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Abstract

F.Giroire has recently proposed an algorithm which returns the approximate number of distincts
elements in a large sequence of words, under strong constraints coming from the analysis of large data
bases. His estimation is based on statistical properties of uniform random variables in [0, 1]. Here we
propose an optimal estimation, using information and estimation theory1.

1 Introduction

The aim of this note is to improve a solution proposed by Giroire [Gir05] to the following problem: consider
a sequence Y = (Y1, . . . , YN ) of words (one may think to a sequence of file on a disk, a list of requests, a
novel from Skakespeare, etc...); we don’t make any assumption on the structure of Y , and we want to know
the number (usually denoted F0 in the data base community) of distinct elements of this sequence. The mo-
tivation comes from analysis of large data sets, and especially analysis of internet traffic: certain attacks may
be detected at router level, because they generate an unusual number of dictinct connections (see [Fla04]).
Most of algorithms use a dictionnary to store every word, so that the memory needed is linear in F0. Here
the size of data sets is huge, making it impossible to store every word, so that the algorithm should satisfy
the two following constraints: it should use constant memory and do only one pass over the data. These
constraints are very strong, but on the other hand we allow the algorithm to give only an estimation of F0.

The main idea used in [Gir05], introduced by Flajolet and Martin [FM85], is to transform this problem
in a probabilistic one, using hash fuctions.

A hash function is a function h : C → [0, 1], where C is a finite set of words (say english

language, {0, 1}8, etc...) such that the image of a typical sequence of words behaves as a

sequence of i.i.d random variables, uniform in [0, 1].

This definition is of course somewhat informal, but we will assume, from now on, that, noting Xi = h(Yi),
then X = {X1, . . . , XN} is the realization of F0 i.i.d. r.v., uniform on [0, 1]. Existence and construction of
good hash functions is discussed in [Knu73].

Set θ = F0 and denote as usually X(1) the smallest Xi, X(2) the second smallest, and so on. The key point
is that the information on θ contained in {Y1, . . . , YN} is equivalent to that contained in (X(1), . . . , X(θ)).

As a consequence, we are now dealing with a classical statistical problem: given a (small) sample of
(X1, . . . , Xθ), i.i.d. r.v., uniform on [0, 1], we want to estimate the (large) parameter θ. Denote by M the
memory available (how many real numbers that can be stored). One should determine:

1. A way of extracting a M -sample of X (the M smallest, the M with the longest sequence of zeros in
their binary representation, etc...).

2. A function ξ̂ : [0, 1]M → R which approximates θ, when applied to this M -sample.

State of the Art. Flajolet and Martin [FM85] have used these ideas to construct an algorithm based
on research of patterns of 0’s and 1’s in the binary representation of the hashed values X1, . . . , Xθ. It has
been improved by Durand and Flajolet [DF93]. Bar-Yossef et alii [BYJK+02], have proposed 3 performant
algorithms, their ideas have been generalized by Giroire [Gir05].

In a different way, Alon, Matias, and Szegedy consider estimation by moment method, making implemen-
tation proposed in [FM85] easier. For a nice survey about these ideas one may read [Fla04].

1Version of January 12, 2007.
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Giroire’s algorithm. The starting idea in [Gir05] is to use this simple property:

E[X(1)] =
1

θ + 1
.

Consequently, a naive algorithm would hash every data, compare it to the smallest hashed value already
seen, and finally return 1/X(1). Unfortunately, E[1/X(1)] = ∞. However, 1/X(2), 1/X(3) . . . have finite
expectation. This leads Giroire to propose an algorithm which return a function of X(k), for some k. In order
to improve the precision of such an algorithm, one may wish to execute it m times with m different hashing
functions, but this would cost too much time. Therefore Giroire uses stochastic averaging, introduced in
[FM85]: the idea is to simulate m different experiments, by dividing [0, 1] in m intervals.

Algorithm 1.
let k, m be integers. initialize (X(1),i, . . . , X(k),i, i = 1, . . . , m) with X(p),i = i

m for all i, p.
for j = 1 to N

Xj = h(Yj).
let i the integer such that Xj lies in [ i−1

m , i
m [.

update the k-dimensional vector of k smallest values X(1),i, . . . , X(k),i lying in [ i−1
m , i

m [.
next j.
for all p, i, renormalize X(p),i = m

(

X(p),i − i−1
m

)

.

return an estimator ξ̂ = ξ̂(X(l),i; i = 1, . . . , m; l = 1, . . . , k).

Thus we get m vectors in R
k. X(k),i is the k-th smallest hashed value lying in [ i−1

m , i
m ], renormalized to

get a real in [0, 1]. If less than l values have fell in the i-th interval, then X(k),i = 1. Obviously, Algorithm
1 makes only one pass over each data Yi. Memory used by the algorithm is indeed M , if we have chosen
k ·m = M . The estimation returned by the algorithm does not depend on any assumption on the repetitions
in the sequence X1, . . . , XN .

Giroire [Gir05] proposes 3 estimators ξ1, ξ2, ξ3, using inverse function, square root function and log re-
spectively. For example,

ξ3 :=

(

Γ(k − 1/m)

Γ(k)

)−m

.e−
1
m

∑

m
i=1 log X(k),i .

For each k, m these estimators are asymptotically unbiased, i.e. E[ξi] ∼ θ when θ goes to ∞. Their variances
are all about 1/km. Here we give a fourth estimator, which is also asymptotically unbiased:

ξ̂ =
km − 1

∑m
i=1 X(k),i

.

Plan Using information and estimation theories, we first show that the estimator ξ̂ is optimal under a
simplified model, that we call the independent model. Then we discuss its actual optimality.

2 The best estimation under the independant model

In this section, ⇒ denotes the convergence in law. Recall that a real-valued random variable is said to follow
the Gamma law with parameters (k, θ) if

P(X ∈ [t, t + dt[) = tk−1

Γ(k) θ
ke−θk1t≥0dt.

The asymptotic behavior of the minimum X(1) of θ random uniform variables in [0, 1] is well-known (see for
example [Fel70]): X(1) ⇒ γ1, where γ1 follows the Gamma(1, θ) law. More generally, one can prove here the
following convergence

(θX(k),1, . . . , θX(k),m) ⇒ [θ → ∞]L(γ1, . . . , γm), (1)

where the γi are i.i.d. r.v. of law Gamma(k,1). Consequently, we assume in this section that the X(k),i are
i.i.d. r.v. of law Gamma(k,θ), this is the so-called independent model. We set

ξ̂ =
km − 1

∑m
i=1 X(k),i

.
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Remark 1. This estimator depends only on the m values (X(k),i, i = 1, . . . , m), not on the km − m other
hashed values stored by the algorithm. This follows from the fact that the knowledge of these values does not
provide any information about θ. For a given i, conditionnally on X(k),i, the r.v. (X(1),i, . . . , X(k−1),i) are
distributed uniformally on [0, X(k),i].

A simple calculation shows that under the independent model,

E[θ̂] = θ,

Var(θ̂) =
θ2

km − 2
.

This is indeed better than the 3 estimators proposed in [Gir05].
Recall a few definitions in Statistics (see for example [Leh83]): given a m-sample of i.i.d. random variables

X1, . . . , Xm of some law Pθ, any random variable S = S(X1, . . . , Xm) is called a statistic. Here we consider
the statistic S =

∑m
i=1 X(k),i.

Definition 1. A statistic S is sufficient for the parameter θ if and only if, conditionnally to S, the law of
(X1, . . . , Xm) does not depend on θ.

More informally, S is sufficient if, given S, the knowledge of (X1, . . . , Xm) does not give any information
on θ. Ŝ is sufficient.

Definition 2. A statistic S is complete if whenever h(S) is a function of S for which E[h(T )] = 0 for all θ,
then h ≡ 0, Pθ almost everywhere.

Here, the statistic S =
∑m

i=1 X(k),i is complete and sufficient. Some simple criterions to check sufficientness
and completeness are given in [Leh83]. Complete sufficient statistics share the following useful property:

Theorem 1 (Lehmann-Scheffé). Let S be a sufficient and complete statistic. Let ξ∗ be another unbiased
(i.e. E[ξ̃] = θ) estimator of θ. Among all the unbiased estimators of θ, E[ξ∗|S] has a minimal variance. Such
an estimator is said to be efficient.

Corollary 1. Let ξ̃ another unbiased estimator of θ. Under the independent model,

E[(ξ̃ − θ)2] ≥ E[(ξ̂ − θ)2].

Remark 2. Note that Var(ξ̂) is about θ2. This optimal bound does not depend on the algorithm, see [PD03].

3 Optimality in the real model

From now one places oneself in the exact model : X(p),i is the p-th smallest realization of θ i.i.d. r.v. uniform

on [0, 1], among the values lying in [ i−1
m , i

m ]. When i 6= j, there is now dependancy between X(k),i and X(k),j .
Set P and Pind the laws corresponding respectively to the exact and independant models, E and Eind the
corresponding expectations.

Lemma 1. Let A be the event

A = Ak,m,θ : “ for all i = 1, . . . , m, X(k),i < 1
m”.

( i.e. at least k hashed values have falled in each of the m intervals). From a classical inequality (see [Bol85])
we get

P(A) ≥ 1 − 2me−
θ

2m2 .

Here is the main result:

Theorem 2 (Optimality in the exact model). Let ξ̃(X), with X = (X1, · · · , Xm) another estimator of
θ. Let b(θ) be the bias Eθ[θ̃ − θ]. We assume

1. b(θ) = O(
√

θ).

2. There exists a constant C such that |ξ̃(x)| ≤ C
‖x‖ , for every x in R

m, ‖ x ‖ large enough.
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Then
Eθ[(θ̃ − θ)2] ≥ Eθ[(θ̂ − θ)2] + O(θ).

Proof. First write

E[(θ̃ − θ)2] = E[(θ̃ − θ)21A] + E[(θ̃ − θ)2(1 − 1A)],

= E[(θ̃ − θ)21A] + o(θ),

using Lemma 1. We now bring back ourselves to the independant model:

E[(θ̃ − θ)2] = Eindé[(θ̃ − θ)2] +
(

E[(θ̃ − θ)21A] − Eindé[(θ̃ − θ)2]
)

+ o(A), (2)

The key point is the fact that conditioned to the event A, the r.v. (X(k),1, . . . , X(k),m) admit a density toward
the Lebesgue measure on R+.

E[(θ̃ − θ)2] − Eindé[(θ̃ − θ)2] =
∫

[0, 1
m

]m

(

θ

(k−1) . . . (k−1) 1 . . . 1

)

x1
k−1 . . . xm

k−1(1 − x1 − . . . − xm)θ−mkdx1 . . . dxm

−
∫

R
m
+

x1
k−1

Γ(k) . . . xm
k−1

Γ(k) θkme−θ(x1+...+xm)dx1 . . . dxm.

We omit the proof of the following lemma:

Lemma 2.

| θ(θ−1)···(θ−2k+1)
θ2k (1 − x1 − . . . − xm)θ−2k − e−θ(x1+...+xm)| ≤ csteθ(x1 + . . . + xm)2e−θ(x1+...+xm),

where the constant depends neither on θ nor on the xi’s.

Hence

|E[(θ̃ − θ)2] − Eindé[(θ̃ − θ)2]| ≤
∫

[0, 1
m

]m
|θ̃(x1, . . . , xm) − θ|2 x1

k−1

Γ(k) . . . xm
k−1

Γ(k) θkm
{

csteθ(x1 + . . . + xm)2e−θ(x1+...+xm)
}

dx1 . . . dxm + O(θ)

Set yi = θxi, i = 1 . . .m in the integrand:

≤
∫

[0, θ
m

]m
|θ̃(y1

θ , . . . , ym

θ ) − θ|2 x1
k−1

Γ(k) . . . xm
k−1

Γ(k) θ−1
{

csteθ(y1 + . . . + ym)2e−θ(y1+...+ym)
}

dy1 . . . dym + O(θ)

Here we use the hypothesis made on the estimator: θ(x) ≤ 1
‖x‖ . We also need the following arithmetico-

geometric inequality:
(a1 . . . am)α ≤ λ(a1

2 + . . . + am
2)mα/2.

Set y = (y1, . . . , ym), one gets

≤ cste

∫

[0, θ
m

]m

θ2

‖ y ‖2 (‖ y ‖)m(k−1)θ−1(y1 + . . . + ym)2e−y1−...−ymdy1 . . . dym + O(θ)

≤ cste

∫

[0, θ
m

]m

θ2

‖ y ‖2 (‖ y ‖)m(k−1)θ−1(‖ y ‖)2e−‖y‖dy1 . . . dym + O(θ).

Here we make a “polar-like” change of variables in R
m. We get this inequality:

|E[(θ̃ − θ)2] − Eindé[(θ̃ − θ)2]| ≤ csteθ

∫

√
m θ

m

0

rαe−rdr + O(θ), α > 0.

= O(θ).
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(2) has become

E[(θ̃ − θ)2] = Eindé[(θ̃ − θ)2] + O(θ)

= Eindé[(θ̂ − b(θ) − θ)2] + b2(θ) + O(θ)

≥ Eindé[(θ̂ − θ)2] + O(θ),
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