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Abstract. We give a new small intrinsically universal cellular automa-
ton with 4 states (improving the best known result). The construction
takes heavy use of self-organisation: from simples structures – particles
and collisions –, we build a complex construction able of simulating any
other cellular automaton.

Complex systems are dynamical systems characterised by a great number of
simple base elements. Among those systems, some exhibits interesting behaviors:
on some cases, the “complexity” of the whole system seems far greater than
just the sum of complexity of elementary cells (such a phenomenon is called
emergence). On some other cases, even if the local behavior seems random, on
a macroscopic scale one can observe regular and predictable structures. This
behavior is referred as self-organisation. To be able to conduct a theoretical
study of these phenomena, one must have a formal model and some examples
(the smaller, the better) of systems that exhibit these behaviors. A possible
approach is to use cellular automata, which are dynamical systems in discrete
time and space. This paper’s aim is to present a small intrinsically universal1

cellular automaton.
In this paper, a cellular automaton will refer to a pair (S, f), where S is a

finite set of states and f : S3 → S is called local rule. Cellular automata are
dynamical systems on configurations (which consists on a mapping c : Z → S)
according to the global rule G defined by G(c)(i) = f(c(i − 1), c(i), c(i + 1)).
We will say that a cellular automaton is one-way if the local rule does not
depend on the last variable. In a more general context, cellular automata can
use configurations on Z

d (in this case, d is called dimension) and with a local rule
with a greater arity (noted v). A survey of known results on cellular automaton
was written by J. Kari [4].

To observe the dynamic of cellular automaton, one convenient representation
is space-time diagram which consist in pushing all configuration in one orbit. .
Formally, for a given configuration c0, the space-time diagram generated by c0 is
the application D : Z×N → S with D(x)(y) = Gy(c0)(x). An example of such a
diagram is depicted on figure 1. In this picture a self-organisation phenomenon

1 i.e. who is able to simulate any other automaton (formal definition will be given in
the article)



occur: simple structures – periodic patterns – appear and interact with each
other. The aim of this paper is to provide a small automaton that exhibits such
a behavior.

Fig. 1. Extract of a space-time diagram

To quantify the range of possible behaviors of a cellular automaton, a method
taken from complexity theory is to compare with a reference model: the Turing
Machine. Even if both system are in discrete time and discrete space, they are
have strong differences since Turing machine works only on finite words and
outputs a result contrary to cellular automaton. However, with some adaptation,
it can be proved that some cellular automata have at least as much computational
power as Turing machine. Such automata are called Turing universal. For a
formal definition, we will use the one presented by B. Durand and Z. Róka (see
[3]): An automaton A is said Turing Universal if, for any Turing Machine MT ,
there exist an halting motif e (finite sub-configuration of A) and a LOG-SPACE
transformation from any (finite) configuration s0 of the Turing Machine to an
ultimately periodic configuration c = cω

g c0c
ω
d of A such that Mt halts on s0 if

and only if e appears in the evolution of A with starting configuration c.
Turing universal automata are able of arbitrary complex behavior on finite

subset of the space time diagram. However, complex systems deals mostly with
infinite configurations which limits the interest of Turing universality.

To overcome this problem, one can have a new kind of universality: intrinsic
universality. The main idea for this universality is to simulate any other au-
tomaton preserving its dynamics. A possible implementation is to impose the
existence of a local geometrical transformation between space-time diagram.

A way to formalise such a definition is the following: an automaton B =
(SB , fB) simulates an automaton A = (SA, fA) if there exists an one-to-one
morphism f : SA → Sk

B and two integers nA and nB such as for all ca configura-
tion of A, we have the diagram given in figure 2. For a study on this order, the
reader may look at N. Ollinger thesis [8]. An automaton will be said intrinsically
universal if it can simulate any other automaton. One can note that this defi-
nition is strictly stronger than Turing universality: every intrinsically universal
automaton is Turing universal but there exists Turing universal automata that
are not intrinsically universal.
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Fig. 2. Simulation between automata

For our particular case, the choice has been to relax a little the definition by
transforming the constraint f one-to-one into f is a composition of an injective
function and the inverse of a surjective one. This definition is compatible with
B. Durand and Z. Róka formalisation (see [3]). The main reason behind this
choice is concision: the result can be proved with the more restrictive one, how-
ever at the price of a very verbose and long proof that does not add any interest.
Moreover, it is currently an open question to know whether those definitions are
equivalent or not.

With those definitions, it is now possible to give formal results on small uni-
versal automata. The table 1 present some historical result. Note that it was
proved by N. Ollinger that the problem of knowing if an automaton is intrinsi-
cally universal is undecidable (see [10]). This explain that the search was mainly
made by hand. For our kind of automata, the best known result of intrinsically
universal automata is N. Ollinger 6 states’ one. For Turing universality, M. Cook
and S. Wolfram have a better and optimal result with only 2 states (see [2]).
This automaton is proved to be Turing universal. Even more, it was recently
shown by T. Neary and D. Woods that checking a partial space-time diagram is
P-complete [6].

However, those results do not prove that this automaton is intrinsically uni-
versal.

Year author d v states type
1966 J. Von Neumann [7] 2 5 29 intrinsic
1970 E. R. Banks [1] 2 9 2 intrinsic

1 3 18 intrinsic
1 5 2 intrinsic

1990 K. Lindgren, M. G. Nordhal [5] 1 3 7 Turing
2002 N. Ollinger [9] 1 3 6 intrinsic
2004 M. Cook, S. Wolfram [2] 1 3 2 Turing
Table 1. Some known results about small automata

The main aim of this paper is to improve the bound on on the minimal size
of an intrinsically universal cellular automaton.



1 Particles and collisions

To construct small automata, a common way is to use particles and collisions,
this is also the case in our construction. Before entering the core of the proof,
some explanations will be given on those objects.

Particles and collisions are useful tools when it comes to construct small and
complex automaton. For example, one can cite the (informal) definition of class
4 of S.Wolfram (see [11]): In most cases, all sites are seen to “die” (attain value
zero) after a finite time. However, in a few cases, stable or periodic structures
which persist for an infinite time are formed. An important feature (. . . ) is the
presence of propagating structures. By arranging for suitable reflections of these
propagating structures, final states with any cycle lengths may be obtained.

Among the structures found in most of constructions, it is possible to distin-
guish three main objects: First, a background (see fig. 3(a)) is a regular structure
that “fills” wide zone of the space-time diagram. Inside backgrounds, stable peri-
odic structures will be called particles (see fig. 3(b)). Particles last forever unless
they collide into another particle. The generated element is called collision (see
fig. 3(c)). Any collision takes a set of particles as input and outputs another
(possibly empty) set.

(a) Background (b) Particle (c) Collision

Fig. 3. Example of elements

Of course, it is possible to give formal definitions of particles and collisions. It
is even possible to build formal tools to manipulate these objects and check their
validity. We choose to not use this kind of formal approach in this paper since
the overhead needed is way to big for this case where all uses of particles and
collisions are simple. This approach may be however useful and even necessary
in more complex cases.

2 Constructing a 4 states automaton

The rest of the article will be dedicated to present a new small intrinsically
universal automaton. Its main property is described in the following theorem:

Theorem 1. The 4 states automaton whose local rule is given in table 2 is
intrinsically universal.



2.1 Local rule and global view

This automaton has a set of states S = {L,R, 1, 2}. The local rule is given in
table 2. To show the intrinsically universality, we prove that this automaton can
simulate any one-way cellular automaton.

L L R 1 2

L L R 2 R

R R R R R

1 1 1 – R

2 R 2 L –

R L R 1 2

L L L 1 2
R L L 2 1
1 L L L 1
2 L 2 2 2

1 L R 1 2

L L 2 1 R

R 1 R R R

1 L 1 R R

2 – 2 L 1

2 L R 1 2

L L 1 1 2
R 2 R R R

1 2 R L 1
2 L 2 2 1

Table 2. Local transition rule of the 4 state automaton

the value of f(l, c, r) is given on the row l and column r of tabular c

All simulations are based on the use of a unique widget, that will be called
the widget in the paper. It can be represented by the symbolic drawing given in
figure 4. This widget can be seen as taking three inputs δ, l and c and delivering
three outputs δ,l′,c′ (δ is left unmodified). One can see that it is possible to tile
the plan with widget.

2.2 Widget implementation

The main goal of this section is to implement the widget with the automaton.
Doing this will fix the relations between the inputs and outputs of the widget.
The macroscopic symbolic representation is given in figure 5. In this figure, each
line represent a particle: the gray areas indicate place where more particles can
be added. Figure 6 gives microscopic details of the widget.

Let N be a integer. Inside the widget, the signal δ is encoded by using N +1
parallels signals (see for example area 1). Information will be encoded in the
size of the gap between two consecutive particles and noted (δi)0≤i<N (this size
correspond to the number of cells in state R or 1 between two signals). Signals
l, c, l′ and c′ are implemented by two particles. They convey a value (smaller
than N) encoded with the size of the gap between the two particles (taken as
the number of cells in state 2).

In the microscopic world, widget are vertically delimited by a vertical particle
(see for example area 3). Once entering the widget, signal l cross the function δ

without any change (see area 1). Then the signal l encounter the signal c (area 2).
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Fig. 4. Symbolic representation of the widget
Plain and evenly dashed lines represent signals,

dotted lines indicates signals that propagate to other cells

The result is a signal l + c going left and the signal l going right. This outgoing
l signal will be absorbed by the vertical particle (area 3).

The signal l + c encounter next a copy of the function δ (originated from
collision between delta and the vertical particle detailed in area 4). In this en-
counter, the signal l + c disappear and copy of δ has its l + c − 1 first particles

altered and the following one suppressed. This step allow to select the l+c+1th

value of the rule.

At last, the altered copy of δ encounter the vertical particle (area 7a and
area 7b) . First altered signals are absorbed. Then the first gap (of size δl+c) is
converted into two signals. Here, the behavior varies according to the parity of
δl+c. if δl+c = 2k (area 7a) then c′ = 2k−N + l+c−1 and l′ = k; if δl+c = 2k+1
(area 7b) then c′ = 2k − N + l + c − 1 and l′ = k + 1.

Note that the presence of l and c in c′ will force us to have a supplementary
encoding step. Before going to this final part, one must say some final arguments
to prove that those widgets can be used: first main thing is the problem to ensure
the synchronisation of particles. In the general case, two identical particles can
lead to several distinct collisions. Here, most of the particles are as short as the
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Fig. 5. Implementation of the widget using the automaton particles
circle area indicate area whose implementation is given in next figure



Area 1 Area 2

Area 3 Area 4

Area 5 Area 6

Area 7a Area 7b

Fig. 6. Details from selected area of the widget
These figures provides space-time diagram extracts, states are represented as follow:

L is white, R dotted, 1 is a cross and 2 black.



background, that implies there is only one collision possible. There are however
two exceptions: One is the vertical particle in areas 7 and we have treated the
two cases (a and b). The other is the one in area 1. One can check that this
collision also works when l is even. Second thing is to check that parallels lines
in symbolic representation stay parallel. Once again, whereas it can be difficult
in he general case, here we can see that either particles are not deviated by
collisions, either they all undergo the same deviation (for example, all particles
of the signal δ are deviated once by the vertical particle in area 4). It is also the
case of the vertical particle: the right one undergo a deviation in area 7a and 7b
whereas the left one undergo this deviation on the input of l.

Using this widget as tile, it is possible for every chosen δ to construct space-
time diagrams provided some assumption are verified: l, c > 0, l+c < N (area 5)
and ∀i, δi > 1 (area 4). In the last part, we will show how to encode any one-way
cellular automaton with hose widget.

2.3 Simulation and coding

The last part of the construction will be to encode any one-way cellular automa-
ton using the widget just built. In this widget, we can control the rule δ according
to inputs, however the outputs have strange relations with inputs. First thing
will be to get rid of this.

let (S, f) be an uni-directional CA (f : S2 → S). To simulate we will create a
structure, based on the widget, that will emulate any cell of the original cellular
automaton. The construction will be based on the assembly of two widgets: he
output l′ of the first one will be linked to the input l̃ of the second one. The rule
δ must be the same for both. This structure takes four inputs l, c,c̃ and δ. It
outputs four values c′, c̃′, l̃′ and δ (see fig. 7).

Assume that S is a subset of {0, 1}k. let sl = (sl
i)0≤i<k and sc two states and

s′ = f(sl, sc). This transition is simulated inside the elementary structure using
coding given in table 3. In the table, ⊥ denotes an arbitrary value and x̄ is the
flapped value of x (i.e. 1 − x). For transitions, we will only use the even case,
that is: δ(l + c) = 2k which lead to c′ = 2k + l + c − (N + 1) and l′ = k.

N 1111 ( 11 11 11 11 ) 111

l 0101 ( ⊥⊥ sl
i0 ⊥⊥ 00 ) ⊥⊥⊥

c 0000 ( ⊥⊥ 00 ⊥⊥ sc
i0 ) ⊥⊥⊥

c̃ 1000 ( 00 00 00 00 ) 000

l + c 01xx ( ⊥⊥ sl
i⊥ ⊥⊥ sc

i⊥ ) ⊥⊥⊥ where xx = 01 or 10
δ(l + c) 10△△ ( s̄′i1 △△ 11 △△ ) 100
c′ 0000 ( ⊥⊥ 00 ⊥⊥ s′i0 ) ⊥⊥⊥

l′ 010⊥ ( ⊥s̄′i 1⊥ ⊥1 1⊥ ) ⊥10
N − l′ + 1 101⊥ ( ⊥s′i 0⊥ ⊥0 0⊥ ) ⊥10

l̃′ 0101 ( ⊥⊥ s′i0 ⊥⊥ 00 ) ⊥⊥⊥

Table 3. Inner coding of a transition
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Fig. 7. Elementary widget

The coding works the following way: first thing to note is that l + c is one-
to-one with regards to (sl, sc). The △ in δ(l + c) can be chosen to impose the
value of c′. After this,one can remark that l′ + c̃ is also one-to-one. If we take
δ(l′ + c̃) = N − l′ + 1 then c̃′ = N − l′ + 1 − N + l′ + c̃ − 1 = c̃. Moreover, l̃′ is
on the desired form. To finish with this coding, one must say that it is possible
that every states has at least one non null digit (to satisfy the assumption the c

is not null).

At this point, we have shown that we can construct with an injective-surjective
morphism a space-time diagram that simulates any one directional automaton.
however, in this construction, configurations simulated are not horizontal but on
a fixed slope (note that the slope does not depend on the simulated automaton).
To overcome this,it is sufficient to use the standard trick of taking an automaton
which waits enough time before really acting.

This conclude the whole proof: we have given an intrinsically universal au-
tomaton with only 4 states and show how it can simulate any other
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A Colored space-time diagram

This section contains a colored version of space-time diagram extracts given in
fig. 6.The color mapping is the following: L is white, R yellow, 1 red and 2 blue.



Area 1 Area 2

Area 3 Area 4

Fig. 8. Details in colored version from selected area of the widget



Area 5 Area 6

Area 7a Area 7b

Fig. 9. Details in colored version from selected area of the widget (cont.)


