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Abstract

In this paper, we give pinching Theorems for the first nonzero eigenvalue A; (M)
of the Laplacian on the compact hypersurfaces of the Euclidean space. Indeed, we
prove that if the volume of M is 1 then, for any £ > 0, there exists a constant C.
depending on the dimension n of M and the L.,-norm of the mean curvature H, so
that if the Lo,-norm |[H||y, (p > 2) of H satisfies n| H||3, — Cc < A1(M), then the
Hausdorft-distance between M and a round sphere of radius (n/A; (M))/? is smaller
than e. Furthermore, we prove that if C' is a small enough constant depending on
n and the Ls.-norm of the second fundamental form, then the pinching condition
n||H H%p — C < A\1(M) implies that M is diffeomorphic to an n-dimensional sphere.
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1 Introduction and preliminaries

Let (M™, g) be a compact, connected and oriented n-dimensional Riemannian manifold
without boundary isometrically immersed by ¢ into the n+ 1-dimensional euclidean space
(R™ can) (i.e. ¢*can = g). A well known inequality due to Reilly ([T]) gives an extrinsic
upper bound for the first nonzero eigenvalue A\;(M) of the Laplacian of (M", g) in terms
of the square of the length of the mean curvature. Indeed, we have

MO < i | 1R 1)

where dv and V(M) denote respectively the Riemannian volume element and the volume
of (M™,g). Moreover the equality holds if and only if (M", g) is a geodesic hypersphere
of R+,

By using Holder inequality, we obtain some other similar estimates for the Lo,-norm
(p > 1) with H denoted by || H|3,

n

>\1(M)§W|

[HI[3,, (2)
and as for the inequality ([[), the equality case is characterized by the geodesic hyper-
spheres of R"*!,

A first natural question is to know if there exists a pinching result as the one we state
now: does a constant C' depending on minimum geometric invariants exist so that if we
have the pinching condition

(Pe) “

V(M)ir

then M is close to a sphere in a certain sense?

Such questions are known for the intrinsic lower bound of Lichnerowicz-Obata ([f])
of \i(M) in terms of the lower bound of the Ricci curvature (see [, [], [IJ]). Other
pinching results have been proved for Riemannian manifolds with positive Ricci curvature,
with a pinching condition on the n + 1-st eigenvalue ([I0]), the diameter ([F], [B], [L3]),
the volume or the radius (see for instance [B] and [B]).

For instance, S. Ilias proved in [§] that there exists ¢ depending on n and an upper
bound of the sectional curvature so that if the Ricci curvature Ric of M satisfies Ric >
n—1and A (M) < A (S") + ¢, then M is homeomorphic to S".

In this article, we investigate the case of hypersurfaces where, as far as we know, very
little is known about pinching and stability results (see however [[Z], [[3]).

More precisely, in our paper, the hypothesis made in [§] that M has a positive Ricci
curvature is replaced by the fact that M is isometrically immersed as a hypersurface in
R"*! and the bound on the sectional curvature by an L*-bound on the mean curvature
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or on the second fundamental form. Note that we do not know if such bounds are sharp,
or if a bound on the L%-norm (for some ¢) of the mean curvature would be enough.

We get the following results
Theorem 1.1 Let (M™,g) be a compact, connected and oriented n-dimensional Rieman-
nian manifold without boundary isometrically immersed by ¢ in R*"L.  Assume that
V(M) = 1 and let xo be the center of mass of M. Then for any p > 2 and for any

e > 0, there exists a constant C. depending only on n, € > 0 and on the Ly.-norm of H
so that if

(Fe.) nlH|3, — Ce < (M)

then the Hausdorff-distance dyg of M to the sphere S (xo, . /W) of center xo and

radius \/% satisfies dy (¢<M)75 (xo’ %)) < e

We recall that the Hausdorff-distance between two compact subsets A and B of a
metric space is given by
du(A, B) = inf{n|V,(A) D B and V,(B) D A}

where for any subset A, V,(A) is the tubular neighborhood of A defined by V,(A4) =
{z|dist(x, A) < n}.

Remark We will see in the proof that C.(n, ||H||~) — 0 when ||H ||, — 00 or ¢ — 0.

In fact the previous Theorem is a consequence of the above definition and the following
Theorem

Theorem 1.2 Let (M™,g) be a compact, connected and oriented n-dimensional Rieman-
nian manifold without boundary isometrically immersed by ¢ in R*"L.  Assume that
V(M) = 1 and let xo be the center of mass of M. Then for any p > 2 and for any
e > 0, there exists a constant C. depending only on n, € > 0 and on the Ls.-norm of H
so that if

(Pc.) n||H|3, — C: < A (M)
then

1. ¢(M) CcB (SL’OM/W‘FS) \B (x07\/)\1(nM) _8)'

2.Vx e S <x0, W) ,B(x,e) Np(M) # O.




In the following Theorem, if the pinching is strong enough, with a control on n and
the L.-norm of the second fundamental form, we obtain that M is diffeomorphic to a
sphere and even almost isometric with a round sphere in a sense we will make precise.

Theorem 1.3 Let (M™,g) be a compact, connected and oriented n-dimensional Rieman-
nian manifold (n > 2) without boundary isometrically immersed by ¢ in R, Assume
that V(M) = 1. Then for any p > 2, there ezists a constant C' depending only on n and
the Lo.-norm of the second fundamental form B so that if

(Fe) n||HI[3, — C < A(M)
Then M is diffeomorphic to S™.

More precisely, there exists a diffeomorphism F from M into the sphere S™ ( W)

A1 (M)

constant C' depending only on n, the Lo.-norm of B and 0, so that the pinching condition
(Pc) implies

of radius which is a quasi-isometry. Namely, for any 6, 0 < 0 < 1, there exists a

dFp(u)]? = 1] < 6
for any x € M and v € T, M so that |u| = 1.

Now we will give some preliminaries for the proof of these Theorems. Throughout
the paper, we consider a compact, connected and oriented n-dimensional Riemannian
manifold (M™, g) without boundary isometrically immersed by ¢ into (R™! can) (i.e.
¢*can = g). Let v be the outward normal vector field. Then the second fundamental
form of the immersion will be defined by B(X,Y) = (V4v,Y), where V® and { , ) are
respectively the Riemannian connection and the inner product of R"*'. Moreover the
mean curvature H will be given by H = (1/n)trace(B).

Now let 0; be an orthonormal frame of R"*! and let x; : R"*! — R be the associated
component functions. Putting X; = x; o ¢, a straightforward calculation shows us that

Bov=- )Y VdX;®0

i<n+1

and

i<n4+1
where V and A denote respectively the Riemannian connection and the Laplace-Beltrami
operator of (M", g). On the other hand, we have the well known formula

%A|X|2 =nH (1, X)—n (3)



where X is the position vector given by X =3, ., X;0;.

We recall that to prove the Reilly inequality, we use the functions X; as test functions
(cf [LT]). Indeed, doing a translation if necessary, we can assume that [, X;dv = 0 for all
i < n+1 and we can apply the variational characterization of A\; (M) to X;. If the equality
holds in () or (B), then the functions are nothing but eigenfunctions of A;(M) and from
the Takahashi’s Theorem ([[[4]) M is immersed isometrically in R"*! as a geodesic sphere

of radius , /+7—~

Ar(M)”
Throughout the paper we use some notations. From now on, the inner product and
the norm induced by ¢g and can on a tensor T' will be denoted respectively by (, ) and
| |?, and the L,-norm will be given by

1/p
171, = ( / |T\pdv)
M

1T loe = sup [T
M

and

We end these preliminaries by a convenient result

Lemma 1.1 Let (M™,g) be a compact, connected and oriented n-dimensional Rieman-
nian manifold (n > 2) without boundary isometrically immersed by ¢ in R, Assume
that V(M) = 1. Then there exist constants ¢, and d,, depending only on n so that for any
p > 2, if (Pc) is true with C' < ¢, then

<d, (4)

PROOF: We recall the standard Sobolev inequality (cf [[], [, [IG] and p 216 in [f]). If
f is a smooth function and f > 0, then

( /M fn”ldvy(l/n)SK(n) /M (Idf| + |H|f) do (5)

where K(n) is a constant depending on n and the volume of the unit ball in R™. Taking
f=1on M, and using the fact that V(M) = 1, we deduce that

1
H >
|| ||2p = K(n)

and if (P¢) is satisfied and C' < SR (m? = Cn, then
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n 1
< <2K(n)* =d,
AM(M) ~ n|H|E, - C

O

Throughout the paper, we will assume that V(M) = 1 and fM X;dv = 0 for all
i < n+ 1. The last assertion implies that the center of mass of M is the origin of R"*!,

2 An L’*-approach of the problem

A first step in the proof of the Theorem is to prove that if the pinching condition
(Pc) is satisfied, then M is close to a sphere in an L*-sense.
In the following Lemma, we prove that the L?-norm of the position vector is close to

\/ Al? )

Lemma 2.1 If we have the pinching condition (Pc) with C' < ¢,, then

nAy (M)
- s <IX|3 <

C+M0D) nan =0

PROOF: Since [ 4 Xidv = 0, we can apply the variational characterization of the eigen-
values to obtain

Al(M)/M > |Xi|2dv§/M > ldXiPdv = n

i<n+1 i<n+1

which gives the inequality of the right-hand side
Let us prove now the inequality of the left-hand side.

Iy |dXi|2dv> ( Ju > (AX,)X,dv)

i<n-+1 i<n+1

Al(M)/ X2y < _
M

3 n3
fM Z ‘dXi‘QdU>

i<n+1

S D (AXi)de> (o | X )’

i<n+1

IN

n3



:n</MH2dv)2(/M|X\2dv)2

then using again the Holder inequality, we get

1 C+ M(M))?
a0 < = ) [ xpae< EEEDE [y,
M M

This completes the proof. 0

From now on, we will denote by X7 the orthogonal tangential projection on M. In
fact, at + € M, X7 is nothing but the vector of T, M defined by X7 = Z (X, e;)e;

1<i<n
where (e;)1<i<n is an orthonormal basis of T, M. In the following Lemma, we will show
that the condition (P¢) implies that the L?-norm of X7 of X on M is close to 0.

Lemma 2.2 [f we have the pinching condition (P¢), then

IX7]3 < A(n)C

PROOF: From the lemma P.1 and the relation (§), we have

Al(M)/M\X|2dvgn:n</MH<X,V>dv)2

S</M\HII<X,V>\dv>2SnHHIEp (/M|<X7V>|%dv)

<l HIZ, ( [ 11 |2dv) L e

Then we deduce that

2p—1

XTI =, ([ (X 1) ) )
< (nllH[f3, — M (M) X3 < d,C
where in the last inequality we have used the pinching condition and the Lemma P.1. 4

Now, we will show that the condition (Py) implies that the component functions are

almost eigenfunctions in an L?-sense. For this, let us consider the vector field Y on M
defined by

Y=Y (AX; = M(M)X;) 0, = nHv — \(M)X

i<n+1



Lemma 2.3 If (Pr) is satisfied, then
[Y]5 < nC

Proor: We have

/M Y |*dv = /M (n*H? — 2n\ (M) H (v, X) 4+ M\ (M)?| X]?) dv

Now by integrating the relation (§) we deduce that

/HVX =1

Furthermore, since [ o Xidv = 0, we can apply the variational characterization of the
eigenvalues to obtain

A(M )/IX\dv—Al /Z|X|dv</ 3 ldXiPdv =n

i<n+1 i<n4+1
Then
/ Y |dv < n2/ |H|*dv — nXi (M) < n (n]|H[3, = \i(M)) <nC
M M
where in this last inequality we have used the Holder inequality. 0

To prove Assertion 1 of Theorem [[.3, we will show that

" 1/2

2

/
this we need to have an L*-upper bound on the function ¢ = | X| (\X| — (W)

Before giving such estimate, we will introduce the vector field Z on M defined by

1/2

n X
7 = X|\V?Hy — ——
<A1(M)> XY = e

We have
Lemma 2.4 If (P¢) is satisfied with C < ¢, then

1Z]|5 < B(n)C
Proor: We have

1213 = ||( o

2
| X|Y?Hy —

X
| X |12
2



:/M <)\1?M)|X|H2—2 (ﬁ)m}[(u,){)+|x|> dv

< () " (L) "2 (i) (fwen)

Note that we have used the relation (B). Finally for p > 2, we get

1215 </M|X|2dv) - (Al(nM)”H”gﬁl) - <A1(nM)>1/2
- <A1<HM>)1/2 (5 +2) 2 </\1(nM))1/2

1/2 3/2
) C < dy o
) M) T on

- (Al(M
This concludes the proof of the Lemma.

Now we give an L2-upper bound of ¢

Lemma 2.5 Let p > 2 and C < ¢,. If we have the pinching condition (Pc), then
lell < D(n)llpl3tCH

Proor: We have

1/2
1/2
el = ( /M 903/2901/2dv) < Il 2]

and noting that

X ('X‘ ) (AfM))l/z)z - "X‘WX ~(xim)

2

we get

2y
V2qy = ||| X]/2X — ( - )
fueae= X = (i) |

|X|1/2 n 1o < n )1/2 X
= |- Y + X|"""Hv —
won, T nan NaD) X

1

10



Y

+ (ﬁ)/ 121, (6)

|X‘1/2
A(M)
From Lemmas P.3 and [[.]] we get

1 1/2
Y < X|dv Y
< (i) v
/4

1 1 2
XJ? Yy < =02
(M) </M‘ | dv) I¥ll: = nl/QC

Moreover, using Lemmas R.4 and [L.] again it is easy to see that the last term of () is
bounded by d,ll/ZB(n)l/zCl/Q. Then ||g01/2||}/2 < D(n)CY4.

’ |X|1/2
A (M)

<

O

3 Proof of Theorem 12

The proof of Theorem [[.9 is immediate from the two following technical Lemmas which
we state below.

Lemma 3.1 For p > 2 and for any n > 0, there exists K,(n,|H|s) < ¢, so that if
(Px,) is true, then ||¢||s < 1. Moreover, K, — 0 when ||H | — oo orn — 0.
and

Lemma 3.2 Let xq be a point of the sphere S(O, R) of R""! with the center at the origin
and of radius R. Assume that xy = Re where e € S". Now let (M™,g) be a compact
oriented n-dimensional Riemannian manifold without boundary isometrically immersed
by ¢ in R"™ so that p(M) C (B(O, R+ n)\B(O, R —n)) \B(xo, p) with p = 4(2n — 1)n
and suppose that there exists a point p € M so that (X, e) > 0. Then there exists yo € M
so that the mean curvature H(yo) at yo satisfies |H (yo)| > ﬁ.

Now, let us see how to use these Lemmas to prove Theorem [[.2.

PROOF OF THE THEOREM [[.Z: Let € > 0 and let us consider the function f(t) =

1/2\ 2
t (t— (W) ) . Let us put
1 1 1
7(€) = min ((7 - g) 2 <7 " 5) £} 7)
[1H | 1 | 27| H13,

< min <f <<)\1<71M))1/2_5> f ((ﬁ)m+5> ’W)

11




Then, as n(e) > 0 and from Lemma B.J], it follows that if the pinching condition (Px
is satisfied with K ) < ¢,, then for any x € M, we have

n(S))

FUXD) < n(e) (7)

Now to prove Theorem [L.3, it is sufficient to assume e < . Let us show that either

2
3[[Hlo

By studying the function f, it is easy to see that f has a unique local maximum in

1 n 1/2 g 4 1 4 n 3/2
3 </\1(M)> and from the definition of 7(¢) we have n(e) < AR < o7 </\1(M)> -

f (é (%)m).

' , , . 1/2 . . 1/2 . 1/2
Now since ¢ < s e have e < £ <—)\1(M)> , and 3 <—)\1(M)> < (_Al(M)) —E.
This and ([) yield ().
Now, from Lemma P-J] we deduce that there exists a point yo € M so that | X (yo)| >

% and since Ky) < ¢, = 7= < A (M) < 2X(M) (see the proof of the Lemma
nie n

' Co\L2
[L.3)), we obtain | X (yo)| > 3 (W) :
1/2 1/2
By the connectedness of M, it follows that (W) —e<|X| < (W) + ¢ for any
point of M and Assertion 1 of Theorem [ is shown for the condition (P, ., ).
In order to prove the second assertion, let us consider the pinching condition (Pg.) with

. o . n O\ M2 -
C. = Kn(4(2§_1))' Then Assertion 1 is still valid. Let = = (W) eesS (O, \ /W)a

with e € S" and suppose that B(z,e)NM = @. Since [,, X;dv = 0 for any i < n+1, there
exists a point p € M so that (X, e) > 0 and we can apply Lemma B.2. Therefore there is a
point yo € M so that H(yg) > 22— > || H||« since we have assumed & < 3”5”00 < 2n2|7|11;||100'
Then we obtain a contradiction which implies B(z,e)NM # () and Assertion 2 is satisfied.

Furthermore, C. — 0 when ||H||o, — 00 or ¢ — 0. n

4 Proof of Theorem

From Theorem [[.3, we know that for any € > 0, there exists C. depending only on n
and ||H ||« so that if (Pg.) is true then

12



‘|X|x_\/%‘ <e

for any x € M. Now, since \/n|[H||sx < ||B||oo, it is easy to see from the previous proofs
that we can assume that C. is depending only on n and || B||ec.

The proof of Theorem [[.3 is a consequence of the following Lemma on the L..-norm
of 4 = |X7]

Lemma 4.1 For p > 2 and for any n > 0, there exists K,(n, || Bl|«) so that if (Pg,) is
true, then [|¢||eo < 1. Moreover, K, — 0 when ||Bl/oc — o0 orn — 0.

This Lemma will be proved in the Section 5.

ProorF OF THEOREM [L.3: Let ¢ < %‘ /W < W From the choice of e, we

deduce that the condition (Pg.) implies that | X,| is nonzero for any x € M (see the proof
of Theorem [[.7) and we can consider the differential application

Py — 50 /o)

X1 (M)
n Xy

— — =

z M () TXa]

We will prove that F' is a quasi isometry. Indeed, for any 0 < # < 1, we can choose a
constant £(n, || B||s, @) so that for any # € M and any unit vector v € T, M, the pinching

condition (Pc,, 5.0 ) implies

dFp(u)]* = 1] < 6
For this, let us compute dF,(u). We have

o5 = st ™ () .= i () <t ™
_ _%mﬁu(m%x + mﬁu
_ _Mﬁ (u, X) X + M§u
=g ()

By a straightforward computation, we obtain

13



1 (u, X)?
dF,(u)]? — 1] = |[—2 1 — ~1
el -1 A1<M>|X|2( |X|2>
n 1 n 1 9
1|+ X 9
—‘A1<M>|X|2 ' o e ®)
Now
noo1 1| n ) \/M(M)HX" 2/x0m T €
- =1 = 27—\X| <eg <e
M(M) | X] | X2 | A (M)

| X2 — 2
Nan ¢

Let us recall that 7= < A\ (M) < [|B||Z, (see () for the first inequality). Since we assume

e < %, /ﬁ, the right-hand side is bounded above by a constant depending only on n

and || B||s and we have

‘ n 1

o - 1| <o 15 (10)

On the other hand, since C.(n, ||B||o) — 0 when ¢ — 0, there exists e(n, || B|«,n) SO
that C. < K,(n,||B|l) (where K, is the constant of the Lemma) and then by

E(n, | Blloom)

Lemma [T, ||+]|%, < n?. Thus, there exists a constant § depending only on n and || B[
so that

n 1 2 n 1 9 9
u, X)" < — Y]l < n70(n, || Bl 11
i T 0 < i el < 780 Bl (1)
then from (f), (I0) and ([I]) we deduce that the condition (Fc,, z,...,) implies
|ldF:(w)* — 1] < ev(n, | Bllso) + 17°0(n, || Blloo)
Now let us choose n = (%)1/2. Then we can assume that (n, || B/, n) is small enough

in order to have e(n, || B|ls, )7 (n||Bll) < £. In this case we have

||dF,(w)]* = 1] < 6
Now let us fix 0, 0 < 6 < 1. It follows that F' is a local diffeomorphism from M to

S (O, . /W) Since S (O, W) is simply connected for n > 2, F' is a diffeomor-
phism. 0

14



5 Proof of the technical Lemmas

The proofs of Lemmas B.1 and [E]] are providing from a result stated in the following
Proposition using a Nirenberg-Moser type of proof.

Proposition 5.1 Let (M™,g) be a compact, connected and oriented n-dimensional Rie-
mannian manifold without boundary isometrically immersed into the n + 1-dimensional
euclidean space (R"*1 can). Let & be a nonnegative continuous function so that &* is
smooth for k> 2. Let 0 <r < s <2 so that

1

§A€2§2k_2 S Sw + (Al + k,AQ)é-Qk—r + (Bl + k?BQ)SQk_S

where dw 1s the codifferential of a 1-form and Ay, As, By, By are nonnegative constants.
Then for any n > 0, there exists a constant L(n, Ay, As, B1, Bo, ||H |00, 1) depending only
onn, Ay, Ay, By, B, | H|w and 7y 5o that if |€l|se > 1 then

[€lloc < L(n, A1, Az, By, B, [[H||oo, n)[€]2

Moreover, L is bounded when n — oo, and if By > 0, L — oo when ||H||cc — 00 or
n— 0.

This Proposition will be proved at the end of the paper.

Before giving the proofs of Lemmas B.]] and [}, we will show that under the pinch-
ing condition (Pr) with C' small enough, the L.-norm of X is bounded by a constant
depending only on n and || H|| .

Lemma 5.1 If we have the pinching condition (Pg) with C < c¢,, then there exists
E(n,||H||s) depending only on n and |H ||« so that || X||ec < E(n, ||H||)-

PROOF: From the relation (), we have
1
SAIXPIX P2 < | oo | X[
Then applying Proposition f.] to the function & = |X| with » = 0 and s = 1, we obtain

that if || X« > E, then there exists a constant L(n, ||H||«, E) depending only on n,
|H||s and E so that

[ XMoo < L(n, [ Hl|oo, £)[X |2

and under the pinching condition (P¢) with C' < ¢, we have from Lemma P.]
X loo < Lin, | Hl oo, £)dy?

15



Now since L is bounded when E — oo, we can choose E = E(n, || H||~) great enough so
that

L(n, |H||s, E)dY? < E
In this case, we have || X || < E(n, ||H||s)-
([l
PROOF OF LEMMA B1: First we compute the Laplacian of the square of p?. We have

2 4 n i 3 n 2
A :A<'X‘ -2(50m) +A1(M)‘X|>

= 2 XP|dIX ) + 2| XPALX

1/2
n 3 3 n
—2 —ZIX| Y4 X 2% + 2| X|AIX)? AlX|]?
(5ri) (5P PR + SIX1AIXP) + o alx

Now by a direct computation one gets |d| X |?*|*> < 4] X|?. Moreover by the relation (J) we
have |A|X|?| < 2n||H||«|X| + n. Then applying Lemmas [ and B-1] we get

Ap® < a(n, ||H||x)
and
1
SAGH < aln, || Hllo)p?

Now, we apply Proposition p.1 with r = 0 and s = 2. Then if |||/ > 7, there exists a
constant L(n, ||H||») depending only on n and ||H|| so that

lelloo < Lilollo
From Lemma P8, if C < ¢, and (Pc) is true, we have ||¢|ls < D(n)||¢||2*C/4. Therefore

lell < (LD)*C

Consequently, if we choose C' = K, = inf (#, cn>, then we obtain that ||¢|l. < 7.

(|
PrOOF OF LEMMA f.1: First we will prove that for any C < ¢,, if (P¢) is true, then

1
5(&/12)1#2’“’2 < bw + (a1 (n, | Bloo) + kaa(n, | Blls)) ¥ (12)
where dw is the codifferential of a 1-form w.
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First observe that the gradient VM| X |? of | X |? satisfies VM| X|? = 2XT. Then by the
Bochner formula we get
A|XT2 <Ad\X|2 dX*) =5 |Vd|X\2\2 RIC (VMX]2, VMX]?)
< © (dAXP,d|X[?) ~ TRic <vM|X\2,vM\X|2>

and by the Gauss formula we obtain

1 1 1 1
5A|XT\2 <37 (dA|X)?, d|X|*) — Ll (BVM| X, VM X|*) + Z\BVM|X\2\2
1
= (dA|X[*,d|X|*) —nH (BX",X") + |BX"T|?
By Lemma p.1] we know that || X||c < E(n,||Blls) (the dependance in ||H||« can be
replaced by || B||o). Then it follows that
1 1
S (DY) < 2 (dAIX P, dIX %) 972 + o' (n, || Blloo)y™ (13)
Now, let us compute the term (dA|X |2, d|X|?) **=2. We have
(dAIXP,dIX]?) ™72 = 6w + (AIX )72 — (2k — 2)AIX]? (d| X, dy) ™
= dw + (A|X P72 = 2(2k — 2)A[X [ (X7, VM) 4?3
where w = —A|X |*¢?*~2d| X |2. Now,

el XT)2 el X2 —ei (X, v)” (e, X)— Bij (X, e;) (X,v)
2| XT| 2| X7 B | XT]

ei(y) =

Then

(AAIXP dIX[?) ™72 = 6w + (A|XP)?9?72 — 2(2k — 2)A|X PP X T g%
2 (BXT, XT)
+2(2k = AP
< dw + (A[X]1)2% 72 4+ 2(2k — 2)| AL X [?|g* 2
+2(2k — 2)|A|X P B| X [*

<X, 1/) w2k73

Now by relation (B) and Lemma [.1] we have
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(dAIXT?, dIX?) 972 < 6w + (o (n, || Blloo) + ke (n, || Blloo)) 47

Inserting this in ([[J), we obtain the desired inequality ([[J).
Now applying again Proposition p.1], we get that there exists L(n, || Bl|s0,n) so that if
[¥[|oc > n then

[¥lloe < LI |l2

From the Lemma we deduce that if the pinching condition (Pr) holds then ||| <
A(n)/2CV/2. Then taking C = K, = inf (%, ¢,), then [[¢)]|o0 < 1.
O

PROOF OF LEMMA B.2: The idea of the proof consists in foliating the region B(O, R+
n\B(O, R —n) with hypersurfaces of large mean curvature and to show that one of these
hypersurfaces is tangent to ¢(M). This will imply that ¢(M) has a large mean curvature

at the contact point.
Consider S"~! ¢ R” and R"*! = R" x Re. Let a, L > > 0 and

(I)L,l,a Sl x St — R+l
(&,0) — L& —lcosOf + Isinfe + ae

Then @7, is a family of embeddings from S~ x S in R™*!. If we orient the family of
hypersurfaces @, ,(S** x S') by the unit outward normal vector field, a straightforward
computation shows that the mean curvature H(6) depends only on § and we have

w30l ()

Now, let us consider the hypotheses of the Lemma and for t, = 2 arcsin (5%) <t<
put L = Rsint, [ = 2n and a = Rcost. Then L > [ and we can consider for 5 <t <
the family Mg, ; of hypersurfaces defined by Mg, s = Preint.2n reost(S"F x Sh).

From the relation ([[4), the mean curvature Hg,: of Mg, satisfies

s

PR
s
2

1 /1 n—1 1 /1 n—1
HR?]tZ_ a. P 4 Ao Z_ a5 Ao
T n\2n  Rsint —2n n \2n Rsinty—2n
_1(1 n—1 11 n-1) 1
“n\2np Rsin(t/2)—2n) n\2np £-2n) dnpy

where we have used in this last equality the fact that p = 4(2n — 1)n.
Since there exists a point p € M so that (X (p),e) > 0, we can find ¢ € [ty, 7/2] and a
point yo € M which is a contact point with Mg, . Therefore |H (yo)| > ﬁ.
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Mp o N F P MR nto NF

MpytNF 2n MpytNF

MNF Yo

t
2n 0

F' is the vector space spanned by e and &

PROOF OF PROPOSITION p.1: Integrating by parts we have

1 1 k—1
/M §A§2§2’f*2dv:§ /M (dg?, d&*?) dv:2( v ) /M |dE¥|2dv

< (A + kAy) / 5 "dy + (By + kB,) / 25y
M M

Now, given a smooth function f and applying the Sobolev inequality (f]) to f?, we get

2n 1=(1/n)
(/ f“d“) SK<">/ (21 11df | + |H|f?) dv
M M

<ok ([ fzdv)m (/ |df|2dv)l/2+K<n>||H||oo | s
~ K(n) (/Mfzdv)w <2 (/M|df|2dv)l/2+||H||oo (/Mdev)l/2>
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where in the second inequality, we have used the Holder inequality. Using it again, by
assuming that V(M) = 1, we have

()" (o)

1] 2 < K (n) ([|df |2 + | H ool f1]2)

For k > 2, £¥ is smooth and we apply the above inequality to f = £*. Then we get

[ 1/2 1/2
el < K [2( [ taghias) "l ([ ean) ]

And finally, we obtain

2 1/2 1/2
< K(n) |2 (ﬁ) ((A1 + kAs) /M £ "dy + (By + kBy) /M g?ksdv)

1/2
+wmm(Ag%m) ]

]{32 1/2 2—p 2—5\1/2
SK@)Q( ) ((Ax + kA" + (By + kBo) €] el

HH looll€ N0 1€ 122 ]

k2 V2 /A, + kA, By +kBy\Y?
<xw |2 (50) ( n ) I oo | lENcl 57
2(k — 1) HR l€lls =
2( 2 )1/2 <A1/2+k1/2A;/2 311/2+k1/2321/2>

+
r/2 s/2
[[§] [§]
+HHHO<>] [ [P et

Now if we assume that ||£|| > 7, the last inequality becomes

) L2 1/2 A}/2 + k1/2A§/2 Bi/2 + k1/2321/2
€115 < K (n) =1 7 + o7

+||H||oo] € lloo 1€ 1152
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2\ M2
02w () Dellelell

Now let ¢ = 5 > 1 and fori > 0let k =¢'+1>2. Then

B E T
T 1
S 1€l

; q +1 ﬁ
||§||2(q¢+1+q) < <(K1 + (q + 1)1/2K2) < q/ ) +K//) ||€
¢ gt 41 1,(]1_711
< (&a)™ JIE el

where [~(~: 2K, + 232Ky + K'. We see that K has a finite limit when n — oo and if
B; >0, K — oo when ||H||oc — 00 or n — 0. Moreover the Hélder inequality gives

€ll2gi+1 < [1€]l2(gi+14+9)

which implies
o -
(a 1 1 141
lellagn < (Ka) ™ IEITT N,

Now, by iterating from 0 to i, we get

||€||2q1+ (1 Ihi- J( ’“+1>) Shmici qk+1||§||( i J( k11)>”€”H2:¢71(1*ﬁ>

2qi—J

R(lfnizo(lfﬁ»qZk 0 k+1H£H( i 0( gk ))Hsznk 0( k+1>

IA

Let a =3 12, qk% and 0 = [[,2, (1 - ﬁ) =L (W) Then

Il < K2 1€1S 1Nl
and finally

1€l < L& ]2

where L = R’%qa/ﬁ is a constant depending only on n, Ay, As, By, Bs, ||H|- and 7.
From classical methods we show that 3 € [e™, e™™?2]. In particular, 0 < # < 1 and we
deduce that L is bounded when n — oo and L — oo when ||H||, — oo or n — 0 with
Bl > 0.

O
Remark In [[J] and [[3] Shihohama and Xu have proved that if (M",g) is a compact

n-dimensional Riemannian manifold without boundary isometrically immersed in R™*!
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and if [,, (|B|* —n|H|?) < D,, where D, is a constant depending on n, then all Betti
numbers are zero. For n = 2, Dy = 4x, and it follows that if

/ |B|?dv — 47 < M\ (M)V (M)

then we deduce from the Reilly inequality A;(M)V(M) < 2 [,, H*dv that [, (|B|* —
2|H|?)dv < 47 and by the result of Shihohama and Xu M is diffeomorphic to S*.
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