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An invariant for triples

in the Shilov boundary of a bounded symmetric domain

Jean-Louis Clerc

Abstract

Let D be a bounded symmetric domain, G its group of biholomorphic diffeomor-
phisms, and S its Shilov boundary. We define a function ι : S × S × S −→ R
which is invariant under G. This invariant generalizes the Maslov index as defined
for the Shilov boundary of a tube type domain (see [Cl-Ø 1], [Cl-Ø 2] and [Cl 2])
and the angular invariant constructed by E. Cartan for the unit sphere in C2 (see
[Ca]).
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1. Introduction

In a paper published in 1932 (cf [Ca]), Elie Cartan studied the geometry of the
unit sphere S in C2,

S = {(x, y) ∈ C2 | xx+ yy = 1}
under the action of the group G of holomorphic transformations (defined in a
neighborhood of S) preserving S. A better understanding of the geometry of S is
achieved by using another realization of S. On C3 consider the Hermitian form h
given by

h((z, x, y), (z′, x′, y′)) = zz′ − xx′ − yy′ .
The space S of complex lines in C3 which are istropic with respect to h is in
one-to-one correspondence with S by the mapping

S 3 (x, y) 7−→ C(1, x, y) ∈ S .

The group SU(h) ' SU(1, 2) acts on C3 preserving the form h and hence the
isotropic lines. This gives raise to an action of G = PSU(1, 2) on S, which,
after conjugation by the correspondance between S and S, gives the classical
homographic action of G on S.

Among several other results, E. Cartan constructed an invariant for ordered triples
in S. For v1, v2, v3 ∈ C3 \ {0}, consider the complex number

(1) J(v1, v2, v3) = h(v1, v2)h(v2, v3)h(v3, v1) .

Observe that, under replacement of v1 by λ1v1 (resp. v2 by λ2v2, v3 by λ3v3),
where λ1 (resp. λ2, λ3) is any non zero complex number, the quantity J is mul-
tiplied by |λ1|2|λ2|2|λ3|2, hence the argument of J depends only on the triple of
complex lines (Cv1,Cv2,Cv3). To be more precise (and this observation will be of
importance later on), observe that, if v1 and v2 are two isotropic non zero vectors
in C3, then h(v1, v2) = 0 implies that Cv1 + Cv2 is totally isotropic for h, and
hence v1 and v2 are proportional. So, if σ1, σ2, σ3 are three distinct points in S,
define, following Cartan

(2) j(σ1, σ2, σ3) = arg J(v1, v2, v3)

where v1 (resp. v2, v3) is any non zero vector of σ1 (resp. σ2, σ3). As the quantity
J is invariant under SU(h), the quantity j is invariant under the action of G. As h
is Hermitian symmetric, one more property of j is that it is skew symmetric with
respect to permutation of the points σ1, σ2, σ3. Notice for further reference that
this suggests to extend the definition of j by requiring that the value of j(σ1, σ2, σ3)
is 0 if (at least) two points among σ1, σ2, σ3 cöıncide.

Obviously, Elie Cartan’s construction is valid as well for the unit sphere in Cn,
under the action of G = PSU(1, n). The case n = 1 is even of special interest. As
before, the unit sphere S = {z ∈ C, |z| = 1} is in one-to-one correspondence with
the space of isotropic lines in C2 for the Hermitian form h on C2 given by

h((z, x), (z′, x′)) = zz′ − xx′ ,
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the correspondence being
eiθ 7−→ C(1, eiθ)

The remarkable fact (not immediately trivial) is that the quantity

(3) J(v1, v2, v3) = h(v1, v2, v3) ,

or the quantity

(3′) j(eiθ1 , eiθ2 , eiθ3) = (1− ei(θ1−θ2))(1− ei(θ2−θ3))(1− ei(θ3−θ1))

is pure imaginary for any isotropic vectors v1, v2, v3 (resp. for any θ1, θ2, θ3 ∈ R).
Hence, in this case, E. Cartan’s invariant takes (on triples of distinct points in
S) only two values, namely −π2 and π

2 . Another model for the unit circle is the
Lagrangian manifold of real lines in the symplectic space R2 under the action of
the group G = Sp(R) ' SL(2,R). There are two orbits under G in the space of
(proper) triples, corresponding to the orientation of the triple which may or may
not agree with the counterclockwise orientation of the unit circle. Elie Cartan’s
invariant (up to a factor−π2 ) is nothing but the Maslov triple index ι(eiθ1 , eiθ2 , eiθ3)
(see e.g [Cl-Ø 1] for details).

In the present paper, we consider any symmetric bounded domain D. Let G
be (the neutral component of) its group of biholomorphic diffeomorphisms, and
let S be its Shilov boundary. The action of any element g ∈ G extends to a
neighborhood of D and preserves S. For ordered triples (σ1, σ2, σ3) ∈ S3, we
construct an invariant for the action of G, which generalizes E. Cartan’s invariant.
If D happens to be of tube type, this program was achileved in [Cl 2], following
previous work in collaboration with B. Ørsted (see [Cl-Ø 1,Cl-Ø 2]). As it was
the case for the unit circle in C (which is the Shilov boundary of the tube type
domain D = {z ∈ C, |z| < 1}), the invariant in the tube type case is always an
integer (after normalization), and this corresponds to the geometric fact that G
has a finite number of (open) orbits in S3. This is not the case when D is not of
tube type.

A further study of E. Cartan’s invariant can be found in [Go]. For the classical
theory of the Maslov index, see [Li-V]. For the case of the Stiefel manifold, viewed
as the Shilov boundary of the unit ball in End(Cp,Cq), a more general invariant was
studied in [Cl 1]. For the same space, the paper [Bu-I] gives a direct generalization
of E. Cartan’s invariant and some interesting geometric applications.

Let us sketch the construction of the invariant. Let first z1, z2, z3 be three points
in D. Form the oriented geodesic triangle T (z1, z2, z3), and consider any surface
Σ in D which has this triangle as boundary. We may integrate the Kähler form ω
of the domain D on Σ and obtain a real number

(4) ϕ(z1, z2, z3) =

∫

Σ

ω

(not depending on Σ as the Kähler form is closed), which we call the symplectic
area of the triangle T (z1, z2, z3). As the Kähler form is invariant under G, this
gives an invariant for triples in D. Now for σ1, σ2, σ3 ∈ S3, define

(5) ι(σ1, σ2, σ3) =
1

π
lim

zj−→σj
ϕ(z1, z2, z3) .
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The difficulty is to show that there is actually a limit. In the generic case (i.e
for mutually transverse triples (see precise definition in [Cl-Ø 2]), the limit exists
without any restriction. However, for the singular triples, one needs to restrict the
way zj approaches σj . This is where the notion of Γ-radial convergence is required.
Notice that this restricted approach to the boundary is already needed in the case
of the unit circle, for triples in which two points coincide. In fact, let σ1 and
σ2 = σ3 be points of the unit circle. As z1 approaches σ1, z2 and z3 approach σ2,
the invariant ϕ(z1, z2, z3) (which is nothing but the oriented area of the geodesic
triangle T (z1, z2, z3) for the Poincaré metrics of the disc) may approach any value
between −π and π. However if one demands that z2 and z3 approach σ2 = σ3 along
curves which are normal to S at σ2, then ϕ(z1, z2, z3) tends to 0, which, as noticed
earlier, ought to be the value of ι(σ1, σ2, σ3). In higher rank, the corresponding
statement requires more work.

As a bonus to this definition/theorem, we obtain a further property of the invariant
(and so in particular of E. Cartan’s invariant, as already observed in [Go], ch.7).
It satisfies a cocycle property , namely

(6) ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4)

for any σ1, σ2, σ3, σ4 ∈ S. In fact, the same property is already satisfied by the
function ϕ(z1, z2, z3), and it is merely a consequence of Stokes formula and the
fact that the Kähler form is closed.

Section 2 introduces notation and results of the geometry of bounded symmetric
domains, in the bounded realization and in the unbounded realization. The pre-
sentation uses the theory of positive Hermitian Jordan triple systems. Section 3
introduces the wedge structure on S, and the related notion of Γ-radial convergence
at a point of the Shilov boundary. Section 4 contains a technical result, written
in the framework of Euclidean Jordan algebras, which might be of independent
interest. Section 5 gives the construction and state the main properties of the in-
variant ι. Section 6 gives a geometric description of the triples in S corresponding
to the maximal value of the invariant.

2. Bounded symmetric domains and positive Hermitian Jordan triple
systems

This section is devoted to a detailed presentation of bounded symmetric domains ,
using the theory of positive Hermitian Jordan triple systems. For general refer-
ences, see [Lo]. The link of this point of view with the more classical Lie group
theory approach (see [Wo-Kor]) is exposed in [S] or in [Kor]. The presentation in
[Koe] is also relevant. For the theory of Euclidean Jordan algebras, see [F-Kor].

A Jordan triple system W is a real vector space together with a trilinear map
{ . , . , .} : W ×W ×W −→W with satisfies

(JT1) {x, y, z} = {z, y, x}

(JT2) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}}
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for all a, b, x, y, z ∈W .

For x, y ∈W denote by x¤y the linear endomorphism of W defined by

(x¤y) z = {x, y, z}

and by Q(x) the linear endomorphism of W defined by

Q(x)z = {x, z, x} .

Define the trace form τ on W by

τ(x, y) = tr(x¤y) .

The Jordan triple system is said to be non degenerate if, as a bilinear form, τ is
non degenerate. If this is the case, then τ is symmetric. Then, for x, y ∈W

(x¤y)t = y¤x ,

where, for A ∈ End(W ), At is used for the transpose of A with respect to τ .

A non-degenerate Hermitian Jordan triple system W is a complex vector space,
together with a map { . , . , .} : W×W×W −→W, such that {x, y, z} is complex
linear in x and z, conjugate-linear in y, and such that WR, { . , . , .} is a non
degenerate Jordan triple system, where WR stands for W viewed as a real vector
space. Abusing somewhat notation, set

τ(x, y) = trC(x¤y) ,

which is then a non degenerate Hermitian form onW. If if τ happens to be positive
definite, then W is said to be a positive Hermitian Jordan triple system (PHJTS
for short). Now, for x, y ∈W,

(x¤y)∗ = y¤x ,

where A∗ stands for the complex adjoint of A with respect to the Hermitian form
τ .

Let W be a PHJTS. If x is an element of W, then its odd powers x(2n+1) are
defined by the induction formula

x(2n+1) = {x2n−1, x, x} .

An element c ∈W is said to be a tripotent if c(3) = {c, c, c} = c.

There is a (partial) order relation on tripotents. For c, d two tripotents of W, the
relation c ≺ d is true if and only if there exists a tripotent c′, such that

i) c¤c′ = 0 (orthogonality of c and c′)

ii) d = c+ c′.
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A non zero tripotent is said to be primitive if it is minimal for this order among non
zero tripotents. Any tripotent c can be written as a sum of pairwise orthogonal
primitive tripotents, say c = c1+c2+. . .+ck. The number k of primitive tripotents
in such a decomposition of c depends only on c and is called the rank of c.

One of the main results in the theory of PHJTS is the spectral theorem.

Proposition 2.1. Every x ∈W can be written uniquely

(7) x =
k∑

j=1

λjcj

where the (cj)1≤j≤k are paiwise orthogonal non-zero tripotents which are real
linear combinations of powers of x, and the λj satisfy

0 < λ1 < λ2 < . . . < λk .

The identity (7) is called the spectral decomposition of x. The λj are called the
eigenvalues of x. The largest eigenvalue is the spectral norm of x, denoted by |x|.
As notation suggests, the map x 7→ |x| can be shown to be a (complex Banach)
norm on W. Moreover, |x| = ‖Q(x)‖ = 1

2‖x¤x‖, where the operator norm ‖A‖ for
any A ∈ EndR(W) is computed with respect to the inner product on W induced
by τ .

Theorem 2.2. The unit ball of (W, | . |) is a bounded symmmetric domain.
Conversely, any bounded symmetric domain is bi-holomorphically equivalent to
such a unit ball.

In other words, any bounded symmetric domain can be realized as the unit ball
for the spectral norm of some PHJTS.

Let G = G(D) be the neutral component of the group of holomorphic diffeomor-
phisms of D. It is a semi-simple Lie group, which acts transitively on D. Let K
be the stabilizer of 0 in G. The subgroup K is a maximal subgroup of G, and
D ' G/K. Denote by r be the rank of D as a symmetric space.

Let c be a non-zero tripotent of W. Then W decomposes as

(8) W = W2 ⊕W1 ⊕W0 ,

where Wj = Wj(c) is the eigenspace of c¤c corresponding to the eigenvalue 1
2j.

The Wj are pairwise orthogonal, and satisfy the rule

(9) {Wj ,Wk,Wl} ⊂Wj−k+l, {W2,W0,W} = {W0,W2,W} = {0} .

This decomposition of W will be referred to as the Peirce decomposition with
respect to c.

Proposition 2.3. Let e be a tripotent in W. The following are equivalent

i) e is a maximal tripotent

ii) e has rank r
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iii) W0(e) = {0}
iv) e is an extremal point of the convex set D.

The set of all maximal tripotents is a compact submanifold S of W. It is the Shilov
boundary of D in the sense of complex analysis. It is the unique closed orbit of G
in ∂D, and the group K is already transitive on S.

A maximal family of orthogonal primitive tripotents inW is called a Jordan frame.
It consists of r (primitive, orthogonal) tripotents c1, c2, . . . , cr.

For x, y ∈W, set

(10) B(x, y) = Id−x¤y +Q(x)Q(y) .

Observe that B(x, y) is a C-linear endomorphism of W. It is a holomorphic poly-
nomial with respect to the variable x and antiholomorphic with respect to y. If
B(x, y) is invertible, then x and y are said to be transverse and this relation is
denoted by x>y. It is a symmetric relation.

There is an alternative realization of the same spaces, called the unbounded real-
ization, which is obtained through a Cayley transform.

Fix e a maximal tripotent in W. Then W2 = W2(e) has a natural structure of
complex Jordan algebra for the Jordan product defined by

(11) x ◦ y = {x, e, y} .

The element e is the neutral element of this Jordan algebra. Moreover, Q(e)
maps W2 into itself, and can be shown to be a conjugate-linear involution of
W2. For a ∈ W2, set a∗ = Q(e)a. The space of fixed points of this involution
U = {a ∈ W2 | a = a∗} inherits a structure of real Euclidean Jordan algebra.
Standard notation for Jordan algebra (see [F-Kor]) is used freely throughout the
paper, such as Ω ⊂ U for the (open) cone of squares, L(x) for the multiplication
by x, P (x) = 2L(x)2 − L(x2) for the quadratic operator associated to x and det
for the determinant polynomial on U (or W2).

To any a ∈W2 associate the endomorphism Φ(a) of W1 given by

(12) Φ(a)v = 2{a, e, v} .

Then for a ∈ U , the endomorphism Φ(a) is selfadjoint with respect to the inner
product on W1 induced by the form τ , and satisfies

Φ(a ◦ b) =
1

2
(Φ(a)Φ(b) + Φ(b)Φ(a)), Φ(e) = IdW1

.

In other words, Φ is a representation of the Euclidean Jordan algebra U on W1.
Finally, let Ψ : W1 ×W1 −→W2 be the bilinear map defined by

(13) Ψ(v, v′) = {v, v′, e} .
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Then Ψ is Hermitian and positive definite in the sense that

(14) Ψ(v, v′) = Ψ(v′, v)∗, Ψ(v, v) ∈ Ω, Ψ(v, v) = 0⇐⇒ v = 0 .

A further property of Φ and Ψ is the following relation

(15) Ψ
(
Φ(x)v,Φ(x)v′

)
= P (x)

(
Ψ(v, v′)

)

for all x ∈ U, v, v′ ∈W1.

Proposition 2.4. Let e be a maximal tripotent. Let W = W2 ⊕ W1 be the
corresponding Peirce decomposition of W. Then x = x2 + x1 is transverse to e if
and only if det(e− x2) 6= 0.

Proof. A routine computation shows that B(x, e) as an endomorphism of W has
the following block realization with respect to the decomposition W = W2 ⊕W1 :

B(x, e) =




Id2 − 2L(x2) + P (x2) 0

∗ Id1−Φ(x2)


 .

As Id2 − 2L(x2) + P (x2) = P (e − x2) and Id1 − Φ(x2) = Φ(e − x2) and Φ(z) is
invertible if and only if z is invertible (and then Φ(z)−1 = Φ(z−1)), it is clear that
the invertibility in W2 of e − x2 is the necessary and sufficient condition for the
invertibility of B(x, e). Proposition 2.4 follows.

Corresponding to the data U,Ω,Ψ,W1, let γD be the Siegel domain of type II
defined by

(16) γD = {(x+ iy, v), x, y ∈ U, v ∈W1 | y −Ψ(v, v) ∈ Ω} .

The (unbounded) domain γD is biholomorphically equivalent to the domain D.
The correspondance between the two domains has an explicit description as a
Cayley transform γ = γe, which is defined (as a rational map on W2 ×W1) by

(17) γe(x2, x1) =
(
i(e+ x2)(e− x2)−1,Φ((e− x2)−1)x1

)
.

For x = x2 + x1 ∈ D, e− x2 is invertible in W2, and hence the Cayley transforms
is well defined on D. More generally, the Cayley transform is defined precisely
on the elements x ∈ W which are transverse to e (thanks to Proposition 2.4). In
particular, the Cayley transform is defined on

(18) S>e = {x ∈ S | x>e} = {x = x2 + x1 ∈ S | det(e− x2) 6= 0} .

This is a dense open set in S, and its image under γe is given by

(19) γS′ = {(x+ iΨ(v, v), v) | x ∈ U, v ∈W1} .

8



            

3. The wedge structure on S and the notion of Γ-radial convergence

Let M be a manifold. For each point x ∈ M , let Γx be a non-trivial convex
open cone in the tangent space TxM at x, and assume that the cone Γx depends
smoothly on x. Then we say that M is given a wedge structure. The concept of
causal structure is more common. This is the case where one demands that the
cone be proper (its closure doesn’t contain any line), but it is important for our
purpose not to make this requirement. In the case at hand, we might also call this
structure a weakly causal structure.

A wedge diffeomorphism is a diffeomorphism F : M −→ M such that, at each
point x ∈ M , the differential DF (x) maps the cone Γx ⊂ TxM into the cone
ΓF (x) ⊂ TF (x)M . If G is a Lie group acting by diffeomorphisms on M , the wedge
structure is said to be invariant by G if each g ∈ G ⊂ Diff(M) is a wedge
diffeomorphism. Assume moreover that the action of G on M is transitive. Choose
a base point o in M , and let H = Go be the stabilizer of o in G. An invariant wedge
structure on M is completely determined by the cone Γo ⊂ ToM ' g/h. This cone
has to be invariant by the tangent action of Ad(H) on g/h. But conversely, given
such an invariant cone Γo ⊂ g/h, one can unambiguously propagate that cone to
endow M with a G-invariant wedge structure.

The Shilov boundary S of a bounded symmetric space has a natural wedge struc-
ture. On the Shilov boundary of a tube type domain, it has been known that
there is a natural causal structure (see [Ka], [Be]). From another point of view,
for any bounded symmetric domain, there is a natural CR structure on S. The
wedge structure we will consider on S is a mixed version of these two structures.

The wedge structure will be described first in the unbounded realization of D. For
simplicity, let us modify the notation by setting U = U ⊗R C = W2 and V = W1.
With this notation, recall (15)

γD = {(x+ iy, v) | x, y ∈ U, v ∈ V, y −Ψ(v, v) ∈ Ω} ,

whereas
γS′ = {(x+ iy, v) | x, y ∈ U, v ∈ V, y = Ψ(v, v)}

As origin in γS′ choose o = (0, 0). The tangent space to γS at o is a real vector
subspace of W, given by the condition y = 0, hence realized as U ⊕ V. Then let
Γo = Ω + V.

Proposition 3.1. Let g be any holomorphic diffeomorphism of γD such that
g(o) = o. Then Dg(o) Γo ⊂ Γo.

Recall first that any holomorphic diffeomorphism of D extends to a neighborhood
of D, and similarly for γD. Let ω ∈ Ω, and consider the path

γ : [0, 1] −→ iU, γ(t) = itω .

For t > 0, γ(t) ∈ γD, so that

g(γ(t)) = γ1(t) = (x1(t)) + iy1(t), v1(t)) ∈ γD .

9



            

So, for any t > 0, y1(t) − Ψ(v1(t), v1(t)) ∈ Ω, and a fortiori y1(t) ∈ Ω. It implies
that ẏ1(0) ∈ Ω. Hence

(20) γ̇1(0) = Dg(o) iω ∈ U ⊕ iΩ⊕ V .

But as Dg(o) is C-linear and maps the tangent space to S at o into itself, we also
have

Dg(o)(U ⊕ V) ⊂ U ⊕ V , Dg(o)(V) ⊂ V.
Hence, after multiplication by i,

Dg(o)
(
iΩ
)
⊂ iU ⊕ V

which together with (20) implies

(21) Dg(o)(iΩ) ⊂ iΩ⊕ V .

But Dg(o) is invertible, and hence the image of an open set is open, so that

(22) Dg(o)(iΩ) ⊂ iΩ⊕ V ,

which, after multiplication by i (recalling that g is holomorphic) implies

(23) Dg(o)
(
Ω⊕ V

)
⊂ Ω⊕ V .

Thus, the wedge Ω⊕V is invariant by the stabilizer of o in γG = γ ◦G ◦ γ−1, and
hence defines an invariant wedge structure on γS′. The corresponding description
of the causal structure on S is obtained by inverse Cayley transform.

Proposition 3.2. There exists a unique G-invariant causal structure
(
Γσ, σ ∈ S

)

on S, such that Γ−e = −iΩ⊕ V.

Sketch of the proof. As a consequence of (17), one has γe(−e) = o and one can
show that

Dγ(−e) = (
i

2
IdU,

1

4
IdV) .

The proposition follows, by taking the inverse image of the cone Ω⊕ V.

A curve
(
γ(t), 0 ≤ t ≤ 1

)
is said to be Γ- radial at some point σ ∈ S if

(24) γ(0) = σ, γ(t) ∈ D for 0 < t ≤ 1, and γ̇(0) ∈ iΓσ .

Proposition 3.3. Let σ ∈ S, and let
(
γ(t), 0 ≤ t ≤ 1

)
be a Γ-radial curve at σ.

Let g ∈ G. Then
(
g(γ(t)), 0 ≤ t ≤ 1

)
is a Γ-radial curve at g(σ).

As the differential of g at σ is C-linear, proposition 3.3 is a consequence of the
invariance of the cone field

(
Γσ, σ ∈ S

)
.

There is a similar notion in the non-compact model. As we will have to work in
this setting, let us give a more explicit description of a Γ-radial curve. First let
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again o = (0, 0) ∈ γS′. A curve γ(t) = (u(t), v(t)) is Γ-radial at o if there exists
ω ∈ Ω and v ∈ V such that , as t ↓ 0

(25) γ(t) = (itω, tv) +O(t2) .

For a ∈ U and b ∈ V, the transformation

(26) (u, v) 7−→ (u+ a+ 2iΨ(v, b) + iΨ(b, b), v + b)

belongs to γG and maps the origin o = (0, 0) to (a + iΨ(b, b), b), which is the
general point of γS. So, a Γ-radial curve at the point (a+ iΨ(b, b), b) is obtained
from a Γ-radial curve at (0, 0) by this transform, hence has the following behavior
as t ↓ 0

(27) γ(t) =
(
a+ iΨ(b, b) + itω + 2itΨ(v, b), b+ tv

)
+O(t2)

with ω ∈ Ω and v ∈ V.

4. A geometric lemma for a Jordan algebra

This section, except for notation, can be read independently of the first sections.
We assume for commodity that U is a simple Euclidean Jordan algebra. Denote
by e its unit, by 〈., .〉 the standard invariant inner product. Let r be its rank.

Lemma 4.1. Let b ∈ U , and y ∈ Ω. Assume that < by, b >= 0. Then by = 0.

Proof. Recall first that if x1, x2 ∈ Ω, then 〈x1, x2〉 ≥ 0. The equality 〈x1, x2〉 = 0
is achieved if and only if x1x2 = 0 (see [F-Kor] p. 59). If moreover x1 ∈ Ω, then

x2 = 0. So, let b ∈ U and y ∈ Ω, and let b =
∑k
j=1 λjcj be the spectral expression

of b, where the (cj)1≤j≤k are orthogonal idempotents, and the (λj)1≤j≤k are the

non zero distinct eigenvalues of b. Then b2 =
∑k
j=1 λ

2
jcj , so that the condition

〈by, b〉 = 0 implies

(28)
k∑

j=1

λ2
j 〈y, cj〉 = 0 .

As for any j, 1 ≤ j ≤ k, λj 6= 0 and 〈y, cj〉 ≥ 0, (28) forces 〈y, cj〉 = 0 for every
j, 1 ≤ j ≤ k. As y, cj ∈ Ω, this in turn implies cjy = 0 for any j and so by = 0.

For c any idempotent of U , let

(29) U = U1(c)⊕ U 1
2
(c)⊕ U0(c)

be the Peirce decomposition of U with respect to c. Further, denote by Ω1 (resp.
Ω0) the open cone of squares in U1(c) (resp. U0(c)). Similarly, we use the notation
det1 (resp. det0) for the determinant function of the Jordan algebra U1(c) (resp.
U0(c)).

Now complexify this decomposition to obtain

U = U1(c)⊕ U 1
2
(c)⊕ U0(c) .

The tube associated to U is the open set TΩ in U defined by

TΩ = U + iΩ = {z = x+ iy | x, y ∈ U, y ∈ Ω} .
Observe that any element of TΩ is invertible in U. This property is no longer true
for all points in the boundary of TΩ, but some substitute is valid. The following
technical proposition will be the key point to justify the limit process (5) needed
for handling singular triples.
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Proposition 4.2. Let z ∈ TΩ, z 6= 0. There exists an idempotent c ∈ U such that
z ∈ U1(c) and is invertible as an element of U1(c).

Proof. If z is invertible in U, then take c = e and the corresponding properties are
satisfied. So we may (and hence do) assume that det z = 0. This implies that L(z)
is not invertible. Hence there exists u ∈ U, u 6= 0 such that zu = 0. Let z = x+ iy
and u = a+ ib, with x, y, a, b ∈ U . Then zu = 0 reads

xa− yb = 0 , xb+ ya = 0 .

As y ∈ Ω,
〈xa, b〉 = 〈yb, b〉 ≥ 0, 〈xb, a〉 = −〈ya, a〉 ≤ 0 .

But 〈xa, b〉 = 〈xb, a〉, so that 0 = 〈yb, b〉. From Lemma 4.1 follows yb = 0.
Similarly ya = 0, so that xa = yb = 0, and xb = ya = 0. Hence za = zb = 0. But
(a, b) 6= (0, 0), and so without loosing any generality, we may assume that u ∈ U .

So assume u ∈ U, u 6= 0, is such that xu = yu = 0. Using the spectral decomposi-
tion of y, one can find an idempotent d ∈ U such that y ∈ U1(d) and y is invertible
in U1(d). Let u = u1 + u 1

2
+ u0 be the Peirce decomposition of u with respect to

c. Then
0 = yu = y(u1 + u 1

2
+ u0) = yu1 + yu 1

2
.

But yu1 ∈ U1(d) and yu 1
2
∈ U 1

2
(d). This forces yu1 = 0 and yu 1

2
= 0. As y is

invertible in U1(d), the second equality implies u 1
2

= 0. As moreover y is in the

open cone of the Euclidean Jordan algebra U1(d), the first equality implies that
u1 = 0. So u belongs to U0(d). As U0(d) is a Euclidean Jordan algebra, there exists
an idempotent f ∈ U0(d) ⊂ U such that u ∈ U1(f) and u is invertible in U1(f).
Now let c = e − f . As f ∈ U0(d) and y ∈ U1(d), fy = 0 and hence y ∈ U1(c),
whereas u ∈ U0(c). Now let x = x1 + x 1

2
+ x0 be the Peirce decomposition of x

with respect to the idempotent c. As before, the equality xu = 0 implies x 1
2
u = 0,

and the fact that u is invertible in U0(c) = U1(f) implies x 1
2

= 0. Hence we get

z = x1 + iy + x0

where x1, y ∈ U1(c) and x0 ∈ U0(c).

Among all idempotents c in U such that z can be written as z = x1 + iy + x0

with x1, y ∈ U1(c) and x0 ∈ U0(c), choose c minimal. In the corresponding
decomposition z = x1 + iy + x0, the element x1 + iy has to be invertible in
U1(c). Otherwise, we could repeat for the Euclidean algebra U1(c) and the element
z1 = x1 + iy the first part of the proof, to get an idempotent c′ 6= c in U1(c) such
that z1 = x′1 + iy + x′0, with x′1, y ∈ U1(c′) and x′0 ∈ U0(c′). But then, one can
write z = x′1 + iy + x′0 + x0, where x′1, y ∈ U1(c′) and x′0 + x0 ∈ U0(c′), hence
contradicting the minimality of c.

So there exists an idempotent c ∈ U such that z = x1 + iy + x0, where x1 + iy
is invertible in U1(c), and x0 ∈ U0(c). As 0 = det(z) = det1(x1 + iy) det0x0,
necessarily det0x0 = 0. If x0 = 0, then there is nothing more to prove. If not,
there exists an idempotent c′ ∈ U0(c), such that c′x0 = x0 and x0 is invertible in

12



           

U1(c′). Now c′′ = c+ c′ is an idempotent in U , c′′z = z, and as x1 + iy is invertible
in U1(c) and x0 is invertible in U1(c′), hence z = (x1 + iy) + x0 is invertible in
U1(c′′). This finishes the proof of proposition 4.2.

Remark. Let U = Sym(2,R) be the Euclidean Jordan algebra of 2×2 symmetric
matrices with real entries. Consider the element

z =

(
1 i
i −1

)
=

(
1 0
0 −1

)
+ i

(
0 1
1 0

)
.

As z 6= 0 and z2 = 0, there is no idempotent c ∈ U such that z is invertible in
U1(c). This shows that some condition (like z ∈ TΩ) is needed in order that the
conclusion of Proposition 4.2 be valid.

To illustrate proposition 4.2, let us consider the case where U is the Euclidean
Jordan algebra of rank 2 and dimension 1 + d associated to the Lorentz cone in
R1+d. So U = R ⊕ V , where V is a Euclidean vector space of dimension d, with
inner product denoted by 〈., .〉. The Jordan product is

(λ, v)(µ,w) = (λµ+ 〈v, w〉, λw + µv) ,

with inner product given by

〈(λ, v), (µ,w)〉 = λµ+ 〈v, w〉

and determinant function given by

det(λ, v) = λ2 − 〈v, v〉 .

The cone Ω is
Ω = {(λ, v) | λ2 − 〈v, v〉 > 0, λ > 0} .

Let z ∈ TΩ, z 6= 0, and assume det z = 0. Then the content of Proposition 4.2 in
this case is that z is a complex multiple of an idempotent of rank 1 , that is to say
of the form

z = ζ (
1

2
,

1

2
f), where f ∈ U, 〈f, f〉 = 1 and ζ ∈ C, ζ 6= 0, =ζ ≥ 0 .

This can be shown more directly as follows. Let z = x+ iy = (λ+ iµ, v+ iw). The
condition det z = 0 is equivalent to

λ2 − 〈v, v〉 = µ2 − 〈w,w〉, λµ = 〈v, w〉 .

As y ∈ Ω, 〈w,w〉 1
2 ≤ |µ|, so that also 〈v, v〉 1

2 ≤ |λ|. But, from Cauchy-Schwarz
inequality,

|λµ| = |〈v, w〉 | ≤ 〈v, v〉 1
2 〈w,w〉 1

2 ≤ |λ||µ| ,
so that the equality is achieved, and hence v and w are proportional. As µ =
〈w,w〉 1

2 and |λ| = 〈v, v〉 1
2 , the statement easily follows.
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Proposition 4.3. Let c be an idempotent in U , let u ∈ U1(c) and assume that u
is an invertible element of U1(c). Let γ : [0, 1]→ U be a smooth curve such that

(30) γ(0) = u, γ̇(0) = z1 + z 1
2

+ ω0,

where z1 ∈ U1(c), z 1
2
∈ U 1

2
(c) and ω0 ∈ Ω0. Then arg det

(
γ(t)

)
is well defined

for t > 0 sufficiently small, and it has a limit when t tends to 0. The limit does
depend neither on z1, z 1

2
nor on ω0.

Proof. From the assumptions, for t > 0, one has

(31) γ(t) = u+ tz1 + tz 1
2

+ tω0 +O(t2) .

For z ∈ U 1
2
(c), we let τ(z) = exp(2z¤c) be the Frobenius transformation (see

[F-Kor], ch. VI). The main property we will use is that for any v ∈ U,

(32) det(τ(z)v) = det v .

Recall the following lemma (see [Cl 2] Lemma 2.2).

Lemma 4.4. Let ξ1 be an invertible element in U1(c). Then, the map

(η1, z, η0) 7−→ ζ = (ζ1, ζ 1
2
, ζ0) = τ(z)(η1 + η0), U1(c)× U 1

2
(c)× U0(c) −→ U

is a local diffeomorphism near (ξ1, 0, 0). Its reciprocal is given by

η1(ζ) = ζ1

z(ζ) = Φ(ζ1)−1ζ 1
2

η0(ζ) = ζ0 − 2L(e− c)L(z(ζ))2ζ1 .

As u is invertible in U1(c), we may apply the lemma to ξ1 = u. Hence, for t small
enough,

γ(t) = τ(z(γ(t)))
(
η1(γ(t)) + η0(γ(t)

)
,

so that, using (32)

det
(
γ(t)

)
= det1

(
η1(γ(t)

)
det0

(
η0(γ(t)

)
.

As t −→ 0,
η1(γ(t)) −→ u

and hence
det1

(
η1(γ(t)

)
−→ det1

(
u
)
6= 0 ,

so that any determination of the corresponding argument has a limit when t −→ 0,
and the limit does not depend on γ̇(0).

Observe further that z(γ(t)) = O(t) and hence, η0(γ(t)) = tω0 +O(t2) as t ↓ 0, so
that arg det0

(
η0(γ(t))

)
tends to 0 (mod 2π) as t ↓ 0. This finishes the proof of the

proposition.
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5. Symplectic area of geodesic triangles and the invariant for triples

Recall the setting of sections 2 and 3. On D, there exists a Hermitian metric which
is invariant by G. It can be defined using the Bergman kernel of the domain, but
there is a normalization of the metric which is more convenient for geometric pur-
poses, by requiring that the minimal value of the holomorphic sectional curvature
to be −1 (see [Cl-Ø 2] for details). The corresponding Kähler form ω is invariant
by G and closed.

Given two points z1, z2 ∈ D, there is a unique geodesic segment connecting z1 to
z2. So, for any triple of points z1, z2, z3 in D, we may form the oriented geodesic
triangle T (z1, z2, z3). Let Σ be any surface in D with (oriented) boundary equal
to T (z1, z2, z3). Then integrate the 2-form ω on Σ, to get the symplectic area of
the triangle

ϕ(z1, z2, z3) =

∫

Σ

ω .

As the Kähler form ω is closed, this expression doesn’t depend on the surface Σ,
but merely on its boundary, and hence defines a function ϕ(z1, z2, z3). It turns
out that the symplectic area can be computed explicitly (see [D-T], [Cl-Ø 2]). Let
k(z, w) : D×D −→ C be the normalized automorphy kernel of D (see [Cl-Ø 2] for
the definition). Then, for any triple (z1, z2, z3) ∈ D,

(33) ϕ(z1, z2, z3) = −
(

arg k(z1, z2) + arg k(z2, z3) + arg k(z3, z1)
)
.

Theorem 5.1. Let (σ1, σ2, σ3) ∈ S3. Then ϕ(z1, z2, z3) has a limit when, for any
j, 1 ≤ j ≤ 3, zj → σj along a Γ-radial curve.

Proof. By using the action of G and the invariance of the symplectic area under
G, we may choose a maximal tripotent e ∈ W and assume that that the Cayley
transform γ = γe is defined at σ1, σ2 and σ3. So, it is equivalent to prove the anal-
ogous statement in the noncompact realization of D. The normalized automorphy
kernel γk in the unbounded picture reads :

for (z, v) and (z′, v′) in γD

(34) γk((u, v), (u′, v′)) =
(

det
(u− u′

2i
−Ψ(v, v′)

))−2

.

The formula (34) comes from a general formula for the Bergman kernel of a Siegel
domain of type II (see [S] ch. III, section 6, ex 3), after adjusting the result to the
normalization chosen for the corresponding metric.

As the expression for γϕ is a sum of three similar terms, it suffices to prove that
each such term has a limit, and we may even assume that the first point (say)
is the base point o in γS′. So, the proof of the theorem is a consequence of the
following lemma.

Lemma 5.2. Let σ = (a+ iΨ(b, b), b) ∈ γS′. Let λ ∈ Ω, w ∈ V, and let

λ(t) = (u(t), v(t)) = (itλ, tw) +O(t2)
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be a Γ-radial curve at the base point o. Let µ ∈ Ω, v ∈ V, and let

µ(t) = (u′(t), v′(t)) = (a+ iΨ(b, b) + itµ+ 2itΨ(v, b), b+ tv) +O(t2)

be a Γ-radial curve at σ (cf (27)). Then arg γk(λ(t), µ(t)) has a limit as t ↓ 0. The
limit is independent of λ,w, µ and v.

Proof. Define

γ(t) =
u(t)− u′(t)

2i
−Ψ(v(t), v′(t)) .

By an easy computation,

(35) γ(t) =
−a+ iΨ(b, b)

2i
+ t
(λ+ µ

2
+ Ψ(v, b)−Ψ(w, b)

)
+O(t2) .

Observe that z = −a+ iΨ(b, b) ∈ TΩ. Hence, from Proposition 4.2, there exists an
idempotent c ∈ U , such that z ∈ U1(c). Use (15) to obtain

Ψ(Φ(e− c)b,Φ(e− c)b) = P (e− c)Ψ(b, b) = 0 .

But, thanks to (14), this implies Φ(e − c)b = 0. In turn, using again (15), this
implies

P (e− c)Ψ(v, b) = Ψ(Φ(e− c)v,Φ(e− c)b) = 0 ,

and so
Ψ(v, b) ∈ U1(c)⊕ U 1

2
(c) ,

and similarly for Ψ(w, b). Let λ = λ1 + λ 1
2

+ λ0 (resp. µ = µ1 + µ 1
2

+ µ0) be the

Peirce decomposition of λ (resp. µ) with respect to c. Then (35) can be rewritten
as

γ(t) =
−a+ iΨ(b, b)

2i
+ tz1 + tz 1

2
+ t(

λ0 + µ0

2
) +O(t2) ,

where z1 ∈ U1(c), z 1
2
∈ U 1

2
(c). As λ0 + µ0 ∈ Ω0, the conditions of Proposition

4.3. are fulfilled, and so we may conclude that arg det γ(t) has a limit as t ↓ 0, not
depending on λ, µ nor on v, w, and hence the same is true for arg γk(λ(t), µ(t)).

Following Theorem 5.1, define ι : S × S × S −→ R by

ι(σ1, σ2, σ3) =
1

π
lim

zj−→σj
ϕ(z1, z2, z3) ,

where, for each j, 1 ≤ j ≤ 3, zj tends to σj along a Γ-radial curve.

Theorem 5.3. The function ι(σ1, σ2, σ3) satisfies the following relations :

i) ι(gσ1, gσ2, gσ3) = ι(σ1, σ2, σ3)

ii) ι(σπ(1), σπ(2), σπ(3)) = sgn(π) ι(σ1, σ2, σ3)

iii) ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4)

iv) −r ≤ ι(σ1, σ2, σ3) ≤ r
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for all σ1, σ2, σ3, σ4 ∈ S, g ∈ G and π any permutation of {1, 2, 3}.
Proof. The function ϕ satisfies the same properties on D×D×D, as was shown in
[CØ2]. The corresponding properties for ι are clearly preserved through the limit
process.

6. Extremal values of Cartan’s invariant

The triples corresponding to the extremal values of the invariant ι have a geometric
description. For the unit sphere in C2, this was observed by E. Cartan. For
general bounded symmetric domains, a characterization of the extremal triples
was obtained in [C-Ø 2], but only for mutually transverse triples (see also [Wi]).
Here we treat the general case.

Definition 6.1. Let ∆ = {z ∈ C, |z| < 1} , D a bounded symmetric domain and
ρ : ∆ −→ D a holomorphic equivariant totally geodesic map. Then ρ is said to be
tight if ρ maps the boundary Σ = {σ ∈ C, |σ| = 1} into the Shilov boundary S of
D.

If e ∈ S, then the map
ρ : ∆ −→ D, z 7−→ ze

is a tight holomorphic embedding, and up to composition by an element of G,
every tight holomorphic imbedding can be realized in this way (cf [S] ch. III).

Theorem 6.2. Let σ1, σ2, σ3 ∈ S, and assume that ι(σ1, σ2, σ3) = r. Then, for
1 ≤ i 6= j ≤ 3, σi>σj , and there exists a unique tight holomorphic totally geodesic
imbedding ρ : ∆ −→ D such that

σ1 = ρ(+1), σ2 = ρ(−1), σ3 = ρ(−i) .

Only the first statement (the fact that a triple which realizes the maximal value
of the invariant ι has to be mutually transverse) is new. The second statement,
assuming the transversality property, was proved in [Cl-Ø 2]. For the proof of the
first statement, we need to recall a few results, which we state as lemmas. Recall
first that, by Bruhat’s theory, the G-orbits in S × S are easy to analyze. There
are exactly r + 1 orbits. Here is a more precise statement (see e.g. [Cl-N] for a
proof).

Lemma 6.3. Let c1, c2, . . . , cr be a Jordan frame of W. For 0 ≤ k ≤ r, let

εk = c1 + c2 + . . .+ ck − ck+1 − . . .− cr ,

and e = εr = c1 + c2 + . . .+ cr. Any pair (σ1, σ2) ∈ S × S is G-conjugate to some
pair (e, εk) for a unique k, 0 ≤ k ≤ r.
Set µ(σ1, σ2) = k (transversality index) if the pair (σ1, σ2) is G-conjugate to (e, εk).

Lemma 6.4. Let D be a bounded symmetric domain of tube type, of rank r. Let
σ1, σ2, σ3 ∈ S × S × S, and assume µ(σ1, σ2) = k. Then

|ι(σ1, σ2, σ3)| ≤ r − k .
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This a consequence of a geometric result proved in [Cl-N]. In fact, up to G-action,
there exists a Jordan frame c1, c2, . . . , cr such that,

σ1 = c1 + c2 + . . .+ cr, σ2 = c1 + . . .+ ck − ck+1 − . . .− cr, σ3 =

r∑

j=1

eiθjcj ,

where for 1 ≤ j ≤ r θj ∈ R/2πZ. Now,

ι(σ1, σ2, σ3) =

r∑

j=k+1

ι(1,−1, eiθj ) ,

where we use the same symbol ι for the Maslov index on the unit circle in C.
Lemma follows 6.4 immediatly.

Lemma 6.5. Let D be a bounded symmetric domain of tube type, of rank r. Let
σ1, σ2 ∈ S×S and let µ(σ1, σ2) = k. For z ∈ D, let ϕ be the function on S×S×D
defined by

ϕ(σ1, σ2, z) = lim
z1−→σ1,z2−→σ2

ϕ(z1, z2, z)

where the limit is taken in the Γ-radial sense. Then

|ϕ(σ1, σ2, z)| < (r − k)π

for any z ∈ D.

As a function of z, ψ(z) = ϕ(σ1, σ2, z) is pluriharmonic in D (see the argument in
[Cl-Ø 2]). The function ψ is bounded by rπ, and has Γ-radial limits at all points
of the Shilov boundary S, and, by Lemma 6.4 satisfies |ψ(σ)| ≤ (r − k)π for all
σ ∈ S. A maximum principle then applies (cf [Cl-Ø 3]), which implies that the
same bound is valid on D. The lemma follows as the maximum cannot be reached
in D.

Lemma 6.6. Let D be a bounded symmetric domain. Let σ1, σ2 ∈ S×S and let
µ(σ1, σ2) = k. Then, for any σ3 ∈ S,

(36) |ι(σ1, σ2, σ3)| ≤ r − k .

Proof. From Lemma 6.3, we may assume that σ1 = e and σ2 ∈W2(e). For z ∈ D,
let z′ be the orthogonal projection of z on W2(e). Let D′ = D ∩W2(e). It is a
bounded symmetric domain ot tube type, of the same rank r as D. Moreover,
z′ ∈ D′ and (cf [Cl-Ø 2])

ϕ(σ1, σ2, z) = ϕ′(σ1, σ2, z
′) ,

where ϕ′ is the symplectic area for the tube type domain D′. Now Lemma 6.5. im-
plies |ϕ′(σ1, σ2, z

′)| ≤ (r−k)π, and hence |ϕ(σ1, σ2, z)| ≤ (r−k)π. The inequality
(36) is obtained by letting z tend to σ3 along a Γ-radial curve.

The proof of Theorem 6.2 is now easy. If ι(σ1, σ2, σ3) = r, then σ1>σ2, because
of Lemma 6.6, and similarly σ2>σ3 and σ3>σ1. This means that a triple which
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realizes the maximum of the Cartan invariant must be mutually transverse. Then
Theorem 6.2 is a consequence of Theorem 4.7 in [Cl-Ø 2]. Needless to say, there is
a similar result for triples in S which satisfy ι(σ1, σ2, σ3) = −r. For applications
of this result see [Bu-I] or [Wi].
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[Kor] Korányi A., Function spaces on bounded symmetric domains , Analysis
and Geometry on complex homogeneous domains, part III, 183-281, Progress in
Mathematics, vol. 185, Birkhäuser, Boston (2000).
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