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Hurst exponent estimation of Fractional Lévy Motion

Céline Lacaux & Jean-Michel LOUBES

February 25, 2007

Abstract

In this paper, we build an estimator of the Hurst exponent of a fractional Lévy
motion. The stochastic process is observed with random noise errors in the following
framework: continuous time and discrete observation times. In both cases, we prove
consistency of our wavelet type estimator. Moreover we perform some simulations
in order to study numerically the asymptotic behaviour of this estimate.

1 Introduction

In this paper we present results on an asymptotic analysis of a wavelet type estimator
of the self-similarity (Hurst) parameter of a Real Harmonizable Fractional Lévy Motion
(RHFLM). In particular, we show consistency of this estimate in a noisy regression frame-
work. This enables to detect RHFLM in noisy data and to use it in practical settings.

It is well known that standard Brownian Motion fails in explaining certain statistical
time series arising from finance and turbulence theory. Hence Mandelbrot and Van Ness,
in [25], introduced a stochastic motion of a quite different nature, the Fractional Brownian
Motion (in short FBM). The FBM of index H is the only centered Gaussian field, vanishing
at zero, with stationary increments and self-similar with index H. Its Hurst exponent
governs its properties. The main difference between both processes is that, now the
increments are not independent and the process can model short or long range dependent
data.

Nevertheless, in image modeling, in finance or in biology, the processes are rarely
Gaussian, which prevents the use of Gaussian fields. Hence, Benassi et al., in [7], introduce
Real Harmonizable Fractional Lévy Motions (in short RHFLM) to model such processes.
Let us recall that a RHFLM Xy of index H (0 < H < 1) is defined as the stochastic
integral

efiac-ﬁ -1 J
Xp(z) = /Rd ||§||H—+d/2L<d§)7 zeR (1)
where || - || is the Euclidean norm and L(d€) is a Lévy random measure in the sense of [7].

Such processes are non Gaussian, locally asymptotically self-similar with Hurst expo-
nent H and are well fitted to mimic most of the irregular phenomena that can be observed
in turbulence experiments, provided the parameter H is well chosen.

So, estimating the Hurst exponent of a RHFLM is the key issue in order to analyze
data and to model real observations by such a process. More precisely, we want to be able
to estimate the Hurst exponent of a RHFLM observed only at discrete times in a white



noise framework. In their work, [7] propose an estimator of Hurst exponent based on some
generalized quadratic variation of the process. This estimator has first been introduced
by [19] in a Gaussian framework. Such estimators have also been studied in [8] in the
case of some self-similar Gaussian random fields or by [6], [5], [3], [2] and [22] in the case
of multifractional random fields.

However, such estimation techniques are unable to handle noisy observations and to
estimate this exponent when data are blurred by a Gaussian white noise, as we will see
later in this paper. Our purpose is hence to construct a robust estimator and to detect
RHFLM in noisy data.

For this, we consider wavelet analysis of this stochastic process. Work on properties
of wavelet coefficients of fractional Brownian motion was pioneered in the papers by [15]
r [14]. Statistical properties of wavelet type estimators for Hurst exponent were studied
in [12] or [4] in the case of FBM. Such estimators have also been introduced in the case of
linear fractional stable motion in [11], [29] and [27]. In [1] are highlighted the properties
of wavelet coefficients for self-similar processes or long-range dependent processes. For
multifractal processes, such estimators are studied in [20], [16] or [17] for example. They
are based on a regression of the log-variance of the wavelet coefficients versus scale. Other
authors study also this issue, for instance in [21] or [18].

The aim of this paper is to introduce an estimator of the Hurst exponent based on
wavelet type coefficients and prove its asymptotic behaviour in the case of RHFLMs.
Contrary to other work, the coefficients of a RHFLM are not Gaussian neither indepen-
dent. Hence we are facing a difficult issue since work in this direction either relies on
independence of the coefficients or its Gaussian properties to prove consistency of the
estimator, see for instance the work by [26]. Indeed, in such papers, the authors often
generalize Gaussian type limit theorems to the case of weak dependent random variables
using results in [13] for instance. In [27], the asymptotic normality of the estimator relies
on properties of stable moving average sequence.

Unfortunately, in the case of coefficients of a RHFLM, we are not in such cases and do
not have powerfull probabilistic tools at hand. Hence we rely directly on the properties of
RHFLM to get asymptotic results. Nevertheless, we prove almost sure consistency of the
moment type estimator in the presence of Gaussian noise. This enables us to compute
the estimator and analyze its performance for simulated data.

The paper falls into the following parts. Section 2 is devoted to a wavelet type rep-
resentation of RHFLM. In Section 3, we construct estimators of the Hurst exponent of a
RHFLM. Then, in Section 4, we provide an estimator of the Hurst exponent in a regres-
sion framework. Section 5 deals with a numerical study of our estimators for simulated
data.

2 RHFLM and wavelet bases

RHFLM is one of the canonical example of fractional non Gaussian process, with a large
presence in both the theoretical literature and applications. Wavelets have become a
standard tool for the modeling and analysis of such signals.

Let us first recall the definition and the properties of a RHFLM.

RHFLM



Benassi et al. [7] have defined RHFLMs by substituting in the harmonizable repre-
sentation of the FBM to the Wiener measure W (d¢) a Lévy random measure L(df).
Heuristically, a Lévy random measure is linked with the increments of a Lévy process.
Also, the non-Brownian part of a Lévy random measure is defined thanks to a Poisson
random measure. We first recall the definition of a Lévy random measure L(d€) in the
sense of [7].

The non-Brownian part M (d€) of the Lévy random measure L(d€) is represented by
a Poisson random measure N(d¢, dz) on R x C whose mean measure n(d§, dz) = d§ v(dz)
is such that v({0}) = 0 and

/\z|p v(dz) < +o0.
C
Here, v(dz) is a non vanishing rotationally invariant measure, i.e.
P(v(dz)) = dfv,(dp), (2)

where df is the uniform measure on [0, 27) and P(pe) = (6, p) € [0,27) x R}.
The random measure M (d¢) is defined by

/R F(6) M(dg) = / LF(©)2 + F=€)21 (V = (e, ),

where f € L*RY). If f(&) = f(=£), then [,f(§) M(d€) is a real-valued symmetric
infinitely divisible random variable and for every u € R

E[ei“”(g)M(d@}:exp {/ [ RU=) — 1 — 2R (f (€) 2)] dé v(dz)|. (3)
RaxC
Here, M (d¢) is only the non-Brownian part of the Lévy random measure L(d¢). Fi-
nally,
L(d€) = aM (d§) + bW (d¢),

where (a,b) € R? and W (d¢) is a Wiener measure independent of M (d€). Taking L(d€) =
W(d¢§), the field Xy defined by (1) is a FBM. The Wiener measure W (d¢) is a complex
random measure which ensures that Xy is a real-valued field, see [28 9] for reference on

complex Gaussian random measure. If f € L%(R) and f(€) = ), Jf(&) L(d¢) is a
symmetric real-valued random variable,
2,2 2
E[emff(g)L(dg)]:eXp (_b u 2||f||2> [ iau [ (€) dg)} weR (4)
and
= AHf”i?(R) (5)

with A = a” [, |z)? v(dz) +b%. The isometry property (5) allows us to evaluate the second
order moment of the wavelet type coefficients of a RHFLM.
In the following, we assume that L(d¢) is a non vanishing measure, i.e. (a,b) # (0,0).

A RHFLM with index H, defined by

e~E _



has stationary increments and the same structure of covariance as a FBM. Note that the
Brownian part of Xy is a FBM with index H independent from its non-Brownian part.

In addition, as in the case of FBM, RHFLMs have locally Holder sample paths and
their pointwise Holder at point x is equal almost surely to H. Whereas a FBM is self-
similar with index H, in general, a RHFLM is only locally self-similar and looks like
locally a FBM with index H. An important difference between RHFLM and FBM is that
as soon the RHFLM is non-Gaussian, it does not have moment of every order. However,
as noticed in the following, the wavelet type coefficients of a RHFLM have moments of
every order. This key property allows us to study, in Section 3, moment type estimators
based on the wavelet type coefficients of a RHFLM.

Weakness of quadratic variation estimator

Consider the following standard regression model with N + 1 observations. We observe
at discrete times /N, I =0,..., N a noisy RHFLM

l l
YH<N)ZXH(N)+UN51,l:Oa--->N7 (6)

where g, are an i.i.d sample of Gaussian random variables AV/(0, 1) independent from Xy
and oy is the noise level.

In their work, [7] consider for K > 0 and a sequence ag, k = 0,..., K the quadratic
variation

N-K [ K 2

1 k+p

VW= ——"7-— Xy | —
vy | ()

p=0 k=0

1 N-K

R — AX,n].
N—K+1 p;o [AXpn]

If observed without observation errors, this technique enables to build a weakly consistent
estimate of Hurst exponent. When observed in practice with Gaussian errors, let us apply
such method and define the noisy quadratic variation as

N-K

1 2
Wy=——7— AY, 7
1 N-K K 2
= - Z AXp,N+UNZak5k+p
N-—-—K+1 = —

Write £, = Zszo arersp ~ N (0, Zszo az). Now, if we consider the expectancy of (7), we
get that

E(Wy) = E(Vy) + oy E(&))

K
= N_2HC(H) + JJQVZCL%’
k=0

where ¢(H) > 0 only depends on H.



As a result, in order to get consistency of the noisy quadratic variation, we need to
ensure that
o3 N = O(N'2H),

which implies that o = O(1/Nf), 0 < H < 1. In a standard regression framework, when
the RHFLM is observed at equispaced times, the noise level is of order oy = O(1/V/N).
Hence the method described in [7] does not provide a consistent estimator of the Hurst
exponent when H > 1/2 in the regression framework. Moreover, when estimating Hurst
exponent, we can not consider a method depending on the values of the parameter of
interest. As a result we pay attention in the next section to wavelet type estimators.

Wavelet bases

Let ¢(-) be a function with compact support, continuous derivative and r vanishing mo-
ments, i.e.

Ym=20,...,r, /tmw(t)dtzo.

We assume that ¢ # 0, i.e. that its support suppy # 0. Define the rescaled function
at scale j and location k as v;;(t) = 29/2¢(27t — k). Then given a process (Y (t)),cr
observed at continuous time, the corresponding wavelet type coefficients of the process
are defined by

wp= [yOuna =292 [y (“25) vt )

When we observe Y at discrete times, the coefficients w;;, are not known. In this
case, we will approximate them thanks to a discretization of the integral (8). For ease of
writing, we assume that the compact support of ¢ is included in [0, 1] and that we observe
Y at discrete times [/N, I =0... N. However, as in [4], up to change the discretization,
all the following results can be stated for ¢ a wavelet function with compact support. We
refer to [24] and [10] for general references about wavelet bases and their properties. In
this framework, we will replace the coefficients wj;, by the corresponding coefficients of
the discretized process defined by

R k
Wi = 377 DY <p ;: ) M%' (9)

p=1

Remark that w¥, is a discretization of constant step of the integral (8). The parameter n
will be chosen such that wj, can be computed knowing Y at times I[/N,1=0,...,N.

Let us first assume that we observe a RHFLM in continous time. Some key properties
of its wavelet type coefficients are given in the following lemma. As in the case of LFSM
([12]), these coefficients can be rewritten as stochastic integral with respect to the Lévy
random measure L(d¢). The coefficients of a LFSM are stable random variables and then
do not have a finite second order moment. In our frawemork, w;; is an infinitely divisible
random variable with moments of every order. Since a RHFLM Xp has stationary incre-
ments, its coefficients w;;, are stationary in k for each fixed j according to [1]. We provide
here a direct proof of this result. Note that our framework is not studied in [1] since Xp
is not (in general) a self-similar process. Then, contrary to [1], wj; is not a self-similar
process in j. However, we can establish the asymptotics of w;;, as j — +o0.



Lemma 2.1 (wavelet type coefficient of RHFLM). Let (Xg(t))
Hurst exponent H. Define

be a RHFLM with

teR

wy, = 29 / Xu(t)p(2t — k), (10)
where the function ¥ has r > 1 vanishing moments. We have the following properties:

1. wj = i é@fﬁ%ud@ a.s. where f(£) = Jw exp(it§) f(t)dt

2. (Stationarity) wj, ~ wjo, for k =0,...,27 — 1, but the coefficients are not indepen-
dent.

3. (Moments) Set No ~ N (0, E(w3,)). For all integer p > 0,
E(w?i“) =0
and as j — 400, for each fized k
2pj+2pHE(w]2.£) N E(ng).
4. (Asymptotic Normality) As j — 400,

V21 (H2H) g D), N (O,E(wgo)) .

Proof. e In view of the definition of the process Xy,

—zt§_1
e A R

Since v (+) has r > 1 vanishing moments,

/ Yi(t)dt =0 (11)

and then the first statement is immediate provided we can exchange the integral
in £ with the integral in t. However, this exchange is not trivial since the stochastic
integral in ¢ is defined in a L2 framework. We first point out that since ¢ is a
function with compact support, v, is a C*°-function which vanishes at infinity.
Define

gjk‘(g) |€|H+1/2’ 5 € R\{O}

Since v satisfies (11), g is a square integrable function and

Ul€

is well defined. Then, using the isometry property (5) and the independence of
the random measures M (d§) and W (d€), one easily proves owing to the Fubini
Theorem that

E (|w]k — ajk|2) = O,

which leads to the first statement.



e By definition of 9,

wj, = 277/2 Tg}:l% exp (277ik€) L(d¢)

Recall that the control measure v(dz) is invariant by rotation. Then, (3) and (4)
gives

Wik @) 9=i/2 TgH-&-lé/zL (d€) =

e Since v has r > 1 vanishing moments,

/R Ho(1)dt =

and then, as & — 0, @(f) = 0(&?) and g;1, € L? (R) for every p > 2. The wavelet
type coefficient w;;, has moments of every order in view of Proposition 2.2 in [7]. We
first point out that by definition of L (df), wj is a real-valued symmetric random
variable which implies

VpeN, E (wi™) =0.

In order to obtain the asymptotic behaviour of E( JQ-p ) as J — +o00, we apply
Proposition 2.2 in [7] which links this moment to the deterministic L*-norms

gl = / g0 ()2 dg = 2702020 | g 112

Let us first assume that L(d€) = M (d¢). Then Proposition 2.2 in [7] leads to

E(w??) = 2~ 2i—-20H - Qjm ||900” +°° P vo(dp)
(wjk) = Z Z H l l) ’
m=1 Ly, g=1
where ), stands for the sum over the set of partitions L,, of {1,...,2p} in m

subsets K, such that the cardinality of K|, is 21q with [, > 1. Therefore, as j — 400,

2,
P+ 2HE (y ZH HQOOH fo . (12)

2
Ly q=1 )

Note that by definition of Zva in (12), for each ¢, I, = 1, which leads to

400 2p
IR (W) — (2m)72° | goolly” < / P Vp(dﬂ)> card(Ly)-
0
Hence, as j — o0,
2Pj+2pHE(w]2,Z) — card(L,) (E (wgo))p.
Since card(L,) = (2p)!/(2Pp!), as j — +o0,
() B (V)

Therefore we have proved the third statement in the case where L(d§) = M(d€).
Note that this statement is evident when L(d§) = W(d€). Hence, the indepen-
dence between W (d€) and M (d€) gives the conclusion for any Lévy random measure

L(d€) = aM (d€) + bW (d€).



e By stationarity (see second statement), we can assume k = 0. Equations (3) and (4)
gives the characteristic function of w;o. A simple change of variable (A = 279¢) and

a dominated convergence argument leads to the conclusion.
O

Hence a RHFLM is indexed by the single parameter H. It controls both the correlation
structure of the process and the smoothness of its sample paths. In the two following
sections, we define a moment based estimator and present main results concerning its
asymptotic behaviour in both cases where the random process is observed directly or in
a regression framework.

3 Estimation procedure and properties without ob-
servation noise
The moment based estimator derives from the observation that the statistical second order

moment of the wavelet type coefficients w;;, of a RHFLM obey a certain scaling property.
Namely, we get

B(uf) = 27907203, (13)
where C'y is given by
2 [N
Ch = (a +0 /| v )/|)\|1+2Hd/\
[
=A |/\|1+2Hd/\7é0

since 1) is a continous function with suppi # 0.

If we observe a continous path of the RHFLM, hence it is possible to compute directly
the true wavelet type coefficients of the random process. However, as in [4], we also tackle
the case where the RHFLM is observed at discrete times, which induces in the estimation,
a discretization error. In both cases, we construct a consistent estimator.

3.1 Continuous time observations without noise

Suppose we observe the wavelet type coefficients of a RHFLM with unknown Hurst
exponent. The coefficients are defined as a growing array of random variables

wig, k=0,...,27 =1, j=0,...,J,
where J is the maximum number of levels in the wavelet type expansion.

Theorem 3.1 (Consistency of moments wavelet type estimator). Consider the Hurst
exponent estimator of a RHFLM defined as

271

H, 10%2 Z Wi (14)

Provided v has v > 1 vanishing moments, the following asymptotics holds

Ay J—o4oo
H;  — H, a.s.



Proof. Define for all J > 0

271
2 : 2  / 2JH
k=0

Hence,
E(Vy) = 272Ch, B(Vy) = C5 = B(uh,).

Applying Formula 20 in [7],

4
var(vJ) — 2B27J74JH |¢( )| LRV 5

[ \|2H4H
271 iy 2 2
ey J—AH (V)|
+2A4%2 > (/ DT ———— L d\
I=—27+1
27 1 ;
Lo2/-4JHp Z 2MW
|/\|2+4H
—2J41

= (I) + ([I) (II1).

with A = 4a? f((: 2| v(dz) + b* and B = 4a® [.|z]*v(dz). For the second term, we first
point out that @/} is continuously differentiable. Then using that limy— 4. (X)) = 0 and
¥ (0) = 0, partial integration yields that

LG | n e
/ A= [ e e |

Hence we can conclude that

C

2
/ POV
|)\|1+2H ~ 1+l2’

for ¢ a given finite positive constant and every A € R.

Let us recall that [ty (t)dt = 0, so that Q,D( ) = (|§| ) as ¢ — 0. The third term is
handled the same way (owing two integrations by parts), which enables us to conclude

that
2zl)\ |w
| et

Finally, we obtain that the order of the variance is given by the terms (/) and (1) so

Vi e R.

N l27

VarV; ~ D2~/ =48,
with

~ 2
[P N (N2
0<DH_2B/R A+ 24 3 /R e

l=—

~ o ~ 2
_op [ PVE g 3 (/ o (l/\)W()\)'Qd/\) +20% < 400
R

w [A[ZHAH — A[1+2H




This implies after renormalization that

+o0
Varf/J £ Dy2~7  => Z\/arffj < 400.
J=1

The Borel Cantelli lemma yields that
92/ HY/, TS E(wgy) #0, a.s.

Finally we obtain the result

1 .
57 log, (V) " Has.

3.2 Discretized version

Suppose we observe Xg(I/N), I = 0...N. The size of data is then N 4 1 and the
wavelet type coefficients w;;, can not be evaluated. However, the discretized coefficients

W _ 1\ p+nk\ po o
wjk_zj/%zXH( o )w(g),k_o..a —1,j=0...J
p

can be computed taking n = n(j) such that 277 N/n(j) € N. Also, we replace w;, by w?,
in (14) and then obtain a new estimator which can be computed. Next theorem gives
its consistency. Note that the parameter of discretization n depends on j and that the
minimal size of data we need is 2/n(J) + 1. In the following, we then take N = 2/n(J).

Theorem 3.2. Consider the Hurst exponent estimator of a RHFLM defined as

271

~ —1 n A2
H; = ﬂlogz g (ka) (15)

withn = n(J) = 27 and with size of data N+1 = 2%/ +1. Provided 1) has r > 1 vanishing
moment, the following asymptotics holds

H 7 (masell & , @.S.
Before proving Theorem 3.2, we state a result about the difference w;; —wj;, in norm L2,
In particular, a rate of convergence of wj, in norm L? is given for each fixed j and k.
Moreover, from the result established, we will deduced a comparison between the estima-
tors defined by (14) and (15) and how to link n and J in (15), and then the size of data
N + 1 and J, in order to obtain the asymptotic behaviour of (15).

Lemma 3.3. There exists a constant C > 0 such that for every (j,k,n), 7 € N\{0},
k=0...2 — 1, n e N\{0},

2jH n\2 1 221
2 E[(wjk —wl) ] <C 572l + 52 )

10



—ix€ 1
Proof of Lemma 3.3. Let fy(z,§) = 75|H—+1/2 and

hn(k,g):/olfH(U+k€ du——ZfH< ““f) (n)

Since

wye = = 297 [ (b 279€) L),

R
in view of (5),

E[(w]—k—wﬂ)Z] = 2-J'A/R\hn(k,2—jg)|2dg
27 I=2H A [ b, (k, \)| dE.
[ ihati 0 ae

Then let us write .

I (B, A) = hi (K, V),

p=1
with

hn,p(k;,A):/(p/n (fH(u+k N (u) — fH( + A)¢(n))du.

p—1)/n

By the Minkowski inequality,

2
22jHE[(wjk — w;?kﬂ <2 JA(Z 1P (K )l 2 ) .
Moreover, the Cauchy-Schwarz inequality implies that

1 [p/n
|hn,p(kv)‘)|2 < _/
(

nJp-1)/n

fu(u+ b o) = fu (2 +k, A)@Z)(i)‘zdu.

Therefore, applying the Minkowski inequality, we obtain:

1o (ks M L2y < Anp(k) + Bnp(K)

A, (k ! v
ol )__" /<p1>/n

By (k) = % (/(:/T)/n 1+ ke gy ) = ()

Let us first point out that

where

(u+k,-)—f(§+k;,-)

2 2(P v
m®¢<ﬁdg

, 1/2
du .

Gt k) = £ (k) o = Hf<u_£"> L2(R)

p|? 2
= Ju= 2[00 ey

and

2

11



As a result, there exists a finite constant M; such that

o)

M
An,p(k) = .

nH—i—l

for every n,p, j and k.
In addition,

p/n

1/2
Bastt) = Sl ([ bt it (%) )

Then owing to a Taylor expansion, one proves that there exists a constant M, such that
for every n,p, j and k,

M, (k+ 1) 2IH .
MEFDT gp wel<Z2E ay )

n? (p—1)/n<z<p/n n?  (p-1)/n<e<p/n

Byp(k) <

Then, in view of (16),

n . n 2
2w —w)’] <2774 (nﬂ‘ﬂ >l (2)]+ 2JZ£W2 S sw |¢’(a;)\) .
p=1

‘= -1)/n<e<p/n

We then point out that

i Ee()] - [ o o

and 1
1 n
lim — Z sup |V ()] = / /| (w) du < 400,
e n p—1 (p—1)/n<a<p/n 0
which concludes the proof. [l

Let us now prove Theorem 3.2.

Proof of Theorem 3.2. Let

271

VJ,n = 227H Z ("‘U?k)2~
k=0

We compare \N/Jm to VJ defined in proof of Theorem 3.1. Define

DJ,n = \/ VJ,n -V vJ-

Since
3 9 271
‘DJ,n < 227N (wy — why)?,
k=0
by lemma 3.3,
_ 2 1 22JH
EUDM']SC(ﬁﬁ+‘;r)




where C' is a finite constant. Taking n = n(J) = 27, the Borel Cantelli lemma yields that
as J — 400, .
Djsr —0,a.s.

Recall that , as J — +o0, )
V= E(wg,) as.
Then,

VJ,QJ — E(wgo) a.s,

which leads to the convergence of H; defined by (15). O

4 Regression framework

Suppose we observe noisy data from a RHFLM Xy

l l
YH(N):XH(N)‘i‘UNgl;l:Oa"‘?Na (17)

where ¢; are an i.i.d sample of Gaussian random variables N'(0,1) and oy is the noise
level. We point out that oy = O(N _%). This framework is the usual regression setting
well studied in statistics, which models natural observations of a phenomenom, observed
at discrete times.

The discretized coefficients w; of Xy can not be observed. However, the discretized
coefficients of Yy

n

djk:mZYH< >¢( ) k=0...29 =1, =0...J,

2in n
p=1

can be computed, taking N = 22/ and n = n(j) such that 277 N/n(j) € N as in Section 3.

Theorem 4.1. Consider the estimator of the Hurst coefficient of a RHFLM defined as

271

. —1 "
H; = EIOgQ Z (dJk)2 (18)

k=0

with n = n(J) = 27 and N = 22/, Provided v has at least v > 1 vanishing moments, the

following asymptotics holds

r J—4oo
H; — H, a.s.

Proof. We proceed as in the proof of Theorem 3.2. Let us recall that
27-1

VJ,n = 224 Z (w9k>2
k=0

and define

271

W = 22713 " (d)*.
k=0
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Then,
—~ —~ 2
E(‘ \/ WJ,n - \/ VJ,n

By definition of Yy,

S 1 ~ (D oX N 2(P
i = g 30 (2 0,78 32(2))
p=1

271
) < 22N E[(dy, — why,)’].
k=0

Hence,

o[V - ] ) < 5 0 (2)

Since lim, o0 5 >0 9 (2) = [ov*(u)du = 1, there exists a constant C' € (0, +o0)
such that for every J and n,
> 22JHCO.

(V- Vo

Also, taking n = n(J) = 27, the Borel Cantelli Lemma yields that

4 - J——400
\/W«LQ‘] — \/VJQJ — 0 a.s.,

as soon as oy = O(N~V/2) with N = 22/, Then, since (see proof of Theorem 3.2),

-~ J—+00 (

Vigr "— E ) a.s.,

we finally obtain that
_F_[ . 1 l _9JHT% J—+o0
J = _ﬁ 089 2 W‘LQ‘I — H a. S.,

as soon as oy = O(N~Y2) with N = 2/n(J) = 2. O

As a result, we obtain consistency of the estimators in the practical case where the
RHFLM is observed at discrete times. This result can be used to build an estimator
of the Hurst exponent when studying the outcome of an experiment though to behave
like a RHFLM. Once this parameter is estimated it becomes possible to try to model
the data by a realization of a RHFLM. Hence, it should be of interest to construct a
test based on the estimator of the Hurst exponent. So the asymptotic distribution of
the estimator is needed. However, such a result is very difficult to obtain. On the one
hand, the nature of the observations prevents the use of Central Limit type theorems. On
the other hand, evaluating the distance between the distribution of the coefficients of a
RHFLM and a Gaussian distribution is also far beyond the scope of this paper due since
the calculations can only be handled using (3), preventing the use of weak dependency
theorems. Nevertheless a consistency result is a first step in a modeling attempt with
RHFLM.

14



5 Numerical study

In this section, consider the issue of estimating the Hurst exponent of a RHFLM observed
with a Gaussian white noise. In the simulations we present in Figure 1 and 2 simulated
data in straight lines, obtained using the procedure described in [23], together with the
noisy paths in dotted lines.

First we aim at studying the rate of convergence of the wavelet type estimator. The
estimator of the Hurst exponent is constructed using rescaled Daubechies wavelet Db(4)
with r = 4 vanishing moments. We construct the estimator of the Hurst exponent for the
two previous RHFLMs with the two different values of the Hurst exponent H = .4 and
H = .7. The data are dyadic N = 2%/ and we increase the data from J = 2 to J = 7.
For the noisy data, we perform 30 replications of the estimation procedure and plot the
boxplots for the absolute error for different values of J in Figure 3 and Figure 4. In both
cases, we can see that the convergence is achieved with N > 2% observations. Such study
highlights consistency of the estimate. But, due to the relative slowness of the rate of
convergence together with the lack of an asymptotic distribution law, it is difficult to
estimate the efficiency of such an estimation procedure for real data.

Figure 1: Raw and Noisy Data with H = 4

However we can compare the efficiency of our estimator with the estimator given in
[7]. We compute this estimator and the estimator constructed in Section 3, when H = 4
for two cases, whether or not the RHFLM is observed with a Gaussian white noise. We
take N = 2'0 observations and consider 30 replications. We plot the distribution of both
estimators, first the distribution of the wavelet type estimator and then the distribution
of the quadratic variation based estimator. We observe in Figure 5 that without noise, the
two estimators give the same kind of results. But, as expected, in a noisy setup, in Figure
6, the estimator based on quadratic variation does not concentrate around the true value
of the Hurst parameter. This result is also highlighted by the boxplot of the absolute

15



Figure 2: Raw and Noisy Data with H = .7
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Figure 3: Absolute Estimation Error for noisy data with H = 4

error of the two estimators, in Figure 7. The absolute error of estimation is important in
the noisy setup for the quadratic type estimator.

Finally, we study the relative influence in the choice of the mother wavelet by com-
puting the distribution of the absolute estimation error of the estimation of H = .4 with
noisy data for 30 simulations and two different sets of coefficients, obtained for a rescaled
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Figure 4: Absolute Estimation Error for noisy data with H = .7
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Figure 5: Comparison of Estimators Distributions with true observations (H = .4)
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Daubechies wavelet with » = 4 and for r = 2. We can see in Figures 8 and Figures 9 that
the distribution are similar. So as expected and as usual in estimation with wavelet type
estimators, the choice of the wavelet does not play a particular role in the estimation as
long as the initial assumptions are met.
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