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Numerical and Experimental Study of Parabolic
Pulses Generated via Raman Amplification in
Standard Optical Fibers

Christophe Finot, Guy Millot, Stéphane Pitois, Cyril Billet, and John M. Dudley, Member, IEEE

Abstract—Par abolic pulse generation by Raman amplification
has been numerically and experimentally investigated around
1550 nm using a standard normally dispersive nonzero disper-
sion shifted fiber (NZ-DSF). The output pulses, characterized
in intensity and phase using frequency-resolved optical gating,
exhibit parabolic features in good agreement with numerical
simulationsbased on two coupled extended nonlinear Schrddinger
equations. The influence of the energy and duration of the input
pulse has been studied. The ability of the parabolic pulses to
propagate self-similarly during additional propagation over 800
m of NZ-DSF has also been demonstrated.

Index Terms—Frequency-resolved optical gating (FROG)
characterization, nonlinear fiber optics, optical sdf-similarity,
parabolic pulses, pulse compression, pulse shaping, ultrashort
pulse amplification.

I. INTRODUCTION

ARABOLIC pulses in normally dispersive optical fibers

with gain have generated considerable interest since
their first experimental demonstration [1]. Theoretical studies
[2], [3] based on the self-similarity analysis of the nonlinear
Schrodinger equation (NLSE) with constant gain, have re-
vealed that the interplay of normal dispersion, nonlinearity,
and gain produces a linearly chirped pulse with a parabolic
intensity profile which resists the deleterious effects of optical
wave-breaking [4]. Parabolic pulses represent a new class of
solution to the NLSE, as they are generated asymptoticaly in
the fiber amplifier independently of the shape or noise proper-
ties of the input pulse, and propagate self-similarly subject to
exponential scaling of amplitude and temporal width. To date,
experimental studies of parabolic pulse generation have been
restricted to fiber amplifiers where the gain and normal group
velocity dispersion (GVD) are associated with the addition of
dopants, such as Erbium [1] or Ytterbium [5]-{7], in the fiber
core. These studies have aso shown the wide-ranging practical
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significance of parabolic pulses associated with the efficient
compensation of their linear chirp, which can lead to high
quality compressed pulses. The inclusion of parabolic pulses
technology in femtosecond fiber lasers has a'so demonstrated
theoretically and experimentally the ability to increase the
pulse energy by two orders of magnitude [8].

It should be noted that the fiber gain mechanism that is used
for the parabolic pul se generation need not necessarily be based
on a resonant amplification process, and this opens up the
possibility to consider the use of Raman amplifiers to provide
gain where no conventional amplifiers are possible. Moreover,
this allows us to take advantage of their broad amplification
bandwidths which can exceed 100 nm. Indeed, numerica
simulations [9] have shown that a properly designed photonic
crystal fiber (PCF) pumped with high power nanosecond pul ses
can indeed support the generation of parabolic pulses through
Raman amplification. More recent numerical [10] and experi-
mental [11] studies have relaxed the constraint on the fiber type
required for this purpose, showing that Raman parabolic pulse
generation is possible using only standard normally dispersive
nonzero dispersion shifted fiber (NZ-DSF) at 1550 nm in as-
sociation with a commercial watt-level continuous-wave (CW)
pump source.

In this paper, we present a detailed description of both the ex-
perimental and numerical studies that have considered Raman
parabolic pulse generation in normally dispersive NZ-DSF at
1550 nm. The paper is organized as follows. In Section |1, we
describe numerical simulations of the Raman parabolic pulse
amplification process that were used in the design of our ex-
periments. We focus our attention on walk-off effects between
the signal and pump waves and discuss a computationally-ef-
ficient model based on two coupled extended NLSEs, rather
than by a single extended scalar NLSE. In Section |11, we de-
scribe our experimental Raman amplifier and pulse characteri-
zation setup, and we present results that experimentally verify
the generation of linearly chirped parabolic pulses at the Raman
amplifier output. Section IV presents results of additional ex-
periments studying the effect of the input pulse duration and
energy on the amplified parabolic pulses, and we also experi-
mentally verify the ability of parabolic pulsesto propagatein a
passive normally dispersive fiber while maintaining their linear
chirp. Finaly, we show numerically that parabolic pulses can
lead, after linear compensation of their chirp, to high-quality
chirp-free pulses. Section V concludes the paper.



Il. NUMERICAL SIMULATIONS

A. Scalar Extended NLSE

Most previous studies of parabolic pulses have been largely
restricted to the case where pulse propagation is accurately mod-
eled by the addition of a simple constant gain to the standard
NLSE. In this context, analytical exact asymptotic self-similar
solutions in the limit z — oo (where z represents the propaga-
tion coordinate) have been described [3]. Some work has also
been carried out to investigate the effects of a longitudinally
varying gain profile [3], as well as the limiting effects of the
finite transition linewidth [12]. In order to investigate the possi-
bility of Raman parabolic pulse generation, we use a numerical
model based on the extended NLSE [13]
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Here, A(z,t) = A (z,t)+ Ap(z, t) exp(—if2t), where A, (z, t)
and A,(z, ¢) are slowly varying envelopes for signal and pump
fields oscillating at ws and w,, and @ = w, — w; is the pump-
signal frequency detuning. The inclusion of the time-derivative
operator (i/ws)d/0% in the nonlinear term is necessary to en-
sure that the photon number is conserved, and not the optical
energy, so that the Raman interaction is described correctly. The
function R(¢) = (1 — £.)6(¢) + f-h.(¢) includes the instanta-
neous electronic response and the delayed Raman contribution,
with the fractional Raman contribution f,. = 0.18. For A,.(#),
we used the measured Raman response of fused silica [14].

The dashed line (right axis) in Fig. 1 shows the imaginary
part of ,.(¢), compared with a typical experimental spectrum of
a parabolic pulse obtained with our parameters described later,
shown as the solid line (left axis). These results are shown at
this stage in order to illustrate that for our choice of parameters,
the amplified spontaneous Raman emission intensity is 20 dB
lower than that of the amplified signal pulse, and thus we are
justified in neglecting it in our numerical simulations. We also
note that the output pulse spectrum is significantly narrower than
the Raman gain bandwidth so that we can expect that bandwidth
limiting (solitary wave) effects are negligible [12]. The experi-
mental spectrum also shows that achieving peak Raman gain at
1550 nm requires a CW pump at a wavelength of 1455 nm.

The Raman amplifier considered in this work is based on 5.3
km of NZ-DSF with dispersion parameters at 1550 nm corre-
sponding to GVD parameter 3> = 4.89 x 10~2 ps2 m~! and
a third-order dispersion 83 = 1.09 x 10~* ps® m~', so that
the fiber is normally dispersive at the wavelength of the input
pulses which are being amplified. The nonlinearity coefficient
used is vy = 2.23 x 1073 W~ m~". The wavelength dependent
loss coefficient « is also included in (1). The input pulse initial
conditions A, (0, ¢) correspond to the intensity and chirp of our
1550-nm pulses, which were measured experimentally using the
second-harmonic generation frequency-resolved optical gating
(SHG-FROG) technique described in Section I11. We typically
used signal pulses with durations in the range of 7-14 ps, and
with energies in the range 0.5-3 pJ.

We use the standard split-step Fourier method [13] to solve
(2). Preliminary simulations have previously indicated that, with
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Fig. 1. Experimental spectrum (solid line, left axis) of the output pulse after

5.3 km of propagation in a NZ-DSF, with a gain of 18.8 dB. The initial pulse
was a 3-pJ and 10-ps pulse at 1550 nm. Imaginary part (dashed line, right axis)
of the Raman function A, due to the pump at 1455 nm.

the parameters described earlier, a propagation distance of sev-
eral kilometers is required to enter into the parabolic pulse am-
plification regime [10]. This propagation distance is large com-
pared to lengths (~meters) required in the case of doped fibers
[1]-[6] or PCF [9] where the distributed gain per unit length
is significantly higher. The walk-off effects due to the group-
velocity mismatch between the pump and signal waves must,
therefore, be accurately taken into account. The walk-off param-
eter is defined as & = 31, — B1, Where 31 = d3/dw with 3 the
propagation constant and the subscripts » and s are relative to
pump and signal waves, respectively. For the NZ-DSF consid-
ered in our experiments, § = 1.07 ps m~1 so that in order to ob-
tain accurate numerical solutions of (1) over a 5.3 km propaga-
tion distance, a minimum temporal window of 6 ns is required.
Since accurate modeling of both the pump and signal fields over
the Raman bandwidth requires a spectral window of at least 50
THz (see Fig. 1), the Fourier discretization of the temporal and
spectral spaces requires typically 2'® points and leads to pro-
hibitively long computation times. This problem can, however,
be conveniently avoided by the separate modeling of the pump
and signal evolution as considered in the following subsection.

B. Coupled Extended Nonlinear Schrédinger Equations

The propagation of two copropagating frequencies in an
optical fiber can be described by two incoherently coupled
NLSEs, whenever the four-wave interaction between the two
input waves can be neglected. In this case, the extended scalar
NLSE [see (1)], may be reduced to the following set of two
incoherently coupled extended NLSE’s [15]:
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Fig. 2. Evolution of the pump field and walk-off effects during propagation
in a 5.3 km NZ-DSF for an initial 10-ps and 3-pJ input pulse. (a) Simulations
carried out from coupled NLSEs [(2)] with an adequate temporal window.
(b) Simulations based on the scalar NLSE [(1)] using an inadequate temporal
window of 500 ps, showing artificial pump depletion on the left side. The time
origin corresponds to the position of the signal pulse.
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The important approximation here of neglecting four-wave
mixing coherent terms and higher-order Raman effects is
justified by the absence of any such spectral components in
the results shown in Fig. 1. Note that the last three terms on
the right-hand side of (2) correspond to the Raman-like terms
which represent the self-frequency shift, the cross-frequency
shift, and the amplification (or depletion), respectively. Within
the experimental conditions depicted in our paper, Raman
self- and cross-frequency shifts play a negligible role for the
parabolic pulse generation compared to the effects of Raman
amplification or depletion. We have checked from numerical
integration of (2) that cancellation of the frequency shift terms
would indeed lead to variations of the peak power and pulse
width of the amplified pulse less than 4%.

When solving these coupled equations using the split-step
Fourier method, a spectral window of only a few terahertz
(adapted to the spectral width of the output pulse) can be used,
resulting in orders of magnitude improvements in computation
time.

Fig. 2(a) shows the depletion effect of the pump wave as
a function of the distance of propagation, as calculated from
numerical integration of (2). Note that, according to (2), the
signal pulse remains very close to ¢ = 0 during its propagation
through the fiber. On the other hand, as can be seen in Fig. 2(a),

the walk-off effect between the pump and signal waves leads
to a continuous temporal shift of the pump wave with respect
to the temporal position of the signal pulse, as the propaga-
tion distance increases. This temporal shift leads to a regener-
ation of the pump, and to a larger efficiency of the self-sim-
ilar transformation of the input signal pulse. Indeed, the de-
crease of the pump power at the raising edge of the pulse is
just due to the linear attenuation of the fiber. For comparison,
a similar analysis has been done from numerical integration
of (1), by considering only a 500-ps temporal discretization
window to reduce the computation time. The corresponding nu-
merical results, reported in Fig. 2(b), clearly evidence a non-
physical excess of pump depletion due to the periodic nature of
the fast-Fourier-transform algorithm.

As regard to the earlier considerations, in the following part
of this paper, we only consider numerical integrations of the two
coupled NLSEs [(2)].

I1l. EXPERIMENTAL SETUP AND PARABOLIC NATURE OF
AMPLIFIED PULSES

A. Experimental Setup and Typical FROG Traces

Fig. 3(a) shows a schematic representation of the experi-
mental setup used. The 1550-nm input pulses are obtained from
a 22—-MHz repetition rate Pritel FFL passively mode-locked
fiber laser that allowed for the possibility of generating pulses
of variable duration, typically a few picoseconds. The energy
of the signal pulses can be also adjusted, and in the following,
we have mainly used pulses with an energy of 2.16 pJ. The
Raman gain is provided by a CW Keopsys 2-W Raman laser at
1455 nm. The pump power at the laser output is fixed to 1.75
W but, taking into account losses introduced by connectors and
wavelength-division multiplexing (WDM) couplers, the input
power injected into the NZ-DSF fiber is only 1.3 W. A WDM
coupler with high power ratings permits the superposition of
pump and signal beams in the 5.3 km of commercial NZ-DSF.
Another coupler at the fiber output isolates the amplified signal
pulse with a rejection level of 21 dB.

Input and output pulses are characterized by the SHG-FROG
device shown in detail in Fig. 3(b). Fiber connectorized compo-
nents are used to divide the input beam into two separated beams
and to introduce an optical time delay before noncollinear Type
I SHG in a BBO crystal. The SHG spectrum is measured by an
ANRITSU MS 9710B optical spectrum analyzer (OSA). The
phase and intensity retrieval was performed using the gener-
alized projections algorithm. The fidelity on the FROG mea-
surements was checked using the standard techniques based
on comparisons of the independently-measured autocorrelation
and spectrum with the FROG trace marginals [16].

Fig. 4 shows typical SHG-FROG traces of input (a) and
output (b) pulses in the case of an initial near transform-limited
sech? intensity profile, with 7-ps full-width at half-maximum
(FWHM), 2.16-pJ pulse energy and 230—mW peak power.
Fig. 4 clearly shows significant spectral and temporal broaden-
ings of the pulse after propagation through the fiber, obtained
with a Raman amplification gain of 18.7 dB. The retrieval
error of the output pulse is typically less than 9 x 107 with a
1024 x 1024 grid. We note in this context that retrieval errors
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Fig. 3. Schematic diagram of experimental setups. (a) Setup of the Raman amplifier used to generate parabolic pulses. (b) Setup of the SHG-FROG device.

Fig. 4. Typical measured FROG traces of (a) an input pulse of 6-ps FWHM
temporal width and 2.16-pJ energy and of (b) the corresponding output pulse
after propagation in a 18.7-dB Raman amplifier based on 5.3 km of NZ-DSF.

for highly chirped pulses must be interpreted in light of the
significant nonzero data fraction of the trace, which is defined
in terms of the fraction of the data having an intensity greater
than 1% of the trace maximum. For the output FROG traces
we study, the nonzero data fraction is only around 15% so that
these retrieval errors are acceptably low [16].

B. Parabolic Nature of Amplified Pulses

Fig. 5 shows the intensity and chirp retrieved from FROG
measurement of the output pulse (open circles). The ouput pulse
peak power is 3.3 W and its width is 46 ps (at FWHM) and
72 ps at the —20 dB points (this latter measure of pulse du-
ration is particularly useful for parabolic pulses in view of the
rapid intensity falloff in the wings). The output pulse intensity
profile as well as the pulse chirp are, respectively, compared
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Fig. 5. Intensity and chirp profiles of output pulse after 5.3 km of propagation
of 7-ps and 2.16-pJ input pulse. Results from FROG trace retrieval (circles)
compared with numerical simulations (crosses). Linear and parabolic fit (solid
lines) of, respectively, chirp and intensity profiles. Gaussian (dashed line) and
sech? (dotted line) fits illustrating the comparatively poor fits obtained using
these pulse shapes compared to a parabolic pulse.

with least-squares parabolic and linear fits shown as solid lines
in the figure. The good fits obtained illustrate clearly the lin-
early-chirped parabolic nature of pulses at the Raman amplifier
output. For comparison, Fig. 5 also includes Gaussian (dotted
line) and sech” (dashed line) fits to illustrate the much-improved
goodness of fit that is obtained using a parabolic pulse profile,
especially regarding the characteristic rapid falloff in the wings.
Let us remark that the intensity profile of the amplified pulse ex-
hibits a small asymmetry, which can be in part explained by the
slight asymmetry of the initial pulse (not shown here). How-
ever, numerical simulations carried out with symmetric input
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Fig. 6. Simulation (dashed lines) of parabolic pulse evolution over 5.3 km of
NZ-DSF Raman amplifier. FROG retrievals of the intensity profiles of input and
output pulses (solid lines).

pulses reveal that an asymmetry of the output pulses can also
be observed in that case. So, other phenomena occur such as
third-order dispersion and spectral asymmetry of the Raman
gain (see Fig. 1). However, pump depletion associated to the
walk-off effects is the main reason for this asymmetry, since the
leading edge of the pulse experiences more gain than the trailing
edge [see Fig. 2(a)].

Fig. 5 also shows the comparison between experimental data
recorded at 1.3 W pump power with numerical results obtained
by considering a pump power of only 0.95 W (crosses), and we
note a very good agreement over several orders of magnitude.
The dashed lines in Fig. 6 present three-dimensional (3-D) evo-
lution plot of the numerical results showing the nonlinear trans-
formation of the initial pulse toward a parabolic pulse during
propagation through the 5.3-km NZ-DSF. The solid lines repre-
sent the experimental input and output pulse profiles. The differ-
ence of 27% between pump powers used in experiments and in
simulations can be explained from polarization considerations.
In particular, whereas the signal pulses are linearly polarized,
the pump polarization is scrambled, so that the effective power
acting in the amplification process is lower. Moreover, as the
spectral width of the pulse is nearly 0.5 THz and the propagation
length is 5.3 km, polarization mode dispersion (PMD) can affect
the propagation. In another series of experiments (hot shown
here) performed with other fibers having slightly different pa-
rameters, we have observed that the effective power reduction
depends sensibly on the fiber used, varying between 68% and
81%. Note that these power reduction factors are in qualitative
agreement with the reduction of the nonlinear parameter by a
factor of 8/9 which is commonly used in the case of random
birefringence [13]. However, some further experiments would
be needed to conclude to the validity of the theoretical model
which predicts a reduction of the nonlinear parameter by a factor
8/9. In particular, it would be of interest to measure the longitu-
dinal evolution of the birefringence along the fiber. On the other
hand, a recently developed vectorial formalism which includes
the PMD effects in Raman fiber-based amplifiers could be used
to consider these aspects in more detail [17], but is beyond the
scope of this paper.

IV. PARABOLIC PULSE PROPERTIES

Additional experiments were carried out to study in detail the
dependence of the ouput parabolic pulse characteristics on input
pulse duration and energy.

A. Initial Pulse Duration Influence at Constant Energy

We first study the influence of the initial pulse duration on
the amplified output pulse. We thus consider two input pulses
having different temporal widths but a constant 2.16-pJ energy.
Fig. 7(a) shows the input pulses, with FWHM temporal widths
of 14 and 7 ps, and peak powers of 120 and 230 mW, respec-
tively. The output amplified pulses are represented in Fig. 7(b).

We note that the 14- and 7-ps input pulses result in near-in-
dentical output pulse characteristics (solid and dotted curves,
respectively). From a theoretical viewpoint, in the context of a
constant gain profile, it has been demonstrated that the asymp-
totic pulse characteristics are determined only by the incident
pulse energy and the amplifier parameters, with the initial pulse
shape determining only the evolution map toward this asymp-
totic solution [3]. As can be clearly seen from Fig. 7, our exper-
imental results confirm remarquably this theoretical prediction.

B. Influence of the Input Energy

The dependence of the parabolic pulse characteristics on the
energy of the input pulse has been experimentally studied by
considering pulses of fixed 10-ps duration (FWHM) but with
different energies of 0.32, 1.3, 2.16, and 2.6 pJ. The retrieved
intensity and chirp profiles obtained with the 0.32-, 1.3-, and
2.6-pJ initial pulses are plotted in Fig. 8 and, in all cases, the
output pulses clearly exhibit parabolic characteristics, that is a
rapid falloff of the pulse wings and a linear chirp. The value of
the chirp slope C' = 11.810~3 THz? is independent of the initial
pulse energy. Moreover, note that C is also nearly independent
of the initial shape [see Fig. 7(b)]. These results provide the
first experimental confirmation of the theoretical predictions of
Kruglov et al. [3] that the chirp slope of parabolic pulse in the
case of a constant gain depends only on the gain and dispersion
values.

To summarize our experimental results, Fig. 9 shows the evo-
lution of temporal and spectral widths and peak power of the
amplified pulses as a function of the input pulse energy. The
increase of input pulse energy is associated with the simulta-
neous increase in the temporal and spectral widths and in the
peak power of the amplified pulse. As can be seen in Fig. 9,
a good agreement between experimental data (circles) and nu-
merical simulations (solid lines) carried out with a pump power
of 0.95 W is obtained.

C. Propagation in a Normally Dispersive Fiber Without Gain

Our goal here is to experimentally and numerically check the
ability of a parabolic pulse to propagate in a normally disper-
sive fiber without gain, retaining its parabolic characteristics [4].
This essential property has already been outlined experimen-
tally [5] with the propagation of a 2.6-ps, 12-nJ parabolic pulse
in a 2-m standard singlemode fiber at 1.06 pm.

Here, in order to generate the initial parabolic pulse, a 5-ps
sech pulse is sent into the 5.3-km NZ-DSF and is amplified
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and solid lines, respectively).

Fig. 8.

with a total gain of 18.8 dB. The results of FROG characteri-
zation of the amplified pulse, reported in Fig. 10(a) (crosses),
confirm well the generation of a parabolic pulse after propa-
gation through the 5.3 km fiber. After filtering of the residual
pump by a WDM coupler, the parabolic pulse is then sent into
an 800-m normally dispersive NZ-DSF (35 = 2.33 x 1072 ps®
m~1) without Raman pumping. The pulse at the output of the
800 m fiber was also characterized by the FROG technique. The
results of this FROG characterization are plotted in Fig. 10(a)
(circles). The retrieved intensity and chirp profiles of the pulse
after 800 m of propagation are in excellent agreement with nu-
merical results based (dashed line) on (1) without Raman gain
and clearly exhibit parabolic features. One can conclude that,
after a propagation distance of 800 m in a normally dispersive
fiber, the parabolic characteristics are conserved.

We have also checked that this property was still verified for
a larger distance of propagation. Due to the pulse broadening
and the experimental limitations of our FROG device which is
not adapted to characterize pulses longer than 100 ps, we were
not able to carry out the experiment. However, as we have seen
before, we can predict with high accuracy the results using the
NLSE. The results of those numerical simulations are reported
in Fig. 10(b) by circles. We display the parameter AC, defined
as the difference of the chirp profile and its linear fit. The low
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a parabolic pulse before (crosses) and after (circles) propagation in a 800 m
NZ-DSF fiber with 3, = 2.33 x 10—3 ps m—*. Comparison with numerical
simulations of the output pulse after 800 m of propagation (dashed line). (b)
Intensity and AC profiles obtained from numerical propagation in 4 km of the
same NZ-DSF fiber of two initial different pulses: the parabolic experimental
pulse (circles) and a gaussian equivalent pulse (solid line).

value of AC indicates that the chirp is still linear after 4 km of
propagation. So, as the intensity profile also remains very close



500

(2]
=)
- 1o G 100
100 | 1°° 2
= N = 10
S =3
= B —
) o
2 :
o Or o
i 0.1 :
0 -‘l'- [ | J_.: f.:-l- |E| £ 17 :f“d
B -4 2 0 2 4 6 4 2 0 2 4
Time (ps) Time (ps)
Fig. 11. (a) Intensity and chirp of compressed pulse (solid line) obtained after

numerical linear chirp compensation of the output parabolic pulse described
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to a parabolic shape, we can conclude that after 4 km the pulse
still exhibits the main characteristics of a parabolic pulse.

For comparison, we have studied the propagation of an equiv-
alent linearly chirped gaussian pulse of the same energy. The
temporal width and chirp parameter of the initial pulse have
been choosen in order to minimize the difference with the ex-
perimental spectrum and autocorelation of the generated para-
bolic pulse described above. The results after propagation in the
4-km NZ-DSF are shown in Fig. 10(b) by solid lines. The inten-
sity profile is still Gaussian, but the deviation from a linear fit of
the chirp profile indicates that the chirp does not remain linear.
This is consistent with the fact that, with the range of parame-
ters used in these simulations, the main effect occuring during
the propagation is nonlinear Kerr effect, leading to self-phase
modulation of the pulse. This comparison highlights the partic-
ular behavior of a parabolic pulse which is able to maintain the
linearity of its chirp even in presence of nonlinear effects.

D. Compression of Parabolic Pulse

The linearity of the parabolic pulse chirp would be ex-
pected to lead to efficient compression using only linear chirp
compensation provided by, for example, a simple grating pair
compressor. In this regard, an important feature of FROG
characterization is that it permits the numerical computation of
the expected compressed pulse characteristics based on the re-
trieved intensity and phase. For example, for the data presented
in Fig. 5(a), numerical linear chirp compensation yields to the
compressed pulse characteristics displayed in Fig. 11(a), which
show negligible chirp variation across the pulse center. Here,
the compressed pulse peak power is 102 W and the FWHM
duration is 1.2 ps, which, when compared to the original input
pulses from the fiber laser, represents a factor of 5.8 temporal
compression and a factor of 450 increase in peak power. The
compression quality is high, since the pedestals are pretty low
and 92% of the energy is concentrated in the main peak.

In Fig. 11(b), we compare on a logarithmic scale the pre-
ceding results with a similar compression which could be
achieved in the case of an exact parabolic pulse of the same
energy and temporal width (dashed line). Note that even in this

case, oscillations in the compressed pulse clearly remain and
cannot be eliminated by using linear compression [18]. The
origin of these oscillations comes from the compact support of
parabolic pulses. We can conclude that results expected with
a linear compression of the experimental parabolic pulses are
very close to an optimal compression.

V. CONCLUSION

In this paper, we have presented the theoretical and experi-
mental demonstration of parabolic pulse generation in Raman
amplifier based on standard NZ-DSF and commercial devices
adapted to telecommunication use. The use of SHG-FROG for
pulse characterization allows the precise measurement of para-
bolic pulse features, such as the linear chirp and the rapid falloff
in the wings of the intensity profile. We have been able to check
some other essential properties of the parabolic pulses, such as
the dependences on the duration and energy of the initial pulse,
or their ability to propagate in a normally dispersive nonlinear
fiber without loosing their properties.
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