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Abstract. We construct a three parameter deformation of the Hopf adgeb
LDIAG. This new algebra is a true Hopf deformation which reduces to
LDIAG on one hand and t1 QSym on the other, relating DIAG to other
Hopf algebras of interest in contemporary physics. Furtiteproduct law
reproduces that of the algebra of polyzeta functions.

1 Introduction

The complete journey between the first appearance of a prémuaula by
Bender et al. [[1] and their related Feynman-like diagramthéodiscovery
of a Hopf algebra structurg] [8] on the diagrams themselvess goughly as
follows.

Firstly, Bender, Brody, and Meistef][1] introduced a spkfied theory
which proved to be particularly rich in combinatorial linked by-products
[L7] (not to mention the link with vector fields and one-paeden groups
[, [L9D).

Secondly, the Feynman-like diagrams of this theory labetongials which
combine naturally in a way compatible with monomial muitiption and
co-addition (i.e. the standard Hopf algebra structure ersgfrace of polyno-
mials). This is the Hopf algebial AG [B]. The (Hopf-)subalgebra dd AG
generated by the primitive graphs is the Hopf algeBEAL L described in
Solomon’s talk at this conferende J12].

Thirdly, the natural noncommutative pull-back of this dge L DIAG, has
a basis (thdabelleddiagrams) which is in one-to-one correspondence with
that of theMatrix Quasi-Symmetric Functiorf§3] (the packed matricesf
MQSym), but their algebra and co-algebra structures are contyplgiffer-
ent. In particular, multiplication itV QSym involves a sort of shifted shuffle
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with overlappings reminiscent of Hoffmann’s shuffle usedhia theory of
polyzeta functions[]J2]. The superpositions and overlagpimvolved there
are not present in (non-deformeldpl AG and, moreover, the coproduct of
LDIAG is co-commutative while that dfl QSym is not.

The aim of this paper is to announce the existence of a Hopf alg
bra deformation which connectsDIAG to other Hopf algebras relevant to
physics (Connes-Kreimer, Connes-Moscovici, BroudebEtti see(6]) and
other fields (honcommutative symmetric functions, Eulagi&r sums).
ACKNOWLEDGEMENTS : The authors would like to thank Jim Stasheff,
Christophe Tollu and Loic Foissy for fruitful interacti®n

2 Labelled Diagrams and Diagrams

Product formula involves a summation over all diagrams oédain type
[L2] a labelled version of which is described below.

Labelled diagrams can be identified with their weight fumiesi which are
mappingsw : N™ x Nt — N such that the supporting subgraph

Fo={(i,j) e N" xN" |w(i, ]) # 0} (1)

has specific projections i.epri(I'y) = [1..p]; pr2(I'w) = [1..q] for some
p,q € N (notice that when one of,q is zero so too is the other and the
diagram is empty).

These graphs are represented by labelled diagrams as $ollow

The labelled diagrams form the detiag and prescribe monomials
through the formuld.®(@ VA wherea (d) (resp.B(d)) is the “white spot
type” (resp. the “black spot type”) i.e. the multi-inde€x;)icn+ (resp.
(Bi)ien+) such thato; (resp. ;) is the number of white spots (resp. black
spots) of degreé(i lines connected to the spot).

There is a (graphically) natural multiplicative structareldiag such that the
arrow
M) : d— LYDVAD (2)

is a morphism.

It is clear that one can permute black spots, or white spdtsl without
changing the monomidl® @ VA The classes of (labelled) diagrams up to
this equivalence (permutations of white - or black - spotsgthemselves)
are naturally represented by unlabelled diagrams and willénoteddiag
(including the empty one).
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For both types of diagram the product consists of concatenahe
diagrams i.e. placing, on the right ofd; [B] (the result, ford;,d,, will be
denoted/d;|d;]p in diag and[d;|dz]. in Idiag). These products endotiag
andldiag with the structure of monoids, with the empty diagram as madut
element. The corresponding commutative diagram is asWeli@vhereX?
means the cartesian square of the)§et

. Unlabellin . ML, vy XM,y .
Labelled diagrants Uniabelling’, Diagram€ —2 ", Monomial&
productl productl productl
. Unlabellin . L,V .
Labelled diagrams —reem Diagrams 9, Monomials

It is easy to see that the labelled diagram (resp. diagraons) free
monoids. We denote byl AG andL DIAG theK-algebras of these monoids
[Bl (K is a field).

One can shuffle the product idiag, counting crossings and superpositions.
The definition of the deformed product is expressed by thgrdiamatic
formula

and the descriptive formula below.

[d1|d2]L(qC,qs) — z qgcxweighﬁq\éveightl xweightgcs( [d1|d2]|_)

cg([dqdp]) ) are all crossing and
superpositions of black spots

(4)

where

e (c,Qs are coefficients ik



4

o the exponent on® e |

times its weight

is the number of crossings of “what crosses”

o the exponent of 9Nt < weight

is overlapped”

is the product of the weights of “what

e termscg([d;|dy]. ) are the diagrams obtained frdoh |d2],. by the pro-
cess of crossing and superposing the black spats of those ofd;,
the order and identity of the black spots af (resp. dy) being pre-
served.

What is striking is that this law (denoted abovds associative. More-
over, it can be showr{][§] 4] that this process decomposesvirtaransfor-
mations: twisting and shifting. In fact, specialized totaar parameters, this
law is reminiscent of other§][2].

Parameterg| (0,0) (shifted) | (1,1) (shifted) | (1,1) (unshifted)
Laws || LDIAG | MQSym | Hoffmann & Euler-Zagier

3 Hopf Deformation

Using a total order on the monomials ldfiag, it can be shown that the al-
gebralL DIAG(qc, Gs) is free. Thus one may construct a coprodiigtt € K
such that. DIAG(qc,0s,t) = (LDIAG(qc, 0s), Ligiag, &, €, S) is a Hopf alge-
bra. We have the following specializations

(9e,Gs:t) = || (0,0,0) | (1,1,1)
~ | LDIAG | MQSym

4 Conclusion

The results which we announced here in this note can berdlest by the
following picture. All details will be given in forthcomingapers [B[}4].

|—|Planar decorated Trees|

LDIAG(q_q,,t) l
\ LDIAG(1q_,t)
(0,0,0 (1,1,1) —

LDIAG| [MQSym|

y
|\“\l |Connes-Kreimer

PRERE DIAG |FQSvm|

—

BELL
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