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CHARACTERIZATION OF POISSON INTEGRALS FOR

NON-TUBE BOUNDED SYMMETRIC DOMAINS

ABDELHAMID BOUSSEJRA AND KHALID KOUFANY

Abstract. We characterize the Lp−range, 1 < p < +∞, of the
Poisson transform on the Shilov boundary for non-tube bounded
symmetric domains. We prove that this range is a Hua-Hardy type
space for harmonic functions satisfying a Hua system.

1. Introduction

Let Ω = G/K be a Riemannian symmetric space of non-compact
type. To each boundary G/P one can define a Poisson transform, which
is an integral operator from hyperfunctions on G/P into the space of
eigenfunctions on Ω of the algebra D(Ω)G of invariant differential oper-
ators. For the maximal boundary, G/Pmin, the most important result
is the Helgason conjecture, proved by Kashiwara et al. [8] which states
that a function is eigenfunction of all invariant differential operators
on Ω if and only if it is Poisson integral

Pλf(gK) =

∫

K

f(k)e−〈λ+ρ,H(g−1k〉dk.

of a hyperfunction on the maximal boundary, for a generic λ ∈ a∗
C
.

For other function spaces such as Lp(G/Pmin) the characterization is in
connection with Fatou’s theorems. We mention here the work of Hel-
gason [5] and Michelson [14] for p = ∞, and Sjörgen [17] for 1 ≤ p < ∞
using weak Lp−spaces. Another characterization for 1 ≤ p ≤ ∞, using
Hardy-type spaces, was done by Stoll [18] in the harmonic case and by
Ben Säıd et al. [1] in the general case.

If Ω is a bounded symmetric domain, one is interested in functions
whose boundary values are supported on the Shilov boundary (minimal
boundary) S := G/Pmax rather that the maximal boundary G/Pmin.
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For the Shilov boundary the Poisson transform is defined by

Psf(gK) =

∫

K

f(k)e−〈sρ0+ρ1,H1(g−1k〉dk, s ∈ C.

In this case, Hua [6] had proved that the algebra of invariant differen-
tial operators is not necessarily the most appropriate for characterizing
harmonic functions (i.e., annihilated by the algebra D(Ω)G). Johnson
and Korànyi [7], generalizing the earlier work of Hua, Korányi and Stein
[10], and Korányi and Malliavin [11], introduced an invariant second
order (kC−valued) operator H, called since, second-order Hua operator
(or Hua system). They showed, in the tube case, that a function is
annihilated by the Hua operator if and only if it is the Poisson integral
Ps0

f (s0 = n/r) of a hyperfunction on the Shilov boundary. Thus, in
the tube case, The Hua operator plays the same role with respect to
the Shilov boundary as the algebra D(Ω)G does with respect to the
maximal boundary. In his paper [13], Lassalle showed the existence
of a smaller system (a projection of the Hua operator) with the same
properties.

Later Shimeno [16] generalize the result of Johnson and Korányi;
namely he proved that a function is eigenfunction of H if and only if it
is a Poisson transform Psf of a hyperfunction on the Shilov boundary
for generic s ∈ C.

In [2], the first author gave a characterization of the Poisson trans-
form Ps on Lp(S), which closes the tube type symmetric domains case
characterization.

It thus arises the question of characterizing the range of the Poisson
transform Ps on Lp(S), 1 < p < +∞, for non-tube bounded symmetric
domains on Lp(S). The purpose of this paper is to answer this question.

For general bounded symmetric domains the Poisson integrals are
not eigenfunctions of the second-order Hua operator H, see for instance
[3] or [12]. However for type Ir,r+b domains of non-tube type, (see [3]
and [12]) there is a variant of the second-order Hua operator, H(1), by
taking the first component of H, since in this case kC is a sum of two

irreducible ideals kC = k
(1)
C

⊕ k
(2)
C

. It is proved, in [12] (and in [3] for the
harmonic case, s = (2r + b)/r) that a smooth function f on Ir,r+b is a
solution of the Hua system, H(1)f = 1

4
(s2 − (r + b)2)fIr if and only if it

is the Poisson transform Ps of a hyperfunction on the Shilov boundary.
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For general non-tube domains, and for the harmonic case ( i.e., for
s = n/r in our parametrization) the characterization of the image of the
Poisson transform Pn

r
on hyperfunctions over the Shilov boundary was

done by Berline and Vergne [3] where certain third-order Hua operator
was introduced. Recently, the second author and Zhang [12] generalize
the result of of Berline and Vergne to any (generic) s. They introduce
two third-order Hua operators U and W (different from the Berline
and Vergne operator) and prove that an eigenfunction f of D(Ω)G is a
solution the Hua system (6) if and only if it is a Poisson transform of
a hyperfunction on the Shilov boundary.

Let Es(Ω) be the space of harmonic functions on Ω that are solutions
of the Hua system (for type Ir,r+b domains, an eigenfunction of H(1)

is indeed harmonic). Then the image Ps(L
p(S)) is a proper closed

subspace of Es(Ω). For 1 < p < +∞, we introduce the Hua-Hardy
type space, Ep

s (Ω) of functions f ∈ Es(Ω) such that

‖f‖s,p = sup
t>0

e−t(ℜ(s)r−n)(

∫

K

|f(kat)|
pdk)1/p < +∞.

Our main result (see Theorem 4.10) says that if s ∈ C is such that

ℜ(s) > a
2
(r − 1), a smooth function F on Ω is the Poisson transform

F = Psf of a function f ∈ Lp(S) if and only if f ∈ Ep
s (Ω). Our method

of proving this characterization uses an L2 version of this theorem (see
Theorem 4.8) and an inversion formula for the Poisson transform (see
Proposition 4.9) which needs Fatou-type theorems (see Theorem 4.3
and Theorem 4.5).

2. Preliminaries

Let Ω be an irreducible bounded symmetric domain in a complex
n−dimensional space V . Let G be be the identity component of the
group of biholomorphic automorphisms of Ω, and K be the isotropy
subgroup of G at the point 0 ∈ Ω. Then K is a maximal compact
subgroup of G and as a Hermitian symmetric space, Ω = G/K. Let g

be the Lie algebra of G, and

g = k + p

be its Cartan decomposition. The Lie algebra k of K has one dimen-
sional center z. Then there exists an element Z0 ∈ z such that adZ0

defines the complex structure of p. Let

gC = p+ ⊕ kC ⊕ p−
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be the corresponding eigenspaces decomposition of gC, the complexifi-
cation of g. Let GC be a connected Lie group with Lie algebra gC and
P+, KC, P− be the analytic subgroups of GC corresponding to p+, kC,
p−. Denote by σ the conjugaison of GC with respect to G. Then we
have, σ(P±) ⊂ P∓ and σ(KC) ⊂ KC.

Let h be a maximal Abelian subalgebra of k, and let ∆(gC, hC) be the
corresponding set of roots. As Z0 belongs to h, the space p+ is stable
by adh. The roots γ ∈ ∆(gC, hC) such that gγ ⊂ p+ are said to be
positive non-compact, and we denote by Φ the set of such roots. Let
γ ∈ Φ, then one may choose elements Hγ ∈ ih, Eγ ∈ gγ, E−γ ∈ g−γ

such that [Eγ, E−γ] = Hγ and σ(Eγ) = −E−γ . Let Xγ = Eγ +E−γ and
Yγ = i(Eγ − E−γ). Then, by a classical Harish-Chandra construction,
there exists a maximal set Γ = {γ1, . . . , γr} of strongly orthogonal roots
in Φ. For simplicity, let us set for, 1 ≤ j ≤ r,

Ej = Eγj
, Xj = Xγj

, Yj = Yγj
.

Then,

a =
r

∑

j=1

RXj,

is a Cartan subspace of the pair (g, k). Let a∗ denote the dual of a and
let {β1, β2, . . . , βr} be a basis of a∗ determined by

βj(Xk) = 2δj,k, 1 ≤ j, k ≤ n.

The restricted root system Σ = Σ(g, a) of g relative to a is (of type Cr

or BCr) given by

±βj (1 ≤ j ≤ r) each with multiplicity 1,

±
1

2
(βj ± βk) (1 ≤ j 6= k ≤ r) each with multiplicity a,

and possibly

±
1

2
βj (1 ≤ j ≤ r) each with multiplicity 2b.

Let Σ+ = {βj,
1
2
βj ,

1
2
(βℓ ± βk); 1 ≤ j ≤ r, 1 ≤ ℓ 6= k ≤ r} the set

of positive restricted roots. Then the set Λ = {α1, . . . , αr−1, αr} of
simple roots in Σ+ is such that

αj =
1

2
(βr−j+1 − βr−j), 1 ≤ j ≤ r − 1

and

αr =

{

β1 for tube case
1
2
β1 for non-tube case.
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Let Λ1 = {α1, . . . , αr−1} and write Σ1 = Σ ∩ Z · Λ1. Define

m1,1 = m + a +
∑

γ∈Σ1

gγ, n+
1 =

∑

γ∈Σ+\Σ1

gγ.

Let

a1 = {H ∈ a : γ(H) = 0 ∀γ ∈ Λ1},

then m1,1 is the centralizer of a1 in g and p1 = m1,1 + n+
1 is a standard

parabolic subalgebra of g with Langlands decomposition m1 + a1 + n+
1 ,

where m1 is the orthocomplement of a1 in m1,1 with respect to the
Killing form. Note that θ(n+

1 ) =
∑

γ∈Σ+\Σ1
g−γ . Let P1 be the corre-

sponding parabolic subgroup and P1 = M1A1N
+
1 its Langlands decom-

position. Obviously, P1 is a maximal parabolic subgroup of G, thus
the Shilov boundary S can be viewed as S = G/P1 = K/K1, where
K1 = M1 ∩ K

If we define the element X0 =
∑r

j=1 Xj, Then a1 = RX0. Let

a(1) =

r−1
∑

j=1

R(Xj − Xj+1)

be the orthocomplement of a1 in a with respect to the Killing form,

(1) a = a1 ⊕
⊥ a(1) = RX0 ⊕

⊥

r−1
∑

j=1

R(Xj − Xj+1).

We denote ρ0 the linear form on a1 such that, ρ0(X0) = r. We extend
ρ0 to a via the orthogonal projection (1). If ρ1 is the restriction of ρ to
a1, then it is clear that

ρ1(X0) = rb + r + a
r(r − 1)

2
= n.

Again, we extend ρ1 to a via the orthogonal projection (1). Then

ρ1 = (b + 1 + a
(r − 1)

2
)ρ0 =

n

r
ρ0.

For g ∈ G, define H(g) ∈ a as the unique element such that

g ∈ K exp(H(g))N ⊂ KAN = G.

We also denote by κ(g) ∈ K and H1(g) ∈ a1 the unique elements such
that

g ∈ κ(g)M1 exp(H1(g))N1 ⊂ KM1A1N1 = G.

The following lemma will be useful for the sequel.
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Lemma 2.1 ([15, Lemma 6.1.6]). (i) Let x, y ∈ G, n̄ ∈ N̄1 and

a ∈ A1. Then

H1(xκ(y)) = H1(xy) − H1(y)(2)

H1(n̄a−1) = H1(n̄) − H1(a)(3)

(ii) Let t > 0 and n̄ ∈ N̄1. Then

(4) ρ0(H1(atn̄a−t)) ≤ ρ0(H1(n̄)).

3. The Poisson transform and the Hua operators

For any real analytic manifold X, we denote by B(X) the space of all
hyperfunctions on X. We will view a function on the Shilov boundary
S = G/P1 as a P1−invariant function on G. For s ∈ C, we denote by
B(G/P1; s) the space of hyperfunctions f on G satisfying

f(gman) = e(sρ0−ρ1) log af(g), ∀g ∈ G, m ∈ M1, a ∈ A1, n ∈ N+
1 ,

The Poisson transform of a function f ∈ B(G/P1; s), is defined by

Psf(gK) =

∫

K

e−〈sρ0+ρ1,H1(g−1k)〉f(k)dk.

Since G = KP1, the restriction from G to K defines a G−isomorphism
from B(G/P1, s) onto the space B(K/K1) of all hyperfunctions f on K
such that f(kh) = f(k) for all h ∈ K1.

We review the construction of Hua operators of the second order (see
[7]) and the third order (see [3], [12]).
Let {vj} be a basis of p+ and {v∗

j} be th dual basis of p− with respect
to the Killing form. Let U(gC) denote the universal enveloping algebra
of gC. The second-order Hua operator, is the element of U(gC) ⊗ kC

defined by

H =
∑

i,j

viv
∗
j ⊗ [vj , v

∗
i ]

It is known that the Hua operator does not depends on basis, therefor,
for computations one can choose the root vectors basis {Ej}

r
j=1.

For tube domains the Hua operator H maps the Poisson kernels

Ps(gk) = e−〈sρ0+ρ1,H1(g−1)〉

into the center of kC, namely the Poisson kernels are its eigenfunctions
up to an element in the center, but it is not true for non-tube domains,
see [12, Theorem 5.3]. However for non-tube type I domains, Ir,r+b ≃
SU(r, r + b)/S(U(r) × U(r + b)), the situation is not quite different
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from the tube case. In fact, kC is a sum of two irreducible ideals,

kC = k
(1)
C

+ k
(2)
C

where

k
(1)
C

=

{(

A 0

0 tr(A)
r+b

Ir+b

)

, A ∈ gl(r + b, C)

}

,

k
(1)
C

=

{(

0 0
0 D

)

, D ∈ sl(r + b, C)

}

.

There is a variant of the Hua operator, H(1) see [3], [12], by taking

the projection of H onto k
(1)
C

. In [12], the second author and Zhang
showed that the operator H(1) has the Poisson kernels as its eigenfunc-
tions and they found the eigenvalues. They proved further that the
eigenfunctions of the Hua operator H(1) are harmonic functions (i.e.,
eigenfunctions of all invariant differential operators on Ω), and gave
the following characterization of the range of the Poisson transform for
Ir,r+b.

Theorem 3.1 ([12, Theorem 6.1]). Suppose s ∈ C satisfies the follow-

ing condition

−4[b + 1 + j +
1

2
(s − r − b)] /∈ {1, 2, 3, · · · }, for j = 0 and 1.

Then the Poisson transform Ps is a G−isomorphism of B(S) onto the

space of smooth functions f on Ω that satisfy

(5) H(1)f =
1

4
(s2 − (r + b)2)fIr.

For the characterization of range of the Poisson transform for general
non-tube domains the second author and Zhang [12] introduced new
third-order Hua operators U and W :

U =
∑

i,j,k

v∗
i v

∗
j vk ⊗ [vi, [vj , v

∗
k]],

W =
∑

i,j,k

vkv
∗
i vj ⊗ [[v∗

k, vi], vj]], .

Similarly to H, the operators U and W do not depend on the basis.

Denote

c = 2(n + 1) +
1

n
(a2 − 4) dim(P(1,1)),

where P(1,1) is the dimension of the irreducible subspaces of holomor-
phic polynomials on p+ with lowest weight −γ1 − γ2. For any s ∈ C,
put σ = 1

2
(s+ n

r
). For general non-tube domains we have the following
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Theorem 3.2 ([12, Theorem 7.2]). Let Ω be a bounded symmetric

non-tube domain of rank r in Cn. Suppose s ∈ C satisfies

−4[b + 1 + j
a

2
+

1

2
(s −

r

n
)] /∈ {1, 2, 3, · · · }, for j = 0 and 1.

Then the Poisson transform Ps is a G−isomorphism of B(S) onto the

space of harmonic functions f on Ω that satisfy

(6)

(

U −
−2σ2 + 2pσ + c

σ(2σ − p − b)
W

)

f = 0,

4. The Lp−range of the Poisson transform

For 1 < p < +∞, we will consider the space Lp(S) = Lp(K/K1) as
the space of all complex valued measurable (classes) functions f on K
that are K1−invariant and satisfying

‖f‖p =

(
∫

K

|f(k)|pdk

)1/p

< +∞,

where dk is the Haar measure of K. Let dn̄ be the invariant measure
on N̄1 = θ(N1) with the normalization

(7)

∫

N̄1

e〈−2ρ1,H1(n̄)〉dn̄ = 1.

Then for a continuous function f on S we have

(8)

∫

K

f(k)dk =

∫

N̄1

f(κ(n̄))e−2〈ρ1,H1(n̄)〉dn̄.

The space Lp(S) can be viewed as a subspace of B(S), thus its image
Ps(L

p(S)) is a proper closed subspace of Es(Ω). We will now, for specific
s, characterize this image. For this we need some information on the
integral cs in following proposition.

Proposition 4.1. For s ∈ C such that ℜ(s) > a
2
(r − 1), the integral

cs =

∫

N̄1

e−〈sρ0+ρ1,H1(n̄)〉dn̄

converges absolutely to a constant cs 6= 0.

Proof. For s ∈ C let λs ∈ a∗
C

be the linear form defined by

λs(H) = (sρ0 − ρ1)(H1) + ρ(H), H ∈ a

where H1 is the projection of H onto a1. Then the condition ℜ(s) >
a
2
(r − 1) is equivalent to

(9) ℜ(〈λs, α〉) > 0 ∀α ∈ Σ+ \ Σ1.
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Moreover, we can choose (see for example [15, Lemma 6.1.4]) ω in the
Weyl group W of Σ such that

(i) ω · H = H, ∀H ∈ a1,
(ii) ω(Σ+ ∩ Σ1) = −Σ+ ∩ Σ1,

(iii) ω(Σ+ \ Σ1) = Σ+ \ Σ1.

Since 〈ωλs, α〉 = 〈λs, ω
−1α〉, the condition (9) is equivalent to

ℜ(〈ωλs, α〉) > 0, ∀α ∈ Σ+

Furthermore
〈sρ0 + ρ1, H1(g)〉 = 〈ωλs + ρ, H(g)〉

so that
∫

N̄1

e−〈sρ0+ρ1,H1(n̄)〉dn̄ =

∫

N̄1

e−〈ωλs+ρ,H(n̄)〉dn̄

and the right hand side is the Harish-Chandra c function, c(ωλs) associ-
ated with the maximal parabolic subgroup, which converges absolutely,
see [15].

�

Let s ∈ C. Let Es(Ω) be the space of harmonic functions on Ω that
satisfy (5) in type I domains or (6) in general domains. It is clear
that the image Ps(L

p(S)) is a proper closed subspace of the eigenspace
Es(Ω). Hence, it is natural to look for a characterization of those F ∈
Es(Ω) that are Poisson transform of some f ∈ Lp(S).

For any 1 < p < ∞, let Ep
s (Ω) denote the Hua-Hardy type space of

functions f ∈ Es(Ω) such that

‖f‖s,p = sup
a∈A1

e−〈ℜ(s)ρ0−ρ1,log a〉(

∫

K

|f(ka)|pdk)1/p < +∞.

Since a1 = RX0, the above integral becomes

‖f‖s,p = sup
t>0

e−t(ℜ(s)r−n)(

∫

K

|f(kat)|
pdk)1/p,

where at = exp(tX0).

4.1. Fatou type theorems. As a preparation to Fatou-type theorems
we prove the following

Proposition 4.2. Let s ∈ C be such that ℜ(s) > a
2
(r − 1). Let Ψt be

the function defined on N̄1 by

Ψt(n̄) = e−〈sρ0+ρ1,H1(n̄)〉+〈sρ0−ρ1,H1(atn̄a
−t)〉.

Then there exists a non-negative function Φ ∈ L1(N̄1) such that Ψt ≤ Φ
for each t.
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Proof. It follows from (4), that for any t > 0 and for any n̄ ∈ N̄1,

0 ≤ ρ0(H1(atn̄a−t) ≤ ρ0(H1(n̄).

Therefore,

|Ψt(n̄)| ≤

{

e−〈ℜ(s)ρ0+ρ1,H1(n̄)〉 if a
2
(r − 1) < ℜ(s) ≤ a

2
(r − 1) + b + 1

e−2〈ρ1,H1(n̄)〉 if ℜ(s) > a
2
(r − 1) + b + 1

and the second hand is an integrable function on N̄1 by (7) and Propo-
sition 4.1 .

�

Let C(S) be the space of complex-valued continuous functions on S
with the topology of uniform convergence.

Theorem 4.3. Let s ∈ C be such that ℜ(s) > a
2
(r − 1). Then

f(k) = c−1
s lim

t→+∞
e−(rs−n)tPsf(kat)

uniformly, for f ∈ C(S).

Proof. Let f ∈ C(S), then

Psf(kat) =

∫

K

e−〈sρ0+ρ1,H1(a−th)〉f(kh)dh.

We transform this integral using the formula (8) to an integral over N̄1,

Psf(kat) =

∫

N̄1

e−〈sρ0+ρ1,H1(a−tκ(n̄))〉f(kκ(n̄))e−2〈ρ1,H1(n̄)〉dn̄,

and by (2) we get

Psf(kat) =

∫

N̄1

e−〈sρ0+ρ1,H1(a−tn̄)〉e〈sρ0−ρ1,H1(n̄)〉f(kκ(n̄))dn̄.

which by the substitution n̄ 7→ a−tn̄at and (3), becomes

Psf(kat) = e〈sρ0−ρ1,H1(at)〉×
∫

N̄1
e−〈sρ0+ρ1,H1(n̄)〉+〈sρ0−ρ1,H1(atn̄a

−t)〉f(kκ(atn̄a−t))dn̄.

But ρ1 = n
r
ρ0, and atn̄a−t → e when t → +∞, thus, by Proposition

4.2,

lim
t→+∞

e−(rs−n)tPsf(kat) = csf(k).

�



POISSON INTEGRALS ON NON-TUBE DOMAINS 11

Let

ϕs(at) :=

∫

K

e−〈sρ0+ρ1,H(a
−tk)〉dk.

then, it follows from the above theorem that

(10) lim
t→∞

e−(rs−n)tϕs(at) = cs, if ℜ(s) >
a

2
(r − 1).

As a consequence we can prove the following

Proposition 4.4. Let s ∈ C be such that ℜ(s) > a
2
(r− 1). Then there

exists a positive constant γs such that, for 1 < p < ∞ and f ∈ Lp(S),
we have

(
∫

K

|Psf(kat)|
pdk

)1/p

≤ γs e(rs−n)t‖f‖p.

Proof. For t > 0, we define the function pt
s by

pt
s(k) = e−〈sρ0+ρ1,H1(a−tk−1)〉, k ∈ K.

Then the Poisson transform can be written as the convolution

Psf(kat) = (f ∗ pt
s)(k).

Hence, to prove the proposition we use the Haussedorf-Young inequal-
ity,

(
∫

K

|Psf(kat)|
pdk

)1/p

≤ ‖pt
s‖1 ‖f‖p (p > 1),

and (10).
�

Let, as usual, K̂, be the set of equivalence classes of finite dimensional
irreducible representations of K. For δ ∈ K̂, let C(S)δ be the linear
span of all K−finite vectors on S of type δ. It is well known that the
space CK(S) := ⊕δ∈K̂C(S)δ is dense in C(S). Recall also, that the space
C(S) is dense in Lp(S) for 1 < p < ∞.

Theorem 4.5. Let s ∈ C be such that ℜ(s) > a
2
(r − 1). Then

f(k) = c−1
s lim

t→+∞
e−(rs−n)tPsf(kat)

in Lp(S), for 1 < p < ∞.

Proof. Let f ∈ Lp(S). By the above density arguments, for any ǫ > 0,
there exists ϕ ∈ CK(S) such that ‖f − ϕ‖p < ǫ. Then we have

‖c−1
s e−(rs−n)tP t

sf − f‖p ≤ ‖c−1
s e−(rs−n)tP t

s(f − ϕ)‖p+

+‖c−1
s e−(rs−n)tP t

sϕ − ϕ‖p + ‖ϕ − f‖p
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where the function P t
sf is defined by

(11) P t
sf(k) = Psf(kat).

By Proposition 4.4,

‖c−1
s e−(rs−n)tP t

s(f − ϕ)‖p ≤ γs|c
−1
s |‖f − ϕ‖p,

and by Theorem 4.3

lim
t→+∞

‖c−1
s e−(rs−n)tP t

sϕ − ϕ‖p = 0.

Thus, limt→+∞ ‖c−1
s e−(rs−n)tP t

sf − f‖p ≤ ǫ(γs + 1) and this proves the
theorem. �

We can now prove the following estimates

Proposition 4.6. Let s ∈ C be such that ℜ(s) > a
2
(r− 1). Then there

exists a positive constant γs such that for 1 < p < +∞ and f ∈ Lp(S),

(12) |cs|‖f‖p ≤ ‖Psf‖s,p ≤ γs‖f‖p.

Proof. In fact, the right hand side of the estimate (12) follows from
Proposition 4.4. On the other hand, by Theorem 4.5 we have

lim
t→∞

e(n−rs)tPsf(kat) = csf(k)

in Lp(S). Hence, there exists a sequence (tj)j, with tj → +∞ when
j → +∞ such that limj→+∞ e(n−rs)tjPsf(katj ) = csf(k), almost every
where in K. Therefore, by the classical Fatou lemma,

|cs|‖f‖p ≤ sup
j

e(n−rℜ(s))tj‖P tj
s f‖p

and this is how we prove the left hand side of (12). �

4.2. The L2−Poisson transform range. Recall that

L2(S) = ⊕δ∈K̂Vδ

where Vδ is the finite linear span of {ϕδ ◦ k, k ∈ K}, where ϕδ is the
zonal spherical function corresponding to δ.
For s ∈ C and δ ∈ K̂, define the generalized spherical function Φs,δ on
A1 by

Φs,δ(at) = (Psϕδ)(at).

Proposition 4.7. Let s ∈ C, δ ∈ K̂ and f ∈ Vδ. Then for any k ∈ K
and at ∈ A1,

(Psf)(kat) = Φs,δ(at)f(k).
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Proof. Since M1 centralize A1, we can view the operator (11) as a
bounded operator on L2(S). Moreover, P t

s commutes with the left
regular representation of K in L2(S). Hence, by Schur’s lemma, P t

s =
Φs,δ(at) · I on each Vδ and the proposition follows. �

The first main theorem of this section can now be stated as follows :

Theorem 4.8. Let s ∈ C be such that ℜ(s) > a
2
(r − 1). A smooth

function F on Ω is the Poisson transform F = Psf of a function

f ∈ L2(S) if and only if F ∈ E2
s (Ω).

Proof. The necessary condition follows from Proportion 4.6 and [12,
Theorem 6.1 and Theorem 7.2]. On the other hand, let F ∈ Ep

s (Ω).
We apply again [12, Theorem 6.1 and Theorem 7.2]. Then, there exists
a hyperfunction f ∈ B(S) such that F = Psf . Let f =

∑

δ∈K̂ fδ be its
K−type decomposition. By Proposition 4.7 we can write

F (kat) =
∑

δ∈K̂

Φs,δ(at)fδ(k)

in C∞(K × [0, +∞[).
Now observe that

‖F‖2
s,2 = sup

t>0
e2(n−rℜ(s))t

∑

δ∈K̂

|Φs,δ(at)|
2‖fδ‖

2
2 < ∞.

Then, if Λ is an arbitrary finite subset of K̂, we get

e2(n−rℜ(s))t
∑

δ∈Λ

|Φs,δ(at)|
2‖fδ‖

2
2 ≤ ‖F‖2

s,2

for every t > 0 and hence form Theorem 4.3 it follows immediately
that

|cs|
2
∑

δ∈Λ

‖fδ‖
2
2 ≤ ‖F‖2

s,2

which implies that f =
∑

δ∈K fδ in L2(S) and that

|cs|
2‖f‖2 ≤ ‖F‖s,2.

This ends the proof of the theorem. �

In the following proposition we show how to recover a function f ∈
L2(S) from its Poisson transform Psf .

Proposition 4.9. Let s ∈ C be such that ℜ(s) > a
2
(r − 1). Let F ∈

E2
s (Ω) and f ∈ L2(S) its boundary value. Then the following inversion

formula

(13) f(k) = |cs|
−2 lim

t→∞
e2(n−rℜ(s))t

∫

K

e−〈sρ0+ρ1,H1(a−tk−1h)〉F (hat)dh
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holds in L2(S).

Proof. Let F ∈ E2
s (Ω), then its follows from Theorem 4.8 that there

exists a unique f ∈ L2(S) such that F = Psf . Let f =
∑

δ∈K̂ fδ be its
K−type expansion, then similarly to the preceding proof, we get

(14) F (kat) =
∑

δ∈K̂

Φs,δ(at)fδ(k).

For any t > 0, define the complex-valued function on K by

gt(kat) = |cs|
−2e2(n−rs)t

∫

K

e−〈sρ0+ρ1,H1(a−tk−1h)〉F (hat)dh.

Next, using the above series expansion we can write according to The-
orem 4.5,

gt(h) = |cs|
−2e2(n−rs)t

∑

δ∈K̂

|Φs,δ(at)|
2fδ(h).

Thus,

‖gt − f‖2
2 =

∑

δ∈K̂

∣

∣|cs|
−2e2(n−rs)t|Φs,δ(at)|

2 − 1
∣

∣

2
‖fδ‖

2
2,

which shows that ‖gt−f‖2 → 0, since limt→∞ e(n−rs)tΦs,δ(at) = cs. �

4.3. The Lp−Poisson transform range, p 6= 2. We shall now prove
the second main result of this paper, more precisely, we shall character-
ize the Lp−range of the Poisson transform.We will need the following
notation. For each function f on Ω, define the function f t, t > 0, on
K by

f t(k) = f(kat).

Theorem 4.10. Let s ∈ C be such that ℜ(s) > a
2
(r − 1). A smooth

function F on Ω is the Poisson transform F = Psf of a function

f ∈ Lp(S) if and only if F ∈ Ep
s (Ω).

Proof. We will follow the technique used by Korànyi [9]. Let (χn)n be
an approximation of the identity in C(K). That is χn ≥ 0,

∫

K
χn(k)dk =

1 and limn→+∞

∫

K\U
χn(k)dk = 0 for every neighborhood U of e in K.

Let F ∈ Ep
s (Ω). For each n, define the function Fn on Ω by

Fn(gK) =

∫

K

χn(k)F (k−1g)dk.

Then (Fn)n converges point-wise to F , and since the set Es(Ω) of har-
monic functions satisfying the Hua system is G−invariant, Fn ∈ Es(Ω),
for each n. Furthermore,

F t
n(katK) = (χn ∗ F t)(k)
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and this shows

(15) ‖F t
n‖2 ≤ ‖χn‖2‖F

t‖p,

and

(16) ‖F t
n‖p ≤ ‖F t‖p.

It follows from (15)

sup
t>0

e(n−rs)t

(
∫

K

|Fn(kat)|
2dk

)1/2

≤ ‖χn‖2‖F‖s,p.

Thus Fn ∈ Es,2(Ω) and by Theorem 4.8, there exists fn ∈ L2(S) such
that Fn = Psfn. Now, our goal is to prove that fn belongs to Lp(S).
Using the inversion formula (13) we can write in L2(S),

fn(k) = lim
t→+∞

gt
n(k)

where

gt
n(h) = gn(hat) = |cs|

−2e2(n−rℜ(s))t

∫

K

e−〈sρ0+ρ1,H1(a
−tk−1h)〉Fn(kat)dk.

Let ϕ ∈ C(S) be a continuous function on S, then
∫

K

fn(h)ϕ(h)dh = lim
t→∞

∫

K

gt
n(h)ϕ(h)dh.

Moreover,

∫

K

gt
n(h)ϕ(h)dh = |cs|

−2e2(n−rℜ(s))t ×

×

∫

K

∫

K

Fn(kat)ϕ(h)e−〈sρ0+ρ1,H1(a
−tk−1h)〉dkdh

= |cs|
−2e2(n−rℜ(s))t

∫

K

Psϕ̄(kat)Fn(kat)dk.

By the Holder inequality, if q is such that 1/p + 1/q = 1, we get
∣

∣

∣

∣

∫

K

gt
n(h)ϕ(h)dh

∣

∣

∣

∣

≤ |cs|
−2e2(n−rℜ(s))t‖Psϕ‖q‖F

t
n‖p,

≤ |cs|
−2e2(n−rℜ(s))t‖Psϕ‖q‖F

t‖p,

where the second inequality follows from (16). But F ∈ Es,p(ω), then
∣

∣

∣

∣

∫

K

gt
n(h)ϕ(h)dh

∣

∣

∣

∣

≤ |cs|
−2e2(n−rℜ(s))t‖Psϕ‖q‖F‖s,p.
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Therefore, by Theorem 4.3,
∣

∣

∣

∣

∫

K

fn(h)ϕ(h)dh

∣

∣

∣

∣

≤ |cs|
−1‖ϕ‖q‖F‖s,p,

and by taking the supremum over ϕ ∈ C(S) with ‖ϕ‖q = 1, we get

‖fn‖p ≤ |cs|
−1‖F‖s,p.

Now, for each ϕ ∈ Lq(S), define the functional

Tn(ϕ) =

∫

fn(h)ϕ(h)dk.

Then it is obvious by (4.3) that

|Tn)ϕ)| ≤ |cs|
−1‖ϕ‖q‖F‖s,p

hence, Tn is uniformly bounded operator in Lq(S) with supn ‖Tn‖ ≤
|cs|

−1‖F‖s,p. Thanks to Banach-Alaouglu-Bourbaki’s theorem, there
exists a subsequence of bounded operators (Tnj

)j which converges as
nj → +∞ to a bounded operator T in Lq(S), under the ∗−weak topol-
ogy, with ‖T‖ ≤ |cs|

−1‖F‖s,p. Then, by the Riesz representation theo-
rem, there exists a unique function f ∈ Lp(S) such that

T (ϕ) =

∫

K

f(h)ϕ(h)dh, ∀ϕ ∈ Lq(S)

with

(17) ‖f‖p ≤ ‖Tn‖ ≤ |cs|
−1‖F‖s,p.

Now, observe that

Fnj
(g) = Tnj

(e−〈sρ0+ρ1,H1(g−1k〉),

thus, by taking the limit as n → +∞ we get

F (g) = T (e−〈sρ0+ρ1,H1(g−1k〉) = Psf(g)

with |cs|‖f‖p ≤ ‖F‖s,p, by (17), and this finishes the proof of the
theorem. �
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1. Ben Säıd, S.; Oshima, T.; Shimeno, N. Fatou’s theorems and Hardy-type
spaces for eigenfunctions of the invariant differential operators on symmetric
spaces. Int. Math. Res. Not. 16 (2003) 915–931.

2. Boussejra, A. Lp−Poisson integral representation of solutions of the Hua sys-
tem on Hermitian symmetric spaces of tube type. To appear in J. Funct. Anal.
2006.
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