of tube type.
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