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Abstract

A large variety of passive optical systems subject to a delayed feedback have appeared in the literature and are described 
mathematically by the same class of scalar delay differential equations (DDEs). These equations include Ikeda DDE and their 
solutions are determined in terms of a control parameter distinct from the delay. We concentrate on the first Hopf bifurcation 
generated by a fixed delay and determine a general expression for its direction of bifurcation. We then examine our result in the 
two limits of small and large delays. For small delays, we show that a Hopf bifurcation to nearly sinusoidal oscillations is pos-

sible provided that the feedback rate is sufficiently high (bifurcation from infinity). For large delays, we complement the early 
work by Chow et al. [Proc. Roy. Soc. Edinburgh A 120 (1992) 223–229] and Hale and Huang [J. Diff. Equ. 114 (1994) 1–23] by 
comparing analytical and numerical bifurcation diagrams as the oscillations progressively change from sine to square-wave.

Keywords: Hopf bifurcation; Delay difference equations; Nonlinear optics

1. Introduction

In 1979, Kensuke Ikeda considered a nonlinear absorbing medium containing two-level atoms placed in a ring

cavity and subject to a constant input of light (see Fig. 1 ). If the total length of the cavity is sufficiently large, the op-

tical system undergoes a time-delayed feedback which destabilizes its steady state output. From the Maxwell–Bloch

equations, Ikeda derived a set of delay differential equations [23]. This derivation is simpler if we start from the

Maxwell–Debye equations for highly dispersive media [24]. These equations are given by the following coupled

differential difference equations (see [37, p. 122]; [40, p. 39]):

E = A + BE(t − tD) exp(i(φ − φ0)), (1)

τφ′ = −φ + |E(t − tD)|2, (2)

∗ Corresponding author. Tel. : +32-2-650-5819; fax: +32-2-650-5824.

E-mail address: terneux@ulb. ac. be (T. Erneux).
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Fig. 1. Ikeda considered the case of a nonlinear passive cavity located in a ring resonator and modeled by a delay differential equation (DDE).

Ei and Eo are the amplitudes of the injected and output fields, respectively. The delay is the round-trip time along the optical-path.

where E is the field at the boundary of the ring cavity where input and feedback lights are combined. φ is the

phase shift experienced by the electrical field in the medium and φ0 is the linear phase shift across the medium.

The parameter A is proportional to the incident light intensity. The parameter B characterizes the dissipation of the

electrical field in the cavity. The quadratic coefficient of the nonlinear refractive index is assumed positive implying

a positive coefficient for |E(t − tD)|2 in Eq. (2). τ is the Debye relaxation time and tD is the propagation time of

the light in the ring cavity. Assuming strong dissipation (small B), high input intensity (large A) but keeping A2B

fixed, Eqs. (1) and (2) can be reduced to the following scalar DDE [24,33]:

τφ′ = −φ + A2[1 + 2B cos (φ(t − tD) − φ0)], (3)

which is known as Ikeda DDE. Ikeda then showed numerically that periodic and chaotic outputs are possible. In

1983, the experimental system has been realized by his colleagues with a train of light pulses injected in a long

single mode optical fibre [25] but the Ikeda physical system is poorly described by Eq. (3). Efforts to develop an

experimental device that is accurately modeled by a simple DDE like Eq. (3) immediately followed the early work

of Ikeda. We briefly review these studies and emphasize quantitative comparisons between experiments and theory.

From the basic idea of Ikeda, an optical system has been realized by Gibbs et al. [15] in 1981. Their system is

based on a bistable opto-electronical system with delay and its behavior can be described by Eq. (3). An improved

device is studied in [22] and is modeled mathematically by

τX′ = −X + πµ[1 − sin (X(t − tD))]. (4)

Here X is proportional to the voltage fed to a potassium dehydrogen phosphate (KDP) modulator. µ is proportional

to the input intensity and is our control parameter. The output signal is injected into a photodiode and delayed using

a computer. The delay tD = 36 ms is much larger than τ = 0.8 ms. Several bifurcation phenomena were observed

including chaos and demonstrate experimentally Ikeda’s early predictions. If τ/tD ≪ 1, we may neglect the X′

term and consider the equation for a map relating X(tn+1) and X(tn) (tn = ntR): Xn+1 = πµ[1 − sin (Xn)]. The

map is an important simplification of the bifurcation problem and its validity to describe the Hopf bifurcation will

be addressed in this paper. How well Eq. (4) predicts the output of the experiment is discussed in [22].

Another experimental system was realized by Neyer and Voges [38] in 1982. It is the first experimental system

which used an integrated optical component. This system is based on the use of an electro-optical Mach–Zehnder

(MZ) modulator. The response of the system was described by a map un+1 = F(un,G), where u is the applied

voltage and G is proportional to the input intensity. The relatively large delay of 1 �s is obtained using a 200 m

coaxial cable.

An acousto-optical system has also been studied in Quebec by Vallée and Delisle [43]. This system is described

by the DDE

τX′ + X = π(A − λ sin 2(X(t − tD) + XB)), (5)
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Fig. 2. Bifurcation diagram of the fixed points Xn = Xn(β).

where λ is the control parameter, A = 0.5 is an offset of X, and XB = π/4 is a phase shift. The 2 km of optical

fibre produced a delay tD = 10 �s. The responses obtained with different delays tD/τ = 0.84, 2.6, 16 demonstrated

experimentally the importance of the delay.

In France, work has been done on an delayed optical system where the dynamical variable is the wavelength

[9,16]. An improved device using a tunable DBR laser was then realized [17,28]. This experience then led to the

development of a system based on coherence modulation [31]. The dynamical variable is the optical-path difference

in a coherent modulator driven electrically by a nonlinear delayed feedback loop [29]. The system is realized from

a MZ coherence modulator powered by a short coherence source and driven by a nonlinear feedback loop that

contains a second MZ interferometer and a delay line. In dimensionless variables, the response of the system is well

described by [31]

τX′ = −X + β[1 + 1
2

cos (X(t − tD) + Φ)], (6)

where X is proportional to the optical-path difference. The bifurcation parameter β is proportional to the photode-

tector gain K which can be varied. The phase Φ can be changed electrically by means of a bias voltage applied to

the first MZ. Experimentally, the ratio tD/τ is chosen sufficiently large so that the equation for the map is a valid

approximation. It is given by

Xn+1 = β[1 + 1
2

cos (Xn + Φ)]. (7)

The bifurcation diagram of the fixed points of Eq. (7) is shown in Fig. 2 forΦ = 0 [31]. They have been determined

after all transient points disappeared. Numerical and experimental values of the first three bifurcations are compared

in the next table and show quantitative agreement.

Φ = 0

Numerical 2. 08 5. 04 6. 59

Experimental 2. 07 5. 30 6. 69

The first two bifurcations are Hopf bifurcations while the third bifurcation marks a sudden transition to chaotic

dynamics.

All the optical systems that we have reviewed are described by the same class of scalar DDEs given by

εy′ = −y + f(λ, y(t − 1)). (8)
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Here y′ denotes the derivative of y with respect to the dimensionless time t (t ≡ t′/td, where td is the delay time).

The fixed parameter ε ≡ τ/td is defined as the ratio between the linear decay time of the dependent variable and the

delay time. In Eq. (8), f(λ, y) represents a nonlinear function of y and λ is a control parameter. Closely related to

the DDE (8) is the equation obtained by setting ε = 0 in (8) and given by

−y + f(λ, y(t − 1)) = 0. (9)

Eq. (9) is the equation for a map generating yn ≡ y(t) as a function of yn−1 ≡ y(t − 1) of the form

yn = f(λ, yn−1). (10)

The DDE (8) is called a delay recruitment equation [11] in the context of biological or medical applications. Note that

Eq. (8) exhibits a simple damping term (−y) and that the nonlinear function f only depends on y(t−1). DDEs such

as the linear growth or decay equation, εy′ = ±y(t−1) [8], and the delayed logistic equation, εy′ = λy(1−y(t−τ))

[12], do not belong to this class of equations. Eq. (8) with specific nonlinear functions have been studied. Mackey

[32] studied the case of an autoimmune disease that causes periodic crashes in the production of red blood cells.

He formulated an equation exhibiting a delayed negative feedback which can be rewritten as

ελy′ = −y + λ[1 + yp(t − 1)]−1. (11)

Eq. (11) is almost of the form (8) except that the bifurcation parameter appears both in the nonlinear function and

in the left hand side. Schanz and Pelster [42] studied the synchronization of two coupled oscillators and investigated

Eq. (8) with f(λ, y) = −λ sin (y), where λ > 0. Hong et al. [21] examined the bifurcation diagram of Eq. (8)

with f(λ, y) = 1 − λy2. Finally one Ikeda equation where

f(λ, y) = λ(1 − sin (y)), (12)

has been investigated in detail for its period doubling bifurcations [34,35].

A systematic analysis of the direction of bifurcation for the Hopf bifurcation in terms of an arbitrary function

f has been developed by Giannakopoulos and Zapp [13,14]. The authors used center manifold techniques and

considered the delay as the bifurcation parameter. The delay is a convenient parameter for mathematical analysis

but not for our optical devices where the delay is fixed and a different parameter is used as the control parameter.

Moreover, we are interested to analyze how the Hopf bifurcation changes in the two limits of large or small delays.

A general formula for the direction of bifurcation is also derived by Diekmann et al. [6] by the center manifold.

In this paper, we investigate the Hopf bifurcation problem using λ as an arbitrary bifurcation parameter. We use

the Lindstedt–Poincaré method [7,26,36] to determine a small amplitude periodic solution and then investigate its

validity for small or large delays (large or small values of ε, respectively). In addition to the direction of bifurcation,

we analyze the correction of the frequency and the correction of the leading approximation of the solution. These

corrections reveal how the regular Hopf expansion of the solution becomes nonuniform for small or large ε and

suggest new expansions of the solution.

The paper is organized as follows. In Section 2, we briefly describe how the stability properties of the steady

state solutions can be determined analytically from Eq. (8). In Section 3, we summarize the results of a bifurcation

analysis near the first Hopf bifurcation point. In Section 4, we use the method of matched asymptotic expansions

[3,27] and investigate how the nearly harmonic oscillations near the Hopf bifurcation point progressively change

into square-wave.
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2. Steady state and Hopf bifurcation

In this section, we determine the steady state solutions and analyze the Hopf bifurcation conditions. This analysis

is more frequently done for the map (10) [33] but, as we shall demonstrate, it is instructive to analyze the DDE (8).

2.1. Steady and Hopf bifurcation points

The steady state solution ys(λ) satisfies the equation

−ys + f(λ, ys) = 0. (13)

In order to study its stability, we formulate the linearized equation for a small perturbation u = y−ys. This equation

is given by

εu′ = −u + fy(λ, ys)u(s − 1), (14)

where fy(λ, ys) represents a partial derivative of the function f evaluated at y = ys(λ).

We first seek a solution of Eq. (14) of the form u = c exp(σs), where σ is real. From Eq. (14), we then obtain

an implicit solution for σ = σ(fy). We find that σ > 0 (σ < 0) if

fy(λ, ys) > 1 (fy(λ, ys) < 1). (15)

The critical point defined by the condition

fy(λ, ys) = 1 (16)

is a steady bifurcation point which is characterized by one single zero eigenvalue.

We next seek a solution of the form u = c exp(σs), where σ = σr + iσi is complex. From (14), we find two

conditions for σr and σi. Eliminating fy exp(−σr), we obtain

σr = −ε−1 −
σi

tan (σi)
, (17)

and eliminating the trigonometric functions, we obtain

fy(λ, ys) = ±
√

exp(2σr)[(1 + εσr)2 + ε2σ2
i ], (18)

where fy > 0 (fy < 0) if cos (σi) > 0 ( cos (σi) < 0). The solution is in parametric form; we first determine

σr = σr(σi) from Eq. (17) and then fy = fy(σi) from Eq. (18).

The Hopf bifurcation point (y, λ) = (yc, λc) satisfies the conditions σi = ω and σr = 0. From (17) and (18), we

obtain

tan (ω) = −εω, (19)

fy(λc, yc) = ±
√

1 + ε2ω2, (20)

where fy > 0 (fy < 0) if cos (ω) > 0 ( cos (ω) < 0). Note from (20) that the fy > 0 Hopf bifurcation point

satisfies the inequality fy > 1. But because of (15), this Hopf bifurcation is already unstable. In the rest of the paper,

we mainly concentrate on the fy < 0 Hopf bifurcation. For large delay (ε → 0), we find ω = π and fy = ±1

and together with the steady state condition (13), we may determine the limiting solutions for λc and yc which are

O(1) quantities. For small delays (ε → ∞), we find ω = π/2 and fy = ±επ/2. This large value of fy might not be

possible for every f(λ, y). From (13), we find that the slope of the steady state branch is dys/dλ = fλ(1 −fy)
−1. It
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indicates that a large |fy| implies dys/dλ = O(ε−1) small, i. e., a small change of ys as λ is changed. This is possible

for Ikeda function (12). In this paper, we discuss the Hopf bifurcation for large delays in terms of a general function

f and then for Ikeda function (12) while we restrict our analysis to Ikeda function in the case of small delays.

2.2. Ikeda small delay

Using (12), the steady state Eq. (13) leads to the implicit solution

λ =
ys

1 − sin (ys)
. (21)

Since fy = −λc cos (yc), the two Hopf bifurcation conditions (19) and (20) for (y, λ) = (yc, λc) are

tan (ω) = −εω, (22)

λc cos (yc) = ∓
√

1 + ε2ω2. (23)

These conditions must be solved together with Eq. (21) evaluated at (ys, λ) = (yc, λc). Using (21), we may

eliminate λc in Eq. (23) and obtain an equation for yc only which is given by

yc cos (yc) = ∓(1 − sin (yc))
√

1 + ε2ω2. (24)

Thus, we solve Eq. (22) for ω(ε), determine yc(ε) from (24), and λc(ε) from (21) with ys = yc. For small delays

(ε → ∞), we find from Eq. (22) that the first Hopf bifurcation exhibits the frequency

ω(∞) = 1
2
π. (25)

From (24) and (21), we then obtain a solution satisfying 0 < yc < π/2 given by

yc ≃
π

2
−

2

ε
and λc ≃

π

4
ε2. (26)

The expression (26) shows that a Hopf bifurcation is always possible even if the delay is small. As the delay

increases from zero, the Hopf bifurcation point emerges from infinity (λc = O(ε2) → ∞ as ε → ∞) and is called

a bifurcation from infinity [41]. A nonlinear analysis that takes into account the scaling properties shown in (26) is

possible and leads to a DDE with a quadratic nonlinearity [10].

2.3. Ikeda large delay

For large delays (ε → 0), we find from Eq. (22) that the first Hopf bifurcation exhibits the frequency

ω0 ≡ ω(0) = π, (27)

and that y0 ≡ yc(0) satisfies the transcendental equation

y0 cos (y0) − 1 + sin (y0) = 0 (fy = −1) (28)

or

−y0 cos (y0) − 1 + sin (y0) = 0 (fy = 1). (29)

In the latter case, the Hopf bifurcation point exactly coalesces with the steady bifurcation point satisfying (16). This

Hopf bifurcation is clearly degenerate since it corresponds to a double zero eigenvalue [18]. See Fig. 3 . Table 1

gives the three first Hopf bifurcation points shown in Fig. 3 and satisfying either Eq. (28) or (29).
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Fig. 3. Bifurcation diagram. Three Hopf bifurcation points as ε = 0 are shown. The arrows indicate how they move as ε increases from zero.

Full and dotted lines indicate stable and unstable steady states, respectively.

Table 1

Location of the Hopf bifurcations (only the first and third Hopf bifurcation points may lead to stable oscillations)

λ0 y0

fy = −1 1. 18 0. 56 Hopf

fy = 1 2. 24 4. 25 Saddle-Hopf

fy = −1 2. 65 5. 10 Hopf

Fig. 4 represents the first Hopf bifurcation point in parameter space (λ, ε). It has been obtained numerically

from Eq. (22), (21) and (24). The curve starts at λ = 1.18 and approaches the large ε parabolic limit given in (26).

A better numerical approximation for is given by the parametric solution

ε = −
tan (ω)

ω
, (30)

λ ≃
1

π

√

1 + tan 2(ω)[2 +
√

1 + tan 2(ω)], (31)

which is obtained from Eq. (22), (21) and (24) for ε large by expanding yc near π/2 but not ω or λ.

0 5 10 15 20
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300

2-periodic
square-wave

 4-periodic
 sinusoidal

     stable
steady state

Fig. 4. First Hopf bifurcation of Ikeda equation. The Hopf bifurcation moves to infinity as the delay becomes small (ε becomes large). For small

ε, the Hopf bifurcation quickly leads to two-periodic square-wave oscillations as λ increases while the oscillations remain nearly sinusoidal and

are four-periodic for large ε.
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3. Periodic solutions

We consider the fy < 0 Hopf bifurcation and assume that the basic steady state is stable (all the σr are negative

except one which is zero). In order to investigate the change of stability of the steady state, we need to determine σr

for λ close to λc. We first expand ys − yc for λ− λc small and then seek a solution of Eqs. (17) and (18) in power

series of λ− λc. This leads to σr ≃ (λ− λc)α, where α has a complicated expression. The analysis of the sign of α

is however simple. We find that σr > 0 (σr > 0) if λ > λc provided that

a(ε) ≡ 2fy

(

fyy
fλ

1 − fy
+ fyλ

)

> 0 (< 0). (32)

This function a(ε) will reappear in our analysis. We next apply the Lindstedt–Poincaré method [7,36] and seek a

2π-periodic solution of the form

y = ys + δy1(s) + δ2y2(s) + δ3y3(s) + · · · , (33)

where yi (i = 1, 2, . . . ) are 2π-periodic functions of s. Time s and the parameter δ are defined by

s ≡ (ω0 + δ2ω2 + · · · )t, (34)

λ − λc ≡ δ2c (c = 1 or − 1). (35)

The perturbation analysis is standard and we summarize the main result. Note, however, that we need to take account

the expansion of the delayed variable, i. e.,

y(t − 1) = y(s − ω0) − δ2ω2y
′(s − ω0) + · · · . (36)

The leading approximation of the solution is

y ≃ yc + δ(A exp(is) + c.c.) + O(δ2), (37)

where c. c. means complex conjugate and the complex amplitude A satisfies a solvability condition. If |A| �= 0, the

real and imaginary parts lead to two equations for the unknowns ω2 and |A|2. One of these equations provides a

relatively simple expression for the correction of the frequency given by

ω2 =
AĀf 2

yyfy

f 2
y + 1

ε3ω3

D
, (38)

where fy and fyy represent partial derivatives of the function f evaluated at (λ, y) = (λc, yc). D is defined by

D ≡ (fy − 1 + ε2ω2)2 + 4ε2ω2(fy − 1)2. (39)

Since we consider thefy < 0 Hopf bifurcation, we conclude from (38) that the sign ofω2 is always negative whatever

f(λ, y) meaning that the period of the oscillations always increase as the amplitude of the solution increases.

Using (38), we eliminate ω2 in the remaining solvability condition and obtain an equation for |A|2 of the form

AĀF + a(2fy)
−1c = 0, (40)

where a is defined in (32) and

F ≡ f 2
yy

(

1

1 − fy
+

1

2fyD(f 2
y + ε)

[(f 2
y + ε)((fy − 1)(1 + 3ε2ω2) + (1 − ε2ω2)ε2ω2) − ε5ω42fy]

)

+
fyyy

2
. (41)

The inequality AĀ > 0 then determines the sign of c, or equivalently from (35), the sign of λ − λc.
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3.1. Ikeda small delay

In the limit of small delays (ε → ∞), we find from (38) and (40)

ω2 = −ε−2 4

11π − 4
, (42)

|A|2 = ε−4 80

11π − 4
. (43)

We have verified that these results correctly match the small amplitude limit of the ε large approximation of the

original nonlinear problem [10]. From (33), we conclude that the leading order solution has the form

y =
π

2
− 2ε−1 + 2δε−2

√

80

11π − 4
sin (s) + O(δ2). (44)

From the second and third term in (44), we note that this expansion becomes nonuniform as soon as δ approaches

O(ε) large quantities. This suggests that the perturbation solution remains valid even for large δ meaning that the

oscillations remain nearly sinusoidal for small delay.

3.2. Large delay for an arbitrary function f(λ, y)

In the large delay limit (ε → 0) using the fact that fy = −1,we find that

ω2 = − 1
4
f 2

yyε
3π3, (45)

|A|2 = −
a0c

3b
> 0, (46)

where the coefficients a0 and b are defined as

a0 = a(0) ≡ −2

(

fyy
fλ

2
+ fyλ

)

and b ≡ −
(

1

2
f 2

yy +
fyyy

3

)

. (47)

From (45), we learn that ω2 is O(ε3) small meaning, using (27) and (34), that the frequency of the oscillations

remain close to π (period P = 2). Using (46), the leading expression of the solution for small ε has the form

y = ys + δ(A exp(is) + c.c.) +
δ2

4
fyy[2AĀ + A2 exp(2is) + c.c.]

− δ3

[

A3

3iεπ

(

3

4
fyy +

1

6
fyyy

)

exp(3is) + c.c.

]

+ O(δ4). (48)

Note the O(ε−1) large term appearing in the O(δ3) contribution. The expansion (48) becomes nonuniform as soon

as the O(δ3) and O(δ2) corrections are comparable, i. e., as

δ = O(ε). (49)

Using (35), the scaling (49) suggest that the perturbation solution is no more valid as soon as λ − λc = O(ε2).

The amplitude of the Hopf bifurcation solution is well described in (46) if δ ≪ ε. But if δ comes closer to ε, the

oscillations are no more harmonic and become more and more square-wave (see Fig. 5 ). Practically, we need

to review the bifurcation problem as a singular perturbation problem where the amplitude of the solution and the

deviation of the bifurcation point from its critical value are both scaled with respect to ε [2].
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Fig. 5. Periodic solutions of Ikeda DDE near the first Hopf bifurcation point. ε = 10−2 and λ = 1.17, 1.18, 1.19, 1.20. Since λ0 = 1.177, the

first value of λ corresponds to a stable steady state and the three next values correspond to the deviations λ − λ0 = 3 × 10−3, 13 × 10−3 and

23 × 10−3, respectively.

3.3. Ikeda large delay

In the case of Ikeda function (12), we may evaluate the partial derivatives. We find

fyy = λ0 − y0, fλ =
y0

λ0
, fyλ = −

1

λ0
, fyyy = 1. (50)

Using the Hopf conditions (21) and (28), it is possible to rewrite a0 as

a0 =
1

λ0
(1 + λ0y0), (51)

which is always positive. We also note from (47) and the fact that fyyy > 0 that b is always negative. From (46), we

then conclude that c is always positive implying a supercritical bifurcation.

4. Singular Hopf bifurcation

In the previous section, we showed that the regular expansion of the Hopf bifurcation solution fails to gives the

correct description as soon as (49) is verified. In this case, we need to reexamine the asymptotic problem by a more

detailed analysis where the two small parameters, namely λ − λ0 and ε are related. The need for such an analysis

was anticipated in [4] where O(ε) transition layers between plateaus of square-wave solutions are constructed. In

the special case f(λ, y) = −(1 + λ)y + ay2 + by3 + · · · as y → 0, center manifold techniques have been used for

small λ and ε in order to determine the periodic solutions from sine to square-waves. See [5,19] for the supercritical

and subcritical cases, respectively. Here, we prefer to use a modified Lindstedt–Poincaré method which allows us to

handle the general function f(λ, y) without pre-treatment of the original equation. We also verify that our solution

correctly matches the Hopf bifurcation solution as λ − λ0 → 0 and the solution determined from the map as

λ− λ0 ≫ ε2. Finally, we compare analytical and numerical bifurcation diagrams in the case of Ikeda nonlinearity.

We concentrate on the first Hopf bifurcation. A detailed analysis that considers all the (stable or unstable) Hopf

bifurcations and the effect of modulation is given in [39]. The scaling (49) suggests to replace the expansion (33)

by an expansion in power series of ε. Similarly, (35) and the fact that

λc(ε) = λ0 + ε2λ1 + · · · , (52)
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where

λ1 ≡
π2

a0
, (53)

suggests that the first term in the expansion λ − λ0 should be in ε2. We also note from (22) that

ω(ε) = π − επ + ε2π + · · · , (54)

suggesting that we need to look for corrections of the frequency in power series of ε. Specifically, we seek a

two-periodic solution of the form

y = y0 + εy1(S) + ε2y2(S) + · · · , (55)

λ = λ0 + ε2Λ + ε3Λ1 + · · · , (56)

where S is now defined as

S ≡ (1 + εΩ1 + ε2Ω2 + · · · )t. (57)

The perturbation analysis is no more a routine application of the method and we give some details. First, we need

to rewrite the delayed variable in terms of S. Using (57), we find

y(t − 1) = y(S − 1) − (εΩ1 + ε2Ω2 + · · · )y′(S − 1) +
ε2Ω2

1

2
y′′(S − 1) + · · · . (58)

Introducing (55)–(58) into (8), we equate to zero the coefficients of each power of ε. The first three problems are

given by

O(ε) : Ly1 ≡ y1 + y1(S − 1) = 0, (59)

O(ε2) : Ly2 = 1
2
fyyy

2
1(S − 1) + fλΛ + Ω1y

′
1(S − 1) − y′

1, (60)

O(ε3) : Ly3 = fyyy1(S − 1)y2(S − 1) + 1
6
(fyyy)y

3
1(S − 1) − Ω1y

′
1 − y′

2 + Ω2y
′
1(S − 1) + Ω1y

′
2(S − 1)

− 1
2
Ω2

1y
′′
1(S − 1) − fyyΩ1y1(S − 1)y1S(S − 1) + fyλΛy1(S − 1) + fyΛ1, (61)

where all partial derivatives are evaluated at (λ, y) = (λ0, y0). Eq. (59) implies that y1 is an odd periodic function

of S satisfying the condition

y1(S − 1) = −y1(S). (62)

The left hand side of Eq. (60) admits an odd periodic solution. Solvability then requires that

Ω1y
′
1(S − 1) − y′

1 = (Ω1 + 1)y′
1 = 0, (63)

which implies

Ω1 = −1. (64)

The solution of Eq. (60) is then of the form

y2 = y20(S) + 1
2

[ 1
2
fyyy

2
1 + fλΛ], (65)

where y20 is a new unknown odd function of S satisfying

y2(S − 1) = −y2(S). (66)
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Next, we consider Eq. (61) and apply a solvability condition with respect to all odd periodic functions. After

simplifying, we obtain

−( 1
4
f 2

yy + 1
6
fyyy)y

3
1 − ( 1

2
fλfyy + fyλ)Λy1 + y′

1(1 − Ω2) + 1
2
y′′

1 = 0. (67)

Analyzing the solution of this equation in the phase plane (y, y′) shows that a periodic orbit is only possible if the

coefficient of y′
1 is zero. We thus requires that

Ω2 = 1, (68)

and Eq. (67) reduces to

y′′
1 + a0Λy1 + by3

1 = 0, (69)

where a0 and b are the coefficients defined in (47). This equation is analyzed in Appendix A for the case a0Λ > 0

and b < 0 as it is verified for the Ikeda function. We obtain a parametric solution for ymax(Λ) given by

ymax − y0 = ε

√

−2ν

b
2K(ν), (70)

Λ =
1

a0
(1 + ν)4K2(ν), (71)

where 0 ≤ ν < 1 and K(ν) is defined as the complete elliptic function of the first kind [1] (see (A. 15)). As ν → 0,

we have K = (π/2)(1 + (1/4)ν + · · · ), Λ = (π2/a)(1 + 3ν/2 + · · · ), and

ymax − y0 ≃ 2ε

√

−
a0(Λ − λ1)

3b
. (72)

This result is matching the ε = 0 limit of our small δ small expansion. This can be verified as follows. Using (46)

and the fact that ymax − yc ≃ 2δ|A|, we find

ymax − y0 = 2δ

√

−
a0c

3b
. (73)

We note that δ2c = (λ−λc) = (λ−λ0 −ε2λ1) = ε2(Λ−λ1) and (72) and (73) are identical in first approximation.

On the other hand, as ν → 1, Λ → ∞ and

ymax − y0 ≃ ε

√

−a0Λ

b
. (74)

This expression is matching a branch of square-wave solutions described by a map, as we shall now show. As λ

progressively deviates from the Hopf bifurcation point (i. e., as soon as λ− λc = O(ε2)), the bifurcating and stable

periodic solution changes from harmonic to square-wave oscillations (see Fig. 5). We may capture the plateaus

of these square-wave oscillations by analyzing the equation for the map given in (10). Fixed points of Eq. (10)

correspond to the plateaus of the square-wave oscillations. The bifurcation diagram of the solutions of Ikeda map

has been investigated in detail (see, for example [34]). Note that the periodic solution is a square-wave pattern

with half-period close to 1 and with sharp O(ε) small transition layers. Equations for these transition layers can be

formulated but are difficult to solve [4]. However, we may analyze the Hopf bifurcation of Eq. (10). A limit-cycle

solution corresponds to a P2 fixed point of Eq. (10) satisfying the conditions

yn+1 = f(λ, yn), (75)

yn = f(λ, yn+1). (76)
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Fig. 6. Singular Hopf bifurcation. The singular perturbation analysis assuming λ − λ0 = O(ε2) and y − y0 = O(ε) describes how the solution

progressive changes from harmonic to square-wave oscillations (full line in the figure). The broken line emerging from λ−λ0 = ε2λ1 corresponds

to the regular Hopf bifurcation approximation. The broken line emerging from λ − λ0 = 0 is the approximation coming from the equation for

the map. Dots represent values obtained numerically by integrating the Ikeda DDE.

We may solve these equations for (y, λ) close to the Hopf bifurcation point (y0, λ0). We find that the deviation

un = yn − y0 satisfies the bifurcation equation

0 = a0Λun + bu3
n, (77)

where a0 and b are defined in (47). Eq. (77) then gives

un =
√

−
a0Λ

b
, (78)

which is correctly matching (74). See Fig. 6 for a comparison between numerical and analytical solutions.

5. Summary

In this paper, we reexamined the Hopf bifurcation for a class of DDEs that includes Ikeda original equation both

for small and large delays. We find that stable and unstable Hopf bifurcation points are possible and investigate the

first stable Hopf bifurcation in detail. For small delays, we show that a Hopf bifurcation remains possible provided

the feedback rate is strong enough (Hopf bifurcation from infinity). For large delays, we complement the early

work by Chow et al. [5] and Hale and Huang [19] by comparing analytical and numerical bifurcation diagrams as

the oscillations progressively change from sine to square-wave. Our analysis is done in the spirit of the theory of

matched asymptotic expansions and we have verified that matching between three distinct solutions. The direction

of bifurcation is also reevaluated analytically in terms of an arbitrary control parameter distinct from the delay. Our

results indicate that the period of the oscillations always increases as the amplitude of the oscillations increases

whatever the form of the function f(λ, y). The bifurcation can be either supercritical or subcritical but the latter

case is not possible for the Ikeda function because the nonlinearity is sinusoidal. The observation of a subcritical

bifurcation needs different nonlinearities and this bifurcation is analyzed numerically and experimentally in [30].

The analysis given in terms of an arbitrary function f(λ, y) could be extended to hybrid systems (differential

difference equations coupled with difference equations) or scalar DDEs with several delays [20].
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Appendix A

In this appendix, we seek a two-periodic solution of the following equation:

d2y

dS2
+ ay + by3 = 0, (A. 1)

that satisfies the condition

y(S) = −y(S − 1). (A. 2)

Condition (A. 2) means that the solution must be an odd function of s. A first integration of Eq. (A. 1) gives

1

2

(

dy

dS

)2

+ a
y2

2
+ b

y4

4
= E, (A. 3)

where E is the constant of integration. The maximum and minimum of y satisfy the quadratic equation

y4 + 2
(a

b

)

y2 −
4E

b
= 0. (A. 4)

We consider the case

a > 0, b < 0 and 0 < E < −
a2

4b
. (A. 5)

Then

ymax =

√

−
a

b
−

√

(a

b

)2
+

4E

b
= −ymin, (A. 6)

and

S =
∫ y

ymin

dv
√

2[E − (a/2)v2 − (b/4)v4]

(

dy

dS
> 0

)

, (A. 7)

S = −
∫ y

ymax

dv
√

2[E − (a/2)v2 − (b/4)v4]

(

dy

dS
< 0

)

. (A. 8)

Introducing the new parameters

ν ≡ −
by4

max

4E
, (A. 9)

ξ ≡
v

ymax
, (A. 10)

we find

ay2
max

2E
= 1 + ν, (A. 11)
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and (A. 7), (A. 8) simplify as

S =
ymax√

2E

∫ y/ymax

−1

dξ
√

2(1 − ξ2)(1 − νξ2)
, (A. 12)

S = −
ymax√

2E

∫ y/ymax

1

dξ
√

2(1 − ξ2)(1 − νξ2)
. (A. 13)

We consider the simplest solution of period which satisfies the condition

2 =
ymax√

2E

∫ 1

−1

dξ
√

(1 − ξ2)(1 − νξ2)
=

ymax√
2E

× 2K(ν), (A. 14)

where

K(ν) ≡
∫ 1

0

dξ
√

(1 − ξ2)(1 − νξ2)
(A. 15)

is defined as the complete elliptic integral of the first kind [1]. From (A. 14), we eliminate E and obtain ymax as

ymax =
√

−2ν

b
2K(ν). (A. 16)

Then using (A. 11), we obtain

a = (1 + ν)4K2(ν). (A. 17)
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