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Abstract 

It is well known that the critical current density Jc of a superconducting material depends on the magnetic 

field B. If magnetic independent Jc is chosen for analytical calculation of current distribution, the critical 

current Ic corresponds to full penetration current Ip. Ic is a measured current with 1µV/cm criterion and Ip is 

a calculated current. The aim of this paper is to calculate the influence of the Jc(B) variation on Ip of a 

superconducting tube. To calculate Ip, which is depending on the material itself, a linear function Jc(B) is 

sufficient to obtain realistic values by analytic way. We need to have a linear Jc(B) law that is close to the 

measured Jc(B) characteristics presented in this paper. The linear Jc(B) law chosen was used for the 

calculation of the distribution of both magnetic field B(r, t) and the current density J(r, t). These 

distributions allow the analytical calculation of Ip. The calculated results of magnetic field distribution and 

full penetration current with Bean model and linear model are compared. We also present the variation of 

critical current with the characteristic parameters of the material. The present results, allow to understand 

the relationship between the full penetration current variation of a sample and the variation of the Jc(B) 

characteristics.  

PACS codes: 74.60.Jg or 74.25.Ha 

Keywords: HTc superconductor, magnetic field dependence, critical current 
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1. Introduction 

To relate the irreversible magnetization to the field and current profiles within the interior of 

superconducting sample, C.P. Bean [3] introduced the critical state concept and assumed that the critical 

current density at any point of the sample can only take one constant unique value, the critical current 

density Jc, among three different states Jc, -Jc and zero. Thanks to this model, the calculation of the current 

distribution is possible in case of a superconducting cylinder [1] or tube [2] fed with transport current. With 

this model, when fed current i(t) increases into a superconducting sample, the current density penetrates up 

to the critical current Ic. For Ic current density is equals to Jc everywhere in superconducting material case 

and the critical current corresponds to the full penetration current Ip. This is the complete penetration state 

and the critical current corresponds to the full penetration current Ip. So the relation between Jc and Ic is 

very simple, S.JI cc = , with S the section of the sample. Ic is used to calculate the AC losses [8]. 

Experimentally Ic is defined though the critical electric field EC. For high temperature superconductors this 

value is generally fixed to 1µV/cm. Unfortunately, for superconducting material, the real critical current 

density varies with magnetic flux density B [4][5]. In this case Ic doesn’t correspond to Ip. Ic remains a 

measured current with the 1µV/cm criterion. Ip is the value of the applied current i(t) at which the current 

density arrives to the centre of the sample. It’s a calculated current. The aim of this paper is to calculate the 

influence of Jc(B) variation on the full penetration current of a superconducting tube.  

Considering Jc(B), for complete penetration, the current density is not constant in the superconducting 

material because the magnetic flux density is not constant. As consequence, the relation between Ip and 

Jc(B) is not easy to calculate.  

For the calculation of Ip, the first step is to set Jc(B) law that must be closed to the measured Jc(B) 

characteristics. In a second step, the analytical calculation of the current density, the electric field and the 

magnetic flux density distributions are presented. Finally the formula of Ip that takes into account the 

variation of Jc(B) is derived. 
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2. Analytical calculation of the flux density distribution in a superconducting tube 

2.1 Studied sample 

The aim of this paper is to calculate the full penetration current Ip of a tube based on the JC(B) variation. To 

simplify the calculations, without reducing the generality of the problem, the tube applied current i(t) 

increases from 0 to Imax according to (Fig. 1), which is sufficient to determine the critical current. The 

internal radius Rin, the external radius Re. and the length h of the tube are defined in Fig. 2. 

The current i(t) circulates along [Oz]. The edge effects are neglected in our calculations; E, J and B don’t 

depend on z. 

 

Fig.1: Current supply. 

 

 

 

 

 

 

 

 

 

 

Fig. 2 : Studied superconductor tube. 
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2.2 Modeling of the problem 

The electromagnetic behavior of superconductor is governed by the Maxwell equations: 

t
BErot
∂
∂

−=
→





, 
(1) 

J.Brot 0



µ=
→

, (2) 

 

For the superconducting material, we consider: 

H.B 0µ=  .                                                          (3) 

E(J) is given by the critical state model that defines the relation between electric field E and current density 

J : 

cc

c

JJJand0E
or

0EandJJ

+<<−=

>±=
  

(4) 

When the current rises, the current density penetrates from the external radius Re toward the internal radius 

Rin and its direction is [Oz]. 

Because of symmetries, the current density being oriented along the [Oz] axis, because of symmetries, the 

flux density B(r, t) has only one component: 

θ= u).t,r(B)t,r(B 



 

First we are going to prove that an analytical expression can be found for b(r, t) with a linear model for 

Jc(B). Considering the relation (2) and (4): 

( ) ( ) 







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r
1  

(5) 

BB = because B > 0 
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2.3 Flux density distribution B(r, t) 

The analytical solution of expression (5) is: 

r
B

r.Jexp
K

r.J.
B

B)t,r(B 0j

0c0

0c0

2
0j

0j






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


 µ
−

+
µ

−=                   (6) 

K is a constant which can be calculated thanks to the boundary condition at r = Re. The Ampere law enables 

to write: 

( )
e

0
ee R2

)t(i.)t(bt,RrB
π

µ
===                          (7) 

Considering (6) and (7), we can deduce: 

( ) ( ) ( )( )
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This expression is valid for B(r, t) > 0. So we have to determine the point where B(r,t) = 0. 

To do that, one can remark that it is equivalent to solve 0)t),t(dr(B == with d(t) = Re – pd(t), where pd(t) 

is the penetration depth. Using the relation (8) and mathematical software, we obtain: 

( ) ( ) ( )( )
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1 , where X1 >0. W(X1) is Lambert’s W-function and 

is well-known in many mathematical libraries. 
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3. Experimental Jc(B) of the sample 

The critical current density Jc varies with magnetic flux density B. Several variation laws Jc(B) are 

presented in Table 1. The experimental tests are made with a cylindrical current lead of BiSCCO. The 

dimensions of this sample are: Rin = 3.8 mm, Re = 5 mm, tube section S = 33mm2 and  h = 11.7 cm. 

Without external magnetic field, with a 1µV/cm criterion, the measured critical current Imc0 = 96 A.  To 

obtain the experimental curve Jc(B) of this tube, it was fed with direct current I and plunged in an external 

magnetic flux density Bext parallel to the axis [Oz] (Fig. 3). The sample voltage drop U versus I is measured 

for different external magnetic flux densities Bext (Fig. 4). 

Table 1 : Jc(B) laws, Jc JK0, BK, Jc0, and Bj0 are constants and depend on the superconducting material. 

Jc(B) = JcB                   (10) Bean Model [3] 

K

0K
c

B
B

1

J)B(J
+

=           (11) Kim Model [7] 

( )
0j

0j0c
c B

BBJ
)B(J

−
=   (12) Linear Model [5] 

 

 

Fig. 3: Jc(B) measurement device. 
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From the measured critical current Imc(Bext) corresponding to voltage drop equal to 1µV/cm*h (Fig. 4) we 

can deduce the ( ) ( )
S
BIBJ extmc

extmc = . Fig. 5 shows the curve related to this function. 

 

Fig. 4 : Measure of sample voltage drop versus direct current for different external magnetic flux density. 

 

Fig. 5 : Measured Jc(Bext), Jc(B) with Kim model and linear model. 
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Jmc(Bext) and Jc(B) are different because : 

- Jc(B) is a locally law and JMC(Bext) is a macroscopic law  

- B is not equal to Bext because of self magnetic field BSF : extSF BBB +=  

When the value of Bext is sufficiently large, BSF becomes negligible and the values of Jmc are very close to 

JC(B). Among the laws represented in Table 1, Kim model is the most suitable to extrapolate Jmc(B). With 

the appropriate values of JK0 and BK, we propose the following expression of the Kim law: 

004.0
B

1

10.6.4)B(J
6

c

+
=               (13) 

As shown in Fig. 5, values of Jc(B) provided by the Kim model are close to measurements for high values 

of B. An important discussion has to be set before going on. We have to find IC in the region where the 

magnetic field is low, so we have to eliminate the self field effect. To do that we allow that the Kim law 

continues to be true near B = 0. To develop an analytical study in the previous region, we approximate the 

function by a linear one, with 2
0c mm/A6.4J = and mT7B 0j = . 

( )
007.0

B007.010.6.4
)B(J

6

c

−
=          (14) 

Fig. 5 represents the different results of the previous approaches. The following part deals with the study of 

the flux density in the region 1.  

4. Calculation of the magnetic flux density and current density penetration 

In this part we present the calculations of B(r, t) and J(r, t) distributions. Results provided by both the Bean 

model and the linear model are compared. For B(r,t) distribution with linear model, relation (8) is used: 

( ) ( ) ( )( )
r.J.
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B

rR.J.expBr.J.B
)t,r(B

0c0

0jee0c0
2
0j

0J

e0c0
0j0c00j

µ

−µ+






 −µ
+−µ

=  
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6

c
−

= , Jc0 = 4.6 A/mm², Bj0 = 7 mT. 
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From now, the Bean model full penetration current is named IpB and the linear model one remains named Ip. 

For a B(r,t) distribution with the Bean model [9], on which case Jc = JcB and IpB = Ic = JcB.S , there is : 


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−−−
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2
e

2
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I
)t(i

R
R11

r
Rr.

2
J.)t,r(B  

To compare the linear model and the Bean model for the B(r, t) distributions, the critical current density JcB 

has to be equal to Jc0 and so IpB = Ic = Jc0 .S = 156 A.  

 

Fig. 6 : B(r) distributions with Bean model and linear model. 

Fig. 6 represents B(r) for two values of current. For i(t) = 50A the penetration is incomplete for both, the 

Bean model and the linear model. For i(t) = 100A with the linear model there is complete penetration, so 

i(t) = Ip = 100A. There is complete penetration with the Bean model for i(t) = Ip = Ic = 156A. It follows that 

the magnetic flux density penetrates faster into material with the linear model than with the Bean model. 
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( ) ( )( ) ( )

r.J.
B

rR.J.expBBR.J.BBr.J.B
)r(B:Rrr

0c0

0j

e0c0
0jmaxee0c0

2
0j0j0c00j

maxeS µ









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−µ++−µ

=<< ,           (15) 

where Bemax = Bmax(r = Re). 

From Jc(B) and B(r,t), J(r,t) can be deduced: 

( )
007.0

)t,r(B007.010.6.4))t,r(B(J)t,r(J
6

c
−

==  

We represent J(r) for the two models at the same instant for i(t) = 50A (Fig. 7). We understand that J(r) is 

not the same for the models because for linear model J(r) is weaker than for Bean model except where 

B(r)=0. It follows that the current penetrates deeper in the case of linear model.  

 

 

 

 

 

 

 

 

Fig. 7 : Distribution of J(r) with the Bean model and the linear model for i(t) = 50A. 
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So : 
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J.
B.2

I , 
(16) 

Ip is smaller than Ic0 because the current penetrates deeper for the linear model than for the Bean model (for 

the same current). 

5.2 Ip variation with Bj0 

Fig. 8 represents the ratio 0/p cI I according to Bj0 for different internal radii for the same section. It shows 

that Ip is closer to Ic0 for large internal radii because the magnetic flux density is weaker and the influence of 

Jc(B) is weaker. It also shows that Ip is close to Ic0 for large value of Bj0. On the other hand, Ip is much 

smaller than Ic0 for small values of Bj0. For this small values of Bj0, the self field creates by the tube (around 

5mT) is close to Bj0. Now, as shown in part 3, one has to use only the linear model for B much smaller than 

BJ0. So there is no sense to use this Ip formula (16) for very small values of BJ0, where B > BJ0.  

 

 

 

 

 

 

 

 

 

Fig. 8 : Ratio Ip/Ic0 versus Bj0. 
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6. Conclusion 

In this article the influence of Jc(B) on the current, electric field and magnetic field distributions in a 

superconductor tube fed by a current i(t), was studied. These distributions were calculated using the linear 

model.  

The influence of Jc(B) is important for distributions of B(r,t), J(r,t) and E(r,t). It was found that the current 

penetrates deeper in the case of the linear model than for the Bean model. An analytical calculation of the 

influence of Jc(B) on the full penetration current Ip is given. For the Bean model, S.JII cBcpB == , while for 

the linear model S.JI 0cp < . It follows that with the linear model there is full current penetration for smaller 

value of i(t) than for the Bean model. Thanks to these results, one is able to understand the relationship of 

the Ip variation with the variation of the Jc(B) characteristic. 
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