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Abstract: In this paper, we develop a Fault Tolerant Control (FTC) strategy
designed to preserve closed-loop stability in spite of actuator failures. The main
contribution is the design of a linear output feedback control function for a class of
discrete-time switched linear systems with explicit modelling of multiple actuator
failures. Assuming an on-line and real-time Fault Detection and Isolation (FDI)
scheme such that, each time there is a change in status of one or more of the p
many actuators, the FDI scheme will update a p-length vector of real parameters
in the interval [0, 1] recording the degree of loss of effectiveness (with 0 for normal
operation and 1 for total failure), we can perform controller redesign on-line
using LMI techniques. We conclude the paper with an example illustrating the
performance of our proposed FTC strategy. Copyright c© 2006 IFAC

Keywords: Fault Tolerant Control, Switched Systems, Actuator Failure, LMI,
Output Feedback, Stability

1. INTRODUCTION

In recent years, the study of switched systems
has received a growing attention in control theory
and practice. By switched systems we mean a
class of hybrid dynamical systems consisting of a
family of continuous (or discrete) time subsystems
and a rule that governs the switching between
them. A survey of basic problems in stability and
design of switched systems is given in (Liberzon
and Morse, 1999) where some contributions are
summarized. Most of these contributions deal
with stability analysis or design of state feedback
based control laws in fault-free case (Mignone
et al., 2000), (Daafouz and Bernussou, 2002),
(Chadli et al., 2002), (Daafouz et al., 2003) but
rarely in faulty case. This paper aims to consider
multiple actuator faults on switched systems and

to ensure a pole placement of the closed-loop
system eigenvalues.

The objective of Fault Tolerant Control system
(FTC) is to maintain current performances closed
to desirable performances and preserve stability
conditions in the presence of component and/or
instrument faults. Accommodation capability of a
control system depends on many factors such as
the severity of the failure, the robustness of the
nominal system, and the actuators redundancy.
Various approaches for FTC have been suggested
in the literature (Noura et al., 2000), (Blanke et

al., 2003) and (Zhang and Jiang, 2003) but usually
deal with linear systems.

A FTC system is characterized by an on-line and
a real-time FDI process and control reconfigura-
tion mechanism. There are two types of control
reconfiguration strategies, one is real-time control

Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006

223



redesign (Wu et al., 2000), (Theilliol et al., 2002),
(Rodrigues, 2005), and the other is to switch
among pre-designed multiple controllers (Zhang
and Jiang, 2001), (Zhang et al., 2005). However,
controllers switching underline the fact that many
faulty system representations had to be identify
so as to synthesize off-line pre-computed and sta-
bilized controllers. These identifications are some-
times difficult to obtain. Moreover, the most of re-
search works in switched systems do not deal with
actuator faults, so we develop an output feedback
synthesis which can ensure closed-loop system sta-
bility despite of faults. This paper extends some
previous results in polytopic framework with only
state feedback synthesis (Rodrigues et al., 2005)
or in LPV case (Rodrigues et al., 2006) under
multiple actuator faults.

The paper is organized as follows. The section
II gives the problem statement of Fault Tolerant
Control in switched systems. In section III, we
design a controller synthesis for each actuator
and we generate an output feedback control law
for switched systems both in fault-free and faulty
cases. An illustrative example is given in section
IV to underline the FTC method. Finally, con-
cluding remarks are given in the last section. In
this paper, the following notations are used: In

denotes an identity matrix of dimension n × n.
The dimensions are sometimes omitted in which
cases they can be implied from the context.

2. PROBLEM STATEMENT

2.1 Switched systems representation in faulty-case

Let consider the following switched system with
multiple actuator faults (Rodrigues, 2005):

xk+1 =
N∑

j=1

αj

k[Ajxk + Bj(Ip − γ)uk]

yk =

N∑

j=1

αj

k[Cjxk] (1)

where x ∈ R
n represents the state vector, u ∈

R
p is the input vector, y ∈ R

m is the output
vector. γ , diag[γ1, γ2, . . . , γp], γi ∈ R, such
that γi = 1 represents a total lost, a failure of
i-th actuator,i ∈ [1, . . . , p] and γi = 0 implies
that i-th actuator operates normally. Aj ∈ R

n×n,
Bj ∈ R

n×p, Cj ∈ R
m×n are invariant matrices

defined for the jth mode with j ∈ [1, . . . , N ].

The switched system is scheduled through switch-
ing functions designed as follows: αj

k ∀j ∈
[1, . . . , N ] lie in a convex set Ω = {αj

k ∈
R

N , αk = [α1
k . . . αN

k ]T , αj

k ≥ 0 ∀j and
∑N

j=1 αj

k = 1}. These switching functions are
supposed to be available in real time depending

on parameters measurement and not corrupted by
faults. The switching functions αj

k are defined as
follows:

αj

k =







1 when the switched system is described

by the j-th mode such that:

A(α) =

N∑

j=1

αj

kAj = Aj

0 otherwise

(2)
So, if αj

k = 1 the system is described by the jth

mode with [Aj , Bj , Cj ].

We propose to develop an Output Feedback for
switched systems with actuator failures. Consider
the matrix bi

j representing total faults in all actu-
ators except the i-th:

Bi
j = [0, . . . , 0, bi

j , 0, . . . , 0] (3)

and Bj = [b1
j , b

2
j , . . . , b

p
j , ] with bi

j ∈ R
n×1. It is

assumed that each column of Bj is full column
rank whatever the model j. As (Maki et al., 2001),
the following assumption is considered.
Assumption 1: The pairs (Aj , b

i
j),∀i = 1, . . . , p

are assumed to be controllable ∀j = 1, . . . , N . ¤

2.2 Principles of Fault Tolerant Control Strategy

Without loss of generality, it is assumed that when
actuator fault occurs on the system, the matrix γ
can be decomposed as:

γ =

(
γp−h 0

0 Ih

)

(4)

with γp−h a diagonal matrix where its elements
γi

p−h, i ∈ [1, . . . , p] are different from 1 which
represent the number of actuators not out of order
(γi 6= 1), and Ih represents the number h of
actuators totally failed. Let define Γ , (Ip −
γ)(Ip − γ)+ which represents only totally failed
actuators and the corresponding matrix partitions
of B such as:

B = [Bp−h Bh] (5)

Bp−h ∈ R
n×(p−h) and Bh ∈ R

n×h and Γ:

Γ =

(
Ip−h 0

0 0h

)

(6)

We will present a control law which is able to
vanish actuator faults into the state space rep-
resentation (1) and to ensure closed-loop stability
despite of multiple actuator failures. Based on a
multiplicative fault representation defined in (1),
the new control law uFTC must vanish all actuator
faults on the system such that:

uFTC = [I − γ]+unom (7)

Let introduce the set of indexes of all actuators
that are not out of order, i.e.

Φ , {i : i ∈ (1, . . . , p), γi 6= 1} (8)
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and note that uFTC = [I − γ]+unom = −[I −
γ]+Fyk = −FFTCyk where F is a nominal con-
troller gain and FFTC the new controller gain.
So, this specific control law in the state space
representation (1) leads to:

Bj(I − γ)uFTC = Bj(I − γ)(I − γ)+unom

= BjΓunom =
∑

i∈Φ

Bi
ju

i
nom

(9)

which avoids actuator fault effect and where
∑

i∈Φ

Bi
j

represents the actuators not out of order, i.e.
∑

i∈Φ

Bi
j = Bp−h and ui

nom the i-th element of

unom. Due to the fact that each pair (Aj , b
i
j),∀i =

1, . . . , p are assumed to be controllable for all ∀j =
1, . . . , N , the system still remains controllable
despite of actuator failures.

3. FAULT TOLERANT CONTROL FOR
SWITCHED SYSTEMS

3.1 Control law synthesis in fault-free case

Let us recall the multiplicative actuator fault
representation on a polytopic system as follows:

xk+1 =

N∑

j=1

αj

k

[
Ajxk +

p
∑

i=1

Bi
j(Ip − γ)uk

]

yk = Cxk (10)

where αj

k represents the switching functions.
Assumption 2: The matrix C = Cj ,∀j ∈ [1 . . . N ]
is full row rank. ¤

Assumption 3: Any actuator can fail, but at least
one actuator is not lost, which means that the
situation γ1 = · · · = γp = 1 is excluded. ¤

In the nominal case, the linear output feedback
can be expressed such as:

uk = −Fyk (11)

with yk = Cxk and F ∈ R
p×m is the output

feedback controller. In the nominal case (γ = 0),
the representation (10) with a controller uk =
−Fyk is rewritten as:

xk+1 =
N∑

j=1

αj

k[Ajxk + Bj(I − γ)(−Fyk)]

=

N∑

j=1

αj

k(Aj − BjFC)xk

(12)

with the output feedback controller F to deter-
mine so as to vanish actuator faults on the system.
We want to establish the stability of the closed-
loop system with a LMI pole placement. In order
to achieve some desired transient performance, a
pole placement should be considered. For many
problems, exact pole assignment may not be nec-
essary, it suffices to locate the pole of the closed
loop system in a sub-region of the complex left half
plane (Chilali and Gahinet, 1996) and (Rodrigues
et al., 2005).

So, let define a disk region LMI D included in
the unit circle. The pole placement of the closed-
loop system (12) for all the models j ∈ [1 . . . N ] in
a LMI region, can be expressed as the following
(Chilali and Gahinet, 1996):
(

−rX qX + (AjX − BjFCX)T

qX + (AjX − BjFCX) −rX

)

< 0

(13)
However these inequalities are no longer lin-
ear with regard to the unknown matrices X =
XT > 0 and F,∀j ∈ [1 . . . N ]. So, the solution
is not guaranteed to belong to a convex domain
and the classical tools for solving sets of matrix
inequalities cannot be used. It constitutes the
major difficulty of output feedback design.
We propose to transform BMI conditions (13)
in X and F,∀j ∈ [1 . . . N ], in LMI conditions
which will be used to synthesize directly a sta-
bilized output feedback. Controllers gains Fi are
synthesized for each actuator in order to define
an output feedback even if there are failures in
the system.

Theorem 1. Consider the system (10) in fault-free
case (γk = 0), defined ∀j ∈ [1 . . . N ]. Let assume
that for each j each pairs (Aj , b

i
j) are controllable

and suppose it is possible to find matrices Xi =
XT

i > 0, M and Vi ∀i = [1, . . . , p] such that
∀i = [1, . . . , p],∀j = [1, . . . , N ]:
(

−rXi qXi + (AjXi − Bi
jViC)T

qXi + AjXi − Bi
jViC −rXi

)

< 0

(14)
with

CXi = MiC, ∀i = [1, . . . , p],∀j = [1, . . . , N ]
(15)

The control law with output feedback uk = −Fyk

allows to place the eigenvalues of the closed-loop
system (10) in a predetermined LMI-region with

FM = V , F =

p
∑

i=1

GiVi(CCT (C

p
∑

i=1

XiC
T )−1) or

F = V CCT (CXCT )−1, with Gi = Bi+
j Bi

j ,∀i =
[1, . . . , p],∀j = [1, . . . , N ]. ¥

Proof: This proof is similar to (Rodrigues et al.,
2005). Summation of (14) for the actuators set
i ∈ [1, . . . , p] of the system (10) i = 1, . . . , p gives
for one model j,∀j = [1, . . . , N ]:

p∑

i=1

(
−rXi qXi + (AjXi − Bi

j
ViC)T

qXi + AjXi − Bi

j
ViC −rXi

)

< 0

(16)

Let denote X =
∑p

i=1 Xi (with X = XT > 0) to
obtain







−rX qX + (AjX −

p∑

i=1

Bi

j
ViC)T

qX + (AjX −

p∑

i=1

Bi

j
ViC) −rX








< 0

(17)
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∀i = [1, . . . , p],∀j = [1, . . . , N ]. Now, denote the
l-th row of the matrix Vi as V l

i , i = 1, . . . , p and
l = 1, . . . , p, and Gi = Bi+

j Bi
j is a matrix equals

to zero except in entry (i, i) where there is a one:

V l
i = GlVi (18)

Therefore,

p
∑

i=1

Bi
jViC =

p
∑

i=1

[0, . . . , 0, bi
j , 0, . . . , 0]V i

i C

= Bj

p
∑

i=1

V i
i C (19)

leading to

p
∑

i=1

Bi
jViC = Bj

p
∑

i=1

V i
i C = Bj(

p
∑

i=1

GiViC)

(20)

By taking V =

p
∑

i=1

GiVi, equation (20) becomes

p
∑

i=1

Bi
jViC =

p
∑

i=1

Bi
jViC = BjV C (21)

we get ∀i = [1, . . . , p],∀j = [1, . . . , N ]

(

−rX qX + (AjX − BjV C)T

qX + (AjX − BjV C) −rX

)

< 0 (22)

With the changes of variables V = FM and
CX = MC which substituted in LMI (22), leads
to

(

−rX qX + (AjX − BjFCX)T

qX + (AjX − BjFCX) −rX

)

< 0 (23)

∀i = [1, . . . , p],∀j = [1, . . . , N ]. These inequalities
(23) are BMIs (13) which could not be solve with
classical tools. By multiplying each LMI (22) by
αj

k and summing all of them, we obtain









−rX qX +

N∑

j=1

α
j

k
(AjX − BjV C)T

qX +

N∑

j=1

α
j

k
(AjX − BjV C) −rX









< 0

(24)

it is equivalent to
(

−rX qX + (A(α)X − B(α)V C)T

qX + (A(α)X − B(α)V C) −rX

)

< 0

(25)

with A(α) =
∑N

j=1 αj

kAj and B(α) =
∑N

j=1 αj

kBj .
Due to the fact that matrix C is supposed to
be full row rank, we deduce from (15) there ex-
ists a non-singular matrix M = CXCT (CCT )−1

and then after variables changes F = V M−1 =
p

∑

i=1

GiVi(CCT (C

p
∑

i=1

XiC
T )−1). So, quadratic D-

stability is ensured by solving (24) with a linear
output feedback uk = −Fyk. ¤

3.2 Control law synthesis in faulty case

By considering the system (10) and based on the
previous synthesis control law, the FTC method
can be developed in this section under assumption
that actuator fault estimation γ̂ is suitable and
known without uncertainty, i.e γ̂ = γ.

Theorem 2. Consider the system (10) in actuator
faulty case (γi 6= 0) under assumption 3, defined
for all modes j, j = 1, . . . , N . Let introduce the set
of indexes of all actuators that are not completely
lost, i.e.

Φ , {i : i ∈ (1, . . . , p), γi 6= 1}
The Fault Tolerant Control law with a linear
output feedback is equivalent to

uFTC = −(I − γ)+
(∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1)

)
yk

= −(I − γ)+Frecyk = −FFTCyk (26)

with Gi = Bi+
j Bi

j , applied to the faulty sys-
tem (10) allows to constrain pole in prescribed
LMI region. The output feedback control law
uk = −FFTCyk allows to place the eigen-
values of the closed-loop system in predeter-
mined LMI region with FrecM = V , Frec =
∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1 or Frec = V CCT (CXCT )−1,

with Gi = Bi+
j Bi

j ,∀i = [1, . . . , p],∀j = [1, . . . , N ].
¥

Proof:
Applying the new control law (26) to the faulty
system (10), leads to the following equation

Bj(I−γ)uFTC = −BjΓ
(∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1)

)
yk

(27)

with Γ = (I − γ)(I − γ)+ defined as

Γ =

(
Ip−h 0

0 Oh

)

(28)

Γ is a diagonal matrix which contains only en-
tries zero (representing total faults) and one (no
fault), see section 2.2. Since BjΓ =

∑

i∈Φ

Bj
i mod-

els only the actuators that are not completely
lost, then performing the summations in the
proof of Theorem (1) over the elements of Φ
shows that

∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1) is the

output feedback gain matrix for the faulty system
(Aj ,

∑

i∈Φ

Bj
i , C). ¤

The control law uFTC of the system (26) is real-
ized as:

uFTC = −KFTCyk (29)

with
KFTC = (I − γ)+

∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1)

(30)
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4. ILLUSTRATIVE EXAMPLE

Let consider the following switched system which
consider actuator faults:

xk+1 =

N∑

j=1

αj

kAjxk +

N∑

j=1

αj

kBj(I − γk)uk

yk = Cxk (31)

with the set of matrices described as follows:

A1 =

[
0.75 0 0 0

0 0.85 0 0

0 0 0.75 0

0 0 0 0.9

]

, B1 =

[
0.95 0.95

1 1

0.9 0.9

1 1

]

A2 =

[
0.75 0 0 0

0 0.85 0 0

0 0 0.8 0

0 0 0 0.9

]

, B2 =

[
1.05 1.05

1 1

0.9 0.9

1 1

]

A3

[
0.75 0 0 0

0 0.85 0 0

0 0 0.70 0

0 0 0 1.1

]

, A4 =

[
0.75 0 0 0

0 0.85 0 0

0 0 0.8 0

0 0 0 1.1

]

B3 =

[
0.95 0.95

1 1

1.1 1.1

1 1

]

, B4 =

[
1.05 1.05

1 1

1.1 1.1

1 1

]

, C =

[
0 1 0 0

0 0 1 0

0 0 0 1

]

The switched system (31) is described by 4
modes defined previously. The modes of such
switched system are represented through matrices
Aj , Bj , C with parameters αj

k = 1, αi
k = 0, i 6= j.

The following matrices are directly linked with
Theorems (1) and (2), with parameters q = −0.05
and r = 0.93:

V1 =
[

−0.0863 −0.0889 −0.1051

0 0 0

]

M1 = M2

[
0.9951 −0.0004 0.0629

−0.0004 1.0000 0.0054

0.0629 0.0054 0.1895

]

and

X1 = X2

[
1 0 0 0

0 0.9951 −0.0004 0.0629

0 −0.0004 1 0.0054

0 0.0629 0.0054 0.1895

]

V2 =
[

0 0 0

−0.0863 −0.0889 −0.1051

]

with F = V M−1 =

p
∑

i=1

GiVi(CCT (C

p
∑

i=1

XiC
T )−1):

F =
[

0.0265 0.0430 0.2674

0.0265 0.0430 0.2674

]

, G1 =
[

1 0

0 0

]

, G2 =
[

0 0

0 1

]

At the same sample k = 2, the first actuator is
out of order and a fault of 90% loss of effectiveness
appears on the second actuator. The matrix γ is
equal to

γ =
[

1 0

0 0.9

]

, k ≥ 2

The figure (1) represents respectively in fault-free
case: the output vector evolution in (a), state
vector evolution in (b), evolution of the second
actuator in (c) and the first actuator in (d), and
finally parameters evolution αj

k in (e). The closed-
loop system is stable without any fault. The figure
(2) represents the same characteristics evolution
as in figure (1) with an actuator failure on the 1st
actuator and a fault of 90% in the 2nd actuator at
sample k = 2. This figure illustrates the instability
of the closed-loop system in faulty-case.
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Fig. 1. Nominal case: (a) Evolution of the outputs,
(b) Evolution of the states, (c) Evolution of
the 2nd actuator, (d) Evolution of the 1st
actuator, (e) Evolution of parameters αj

k
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Fig. 2. In faulty case: (a) Evolution of the outputs,
(b) Evolution of the states, (c) Evolution of
the 2nd actuator, (d) Evolution of the 1st
actuator, (e) Evolution of parameters αj

k

The figure (3) underlines the contribution of The-
orems (1) and (2) applied to switched systems.
The Fault Tolerant Control law remains the sys-
tem stable despite of multiple actuator faults.
In order to simulate a time delay provided from
FDI block, the new control law is only applied at
sample k = 15. (Shin, 2003) discusses issues with
a time delay in FTC reconfiguration. The reader
could refer to this NASA/NIA Report for more
information on time delay in reconfiguration.

5. CONCLUSION

The method developed in this paper emphasises
the importance of the Fault Tolerant Control for
switched systems. A controller is designed for
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Fig. 3. Reconfiguration: (a) Evolution of the out-
puts, (b) Evolution of the states, (c) Evolu-
tion of the 2nd actuator, (d) Evolution of the
1st actuator, (e) Evolution of parameters αj

k

each separate actuator through an LMI pole
placement in fault-free case and faulty case. It
allows the system to continue operating safely,
to avoid stopping it immediately and to ensure
stability despite the presence of actuator failures.
The synthesis of a linear output feedback takes
into account the information provided by a FDI
scheme. An illustrative example with switched
system has been presented to demonstrate the
effectiveness of the scheme.
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