
HAL Id: hal-00095335
https://hal.science/hal-00095335

Preprint submitted on 15 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Paley-Wiener theorem for the Bessel-Laplace
transform (I): The case SU(n, n)/GL(n,C)_+

Salem Ben Said

To cite this version:
Salem Ben Said. A Paley-Wiener theorem for the Bessel-Laplace transform (I): The case
SU(n, n)/GL(n,C)_+. 2006. �hal-00095335�

https://hal.science/hal-00095335
https://hal.archives-ouvertes.fr


A PALEY-WIENER THEOREM FOR THE BESSEL-LAPLACE
TRANSFORM (I): THE CASE SU(n, n)/SL(n,C)× R∗

+

SALEM BEN SAÏD

Abstract. Let q be the tangent space to the noncompact causal symmetric space
SU(n, n)/SL(n, C) × R∗+ at the origin. In this paper we give an explicit formula for
the Bessel functions on q, and we then use it to prove a Paley-Wiener theorem for
the Bessel-Laplace transform on q. Further, an Abel transform for q is defined and
inverted.

1. Introduction

In [33] Paley and Wiener proved that the image of the space L2([−R,R]) by the
Euclidean Fourier transform is the space of holomorphic functions F on C such that
F|iR ∈ L2(iR) and supλ∈C e

−R|<(λ)||F (λ)| <∞.
This kind of theorem has been generalized to several different settings. We may cite

the following situations: For the spherical Fourier transform on Riemannian symmetric
spaces of the noncompact type, a Paley-Wiener type theorem was investigated by Helga-
son in [18] and Gangolli in [16]. Lately, the case of Riemannian symmetric spaces of the
compact type was done by Branson, Ólafsson, and Pasquale in [9]. Helgason-Gangolli’s
Paley-Wiener theorem was generalized later by Opdam in [30] for the so-called Cherednik
transform. Another direction has been attempted to extend the theory of Paley-Wiener
type theorems to the setting of noncompact causal symmetric spaces. This was done first
by Andersen and Ólafsson in [3] for the rank-one case. The extension to noncompact
causal symmetric spaces of Cayley type was given in [4, 5]. Later, Andersen, Ólafsson,
and Schlichtkrull in [2] and Ólafsson and Pasquale in [32] established a Paley-Wiener
theorem for the spherical Laplace transform on noncompact causal symmetric spaces
with even multiplicities. See [2] (or [32]) for the complete list of the so-called causal
symmetric spaces with even multiplicities.

Another important setting is that of integral transforms on flat symmetric spaces.
In [19] Helgason considered the tangent space to a noncompact Riemannian symmetric
space at the origin, and he proved a Paley-Wiener theorem for the Bessel-Fourier trans-
form on the tangent space. This result was generalized later by de Jeu in [26] to the
so-called Dunkl transform.

Of course the above list of situations where the Paley-Wiener theorem was generalized
is far from being complete. See also [1, 6, 7].

In the present paper we consider the tangent space, say q, to the causal symmetric
space SU(n, n)/SL(n,C)×R∗

+ at the origin, and we characterize the image of a certain
class of smooth functions on q by what we shall call the Bessel-Laplace transform (The-
orem A). As tools for this study we prove an explicit formula for the Bessel functions
on q, and we investigate some properties of the Bessel-Laplace transform. To estab-
lish the first tool, our approach uses the explicit formula of the spherical functions on
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SU(n, n)/SL(n,C) × R∗
+ proved in [4], by taking an appropriate zero-curvature limit.

We mention that the contraction process has been carried out by several authors in
different settings. See for instance [25, 12, 34, 14, 35, 10, 11].

In the last section we introduce an Abel transform for q, and we obtain explicitly
its inversion formula (Theorem B). The study of the Abel transform and its inversion
formula for the tangent spaces to Riemannian symmetric spaces at the origin is the
subject of several papers. See for instance [20, 28, 39].

2. Notation and Background

LetG = SU(n, n) be the group of complex matrices with determinant 1 which preserve
the Hermitian form

z1w1 + · · ·+ znwn − zn+1wn+1 − · · · − z2nw2n,

for z, w ∈ C2n. The group G is a connected noncompact semi-simple Lie group with
finite center. Its Lie algebra g = su(n, n) is given by

g =
{[

a b
b∗ c

] ∣∣ a = −a∗, c = −c∗, tr(a+ c) = 0
}
,

where a, b, c ∈M(n,C). It is well known that g is isomorphic to the Lie algebra

g :=
{[

α β
γ −α∗

] ∣∣ β = β∗, γ = γ∗, =(tr(α)) = 0
}
.

Denote by G the analytic subgroup of GL(2n,C) with Lie algebra g.
Let g = k ⊕ p be the decomposition of g into the (±1)-eigenspaces of the Cartan

involution θ(X) := −X∗, with X ∈ g. More precisely

k =
{ [

α β
−β α

] ∣∣ α+ α∗ = 0, β = β∗, =(tr(α)) = 0
}
,

and

p =
{ [

α β
β −α

] ∣∣ α = α∗, β = β∗
}
.

The analytic subgroup K of G with Lie algebra k is isomorphic to S(U(n)×U(n)). The
quotient Md := G/K is a Riemannian symmetric space of the non-compact type.

Set h := sl(n,C)⊕R ∼= {α ∈ gl(n,C) | =(tr(α)) = 0} . We may embed h in g as follows

h 3 α ↪→
[
α 0
0 −α∗

]
∈ g.

In particular, the subalgebra h corresponds to the (+1)-eigenspace of the involution
σ : g → g defined by

σ
( [

α β
γ −α∗

])
:=

[
α −β
−γ −α∗

]
.

The (−1)-eigenspace q of σ is given by

q =
{[

0 β
γ 0

] ∣∣ β = β∗, γ = γ∗
}
.

Thus g = h ⊕ q is the σ-eigenspace decomposition of g. Denote by H the analytic
subgroup of G with Lie algebra h. The quotient M := G/H ∼= SU(n, n)/SL(n,C)×R∗

+

is a noncompact causal symmetric space of Cayley type. We refer the reader to [22,
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Chap. 3] for more details on the theory of causal symmetric spaces of Cayley type. The
symmetric space Md is (isomorphic to) the so-called Riemannian dual of M.

Let a ⊂ p ∩ q be the Cartan subspace given by

a :=
{
at =

[
0 t
t 0

] ∣∣ t := diag(t1/2, . . . , tn/2), t1, . . . , tn ∈ R
}
.

Note that a is also a Cartan subspace of p. From now on we will identify a with Rn via
the map

Rn 3 t 7→ at ∈ a.

For 1 ≤ i ≤ n, let αi ∈ a∗ be defined by αi(t) = −ti. Thus, the roots of (g, a) are given
by the long ones ±αi (1 ≤ i ≤ n) and the short ones ±(αj ± αi)/2 (1 ≤ i < j ≤ n), with
multiplicities mαi = 1 and m(αj±αi)/2 = 2. The root system Σ := Σ(g, a) is of type Cn.

Choose an ordering on Σ such that the set Σ+ of positive roots is given by

Σ+ =
{
αi (1 ≤ i ≤ n),

(αj ± αi)
2

(1 ≤ i < j ≤ n)
}
.

Then the negative Weyl chamber is given by

a− = {t ∈ Rn | 0 < t1 < · · · < tn} .
Denote by

Σ◦ :=
{
±(αj − αi)

2
(1 ≤ i < j ≤ n)

}
,

and let

Σ+
◦ := Σ+ ∩ Σ◦ =

{
(αj − αi)

2
(1 ≤ i < j ≤ n)

}
.

The Weyl groups of Σ and Σ◦ are respectively W ∼= Sn × {±1}n and W◦ ∼= Sn,
where Sn is the permutation group of n elements. More precisely, W acts on a by
t → (τ1tσ(1), . . . , τntσ(n)) with τi = ±1 and σ ∈ Sn, while W◦ acts on a by t →
(tσ(1), . . . , tσ(n)).

For all λ ∈ Cn, denote by ϕλ the Harish-Chandra spherical functions on Md with
spectral λ (cf. [17], [21, Chap. IV]). In particular, if we use the identification of functions
on Md with right K-invariant functions on G, then ϕλ(kgk′) = ϕλ(g) for all k, k′ ∈ K
and g ∈ G. Thus, the spherical functions are completely determined on the radial part
exp(a−). Furthermore, they are W-invariant on the spectral parameter λ. In [8] Berezin
and Karpelevič gave (without proof) an explicit formula for the Harish-Chandra spherical
functions on SU(n, n)/S(U(n)× U(n)). A complete proof can be found in [23].

Theorem 2.1. (cf. [8, 23]) There exists a constant that depends only on n such that the
spherical functions ϕλ on SU(n, n)/S(U(n)× U(n)) are given by

ϕλ(exp(t)) = const.
det

1≤i,j≤n

(
2F1

(1
2
(−λi +

1
2
),

1
2
(λi +

1
2
); 1;− sh2 tj

))
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(ch tj − ch ti)
,

for all λ ∈ Cn such that
∏

α∈Σ+〈α,λ〉 6= 0, and for all t ∈ a−.

Remark 2.2. For fixed t, the function λ 7→ ϕλ(exp(t)) has a holomorphic extension to
Cn.
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For λ ∈ Cn, the spherical Fourier transform F d on Md can be written for every
f ∈ C∞c (a)W as

F d(f)(λ) =
∫
a−
f(t)ϕ−λ(exp(t))∆(t)dt,

where

∆(t) = 2n(n−1)
n∏

j=1

sh tj
∏

1≤i<j≤n

(ch tj − ch ti)2. (2.1)

The inversion formula for F d is given by

f(t) = const.
∫

iRn

F d(f)(λ)ϕλ(exp(t))
dλ

|cd(λ)|2
, t ∈ Rn, (2.2)

where

cd(λ) = c(d)
n∏

i=1

Γ(−λi)
Γ(−λi + 1/2)

∏
1≤i<j≤n

(λ2
j − λ2

i )
−1. (2.3)

The constant “const.” is positive and depends only on the normalization of the measures,
and c(d) is a positive constant which can be determined from cd(ρ) = 1, where ρ =
(1/2, 3/2, 1/2 + n − 1). For more details on the theory of spherical Fourier transforms,
we refer to [21, Chap. IV].

Let cmax be the maximal closed cone in a (∼= Rn) defined by

cmax := {t ∈ Rn | ti ≥ 0 (1 ≤ i ≤ n)} .
The subset Cmax := Ad(H)cmax ⊂ q is a maximal H-invariant regular cone in q. De-
note by Γ(Cmax) := exp(Cmax)H the semi-group in SU(n, n) with interior Γ(C◦

max) =
exp(C◦

max)H = H exp(c◦max)H.
For λ ∈ Cn, set ψλ to be the spherical function on M with spectral λ (cf. [15]). Note

that ψλ are only defined on Γ(C◦
max), and H-bi-invariant functions. We mention that

for an arbitrary noncompact causal symmetric space, the spherical functions are defined
in [15] by an integral formula over H. In [27], the authors determine the exact set E of
λ for which the integral is finite. Further, a Harish-Chandra expansion type formula for
ψλ can be found in [31]. We also note that ψwλ = ψλ for all w ∈ W◦.

In view of the Berezin-Karpelevič formula for ϕλ, and Ólafsson’s expansion for ψλ, in
[4] the authors proved the following statement.

Theorem 2.3. (cf. [4]) There exists a constant that depends only on n such that the
spherical functions ψλ on SU(n, n)/SL(n,C)× R∗

+ are given by

ψλ(exp(t)) = const.
det

1≤i,j≤n

(
Qλi−1/2(ch tj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(ch tj − ch ti)
,

for all λ ∈ Cn such that <(λi) > 0 (1 ≤ i ≤ n) and for all t ∈ a−. Here Qµ denotes the
Legendre function of the second kind.

Remark 2.4. Recall the set E from [27]. In the SU(n, n)/SL(n,C)×R∗
+-case, we have

E = { λ ∈ Cn | <(λi) > −1/2 (1 ≤ i ≤ n), <(λi + λj) > 0 (1 ≤ i 6= j ≤ n) } .
Thus, the statement of Theorem 2.3 remains valid for every λ in E . On the other
hand, using [24, Theorem 1.2.4] and the fact that ν 7→ Qν(z) is a meromorphic function
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on C with poles at the points ν ∈ −N∗, one can see that for fixed t, the function
λ 7→ ψλ(exp(t)) has a meromorphic extension to Cn with simple poles at λ ∈ Cn such
that λi ∈ −N∗ + 1/2 (1 ≤ i ≤ n) and λi + λj = 0 (1 ≤ i 6= j ≤ n).

We may identify the space C∞c (H \Γ(C◦
max)/H) with C∞c (c◦max)

W◦ . Thus, the spherical
Laplace transform of all f ∈ C∞c (c◦max)

W◦ can be written as

L (f)(λ) =
∫
a−
f(t)ψλ(exp t)∆(t)dt,

where ∆(t) is given by (2.1). The inverse spherical Laplace transform is given by

f(t) = const.
∫

iRn

L (f)(λ)ϕλ(exp(t))
dλ

c(λ)cd(−λ)
, t ∈ c◦max (2.4)

where cd is given by (2.3), and

c(λ) = c(Ω)
n∏

i=1

Γ(λi + 1/2)
Γ(λi + 1)

∏
1≤i<j≤n

(λ2
j − λ2

i )
−1. (2.5)

Here c(Ω) is a positive constant, see [27, Theorem III.5]. We refer to [15] and [22, Chap.
8] for more details on the theory of spherical Laplace transforms.

3. The Bessel-Laplace transform

Recall that Md = SU(n, n)/S(U(n) × U(n)) and M = SU(n, n)/SL(n,C) × R∗
+.

For ε > 0, write gε = k exp(εX) with k ∈ K and X ∈ p. Denote by Φ(λ, X) :=
limε→0 ϕλ/ε(gε). In [28] the author proved that the limit Φ(λ, X) exists and is a smooth
function. The limiting functions are the so-called Bessel functions on the flat symmetric
space p. In [14, 10] this result was generalized to arbitrary noncompact Riemannian
symmetric space. Even more, in [11] a similar result (for arbitrary noncompact causal
symmetric space) was proved when ϕλ is replaced by the spherical function ψλ. More
precisely, if γε = exp(εX)h with X ∈ C◦

max and h ∈ H, then, for certain λ ∈ a∗C, the
limit Ψ(λ, X) := limε→0 ψλ/ε(γε) and its derivatives exist. We refer to [14, 10, 11] for
more details.

Theorem 3.1. (i) (cf. [28]) For all λ ∈ Cn such that
∏

α∈Σ+〈λ, α〉 6= 0, and for all
t ∈ a−, there exists a constant which depends only on n such that

Φ(λ, t) = const.
det

1≤i,j≤n

(
I0(λitj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(t2j − t2i )
,

where Iν(z) := e−iνπ/2Jν(iz) and Jν the Bessel function of the first kind

Jν(z) :=
∞∑

`=0

(−1)` (z/2)2`+ν

Γ(`+ ν + 1)`!
.

The Bessel function Φ extends to a holomorphic function on Cn × Cn.
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(ii) For all λ ∈ Cn such that <(λi) > 0 (1 ≤ i ≤ n), and for all t ∈ a−, there exists a
constant which depends only on n such that

Ψ(λ, t) = const.
det

1≤i,j≤n

(
K0(λitj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(t2j − t2i )
,

where

K0(z) := lim
ν→0

π

2
I−ν(z)− Iν(z)

sin νπ

denotes the Bessel function of the third kind. For fixed t, the function λ 7→ Ψ(λ, t) has
a meromorphic extension to

D = {λ ∈ Cn | λi ∈ C\]−∞, 0] } ,

with simple poles at λ ∈ D such that λi + λj = 0 for some 1 ≤ i 6= j ≤ n.

Proof. (ii) For ε > 0, write ψλ/ε(exp(εt)) as

ψλ/ε(exp(εt)) = const.
εn(n−1)∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(sh2(εtj/2)− sh2(εti/2))
×

∑
σ∈Sn

(−1)σ
n∏

i=1

Qλσ(i)/ε−1/2(ch(εti)).

By [36, p.259], we have

(sh t)−µ Γ(λ− µ+ 1/2)
Γ(λ+ µ+ 1/2)

Qµ
λ−1/2(ch t)

=
eiπµ

2

{
Γ(−µ)

2µ 2F1

(1
2
(
λ+ µ+

1
2
)
,
1
2
(
− λ+ µ+

1
2
)
; 1 + µ;− sh2 t

)
+

Γ(µ)
2−µ

(sh t)−2µ Γ(λ− µ+ 1/2)
Γ(λ+ µ+ 1/2)2F1

(1
2
(
λ− µ+

1
2
)
,
1
2
(
− λ− µ+

1
2
)
; 1− µ;− sh2 t

)}
.

Using the well known formula

Γ(z + a)
Γ(z + b)

= za−b(1 +O(z−1)) as z →∞, (3.1)

together with the hypergeometric series of 2F1, we obtain:

lim
ε→0

2F1

(1
2
(λ
ε
± µ+

1
2
)
,
1
2
(
− λ

ε
± µ+

1
2
)
; 1± µ;− sh2(εt)

)
= Γ(±µ+ 1)

(λt
2

)∓µ
I±µ(λt),

and

lim
ε→0

Γ(λ
ε − µ+ 1

2)

Γ(λ
ε + µ+ 1

2)
(sh(εt))−2µ = (λt)−2µ.
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Here Iµ denotes the modified Bessel function given in the statement (i) above. Thus

lim
ε→0

(sh εt)−µ Γ(λ/ε− µ+ 1/2)
Γ(λ/ε+ µ+ 1/2)

Qµ
λ/ε−1/2(ch(εt))

=
eiπµ

2

{Γ(−µ)Γ(1 + µ)
2µ

(λt
2

)−µ
Iµ(λt) +

Γ(µ)Γ(1− µ)
2−µ

(λt)−µ

2µ
I−µ(λt)

}
= eiπµ(λt)−µ

{π
2
I−µ(λt)− Iµ(λt)

sin(πµ)

}
,

and therefore

lim
ε→0

Qλ/ε−1/2(ch(εt)) = lim
µ→0

π

2
I−µ(λt)− Iµ(λt)

sin(πµ)
= K0(λt).

To prove that, for fixed t, the function λ 7→ Ψ(λ, t) is meromorphic on D with simple
poles at λi + λj = 0 for i 6= j, one can proceed as follows: It is well known that Kν(z)
is an analytic function of z for all z ∈ C\]∞, 0]. Further, it is clear that λi0 + λj0 = 0,
with i0 6= j0, is a simple pole for Ψ(λ, ·). Further, write

det
1≤i,j≤n

(
K0(λitj)

)
= (λj0 − λi0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K0(λ1t1) · · · K0(λ1tn)
...

...
K0(λi0t1) · · · K0(λi0tn)

...
...

K0(λj0−1t1) · · · K0(λj0−1tn)
K0(λj0

t1)−K0(λi0
t1)

λj0
−λi0

· · · K0(λj0
tn)−K0(λi0

tn)

λj0
−λi0

K0(λj0+1t1) · · · K0(λj0+1tn)
...

...
K0(λnt1) · · · K0(λntn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus,

lim
λj0

→λi0

det
1≤i,j≤n

(
K0(λitj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
=

1

(2λi0)
∏

1≤i<j≤n

i6=i0

(λ2
j − λ2

i )
n∏

j=i0+1

j 6=j0

(λ2
j − λ2

i0)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K0(λ1t1) · · · K0(λ1tn)
...

...
K0(λi0t1) · · · K0(λi0tn)

...
...

K0(λj0−1t1) · · · K0(λj0−1tn)
−t1K1(λi0t1) · · · −tnK1(λi0tn)
K0(λj0+1t1) · · · K0(λj0+1tn)

...
...

K0(λnt1) · · · K0(λntn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Moreover, if a = (a, a, . . . , a) ∈ D, then

lim
λ→a

det
1≤i,j≤n

(
K0(λitj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
= (2a)

−n(n−1)
2 det

1≤i,j≤n

(
tj−1
i K

(j−1)
0 (ati)

)
.

�

Remark 3.2. (i) The Bessel function Φ is symmetric in its arguments. Further, since
I0(z) is an even function, clearly we have Φ(wλ, t) = Φ(λ, wt) = Φ(λ, t) for all w ∈
W = Sn×{±1}n. For general results in the theory of Bessel functions on Cartan motion
groups, we refer to [21, 29, 38, 10, 11].

(ii) The Bessel function Ψ is symmetric in λ and t, with Ψ(w0λ, t) = Ψ(λ, w0t) =
Ψ(λ, t) for all w0 ∈ W◦ = Sn.

Following [20], the Bessel-Fourier transform F̃ d on the flat symmetric space p is given
for any function f ∈ C∞c (a)W by

F̃ d(f)(λ) =
∫
a−
f(t)Φ(λ, t)ω(t)dt,

where

ω(t) :=
n∏

i=1

ti
∏

1≤i<j≤n

(t2j − t2i )
2, t ∈ a−. (3.2)

Further, there exists a positive constant depending only on the normalization of the
measures such that

f(t) = const.
∫

iRn

F̃ d(f)(λ)Φ(λ, t)ω(λ)dλ, (3.3)

where

ω(λ) :=
n∏

i=1

|λi|
∏

1≤i<j≤n

|λ2
j − λ2

i |2. (3.4)

Observe that one may recover the definition of F̃ d and its inversion formula via F d, by
applying the limit transition approach. Indeed, for ε > 0, set fε(t) := f(ε−1t). Thus

F d(fε)(λ/ε)

=
∫
a−
fε(t)ϕ−λ/ε(exp t)

n∏
i=1

sh(ti)
∏

1≤i<j≤n

(2 ch(tj)− 2 ch(ti))2dt

∼ εn(2n−1)

∫
a−
f(t)ϕ−λ/ε(exp εt)

n∏
i=1

ti
∏

1≤i<j≤n

(t2j − t2i )
2dt as ε −→ 0.

Hence
lim
ε→0

ε−n(2n−1)F d(fε)(λ/ε) = F̃ d(f)(λ). (3.5)

By virtue of (3.1), one can also use the inversion formula (2.2) for F d to obtain (3.3).
We should mention that the Bessel-Fourier transform has been carried out by several
authors in different settings (see for instance [19, 20, 28, 39]).
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Remark 3.3. In [13] Dunkl introduced an integral transformation on the space L2(a, dµ)
(where µ is some suitable measure) in terms of the eigenfunctions of the so-called Dunkl
operators. This class of Dunkl transforms encloses the Bessel-Fourier transforms on flat
symmetric spaces.

Define the Bessel-Laplace transform on the flat symmetric space q of an element
f ∈ C∞c (c◦max)

W◦ by

L̃ (f)(λ) =
∫
a−
f(t)Ψ(λ, t)ω(t)dt, ∀f ∈ C∞c (c◦max)

W◦ ,

whenever this integral converges. Again, one may obtain the above natural definition of
L̃ via the spherical Laplace transform L .

By [31, Lemma 4.16], we know that if f ∈ Cc(c◦max)
W◦ , then there exists a unique

function fd ∈ Cc(a)W such that fd
|a− ≡ f|a− . Thus, we may obtain a relation between

F̃ d and L̃ as follows: For t ∈ a−, we know that

ϕλ(exp(−t)) =
∑

τ∈{±1}n

cd(τλ)
c(τλ)

ψτλ(exp(t)), (3.6)

for almost every λ ∈ Cn (cf. [22, Theorem 8.4.4]). Further, in the light of (3.1), we have

cd(λ/ε) ∼ εn(n−1/2)c(d)
n∏

i=1

(−λi)−1/2
∏

1≤i<j≤n

(λ2
j − λ2

i )
−1 as ε→ 0,

and

c(λ/ε) ∼ εn(n−1/2)c(Ω)
n∏

i=1

λ
−1/2
i

∏
1≤i<j≤n

(λ2
j − λ2

i )
−1 as ε→ 0.

Thus

Φ(λ, t) =
c(d)
c(Ω)

∑
τ=(τi)i∈{±1}n

n∏
i=1

{(−τiλi)−1/2(τiλi)1/2}Ψ(τλ, t) ∀ t ∈ a−, (3.7)

for almost every λ ∈ Cn. When n = 1, we have c(d)c(Ω)−1 = π−1, and the equality
(3.7) coincides with the well known formula K0(z)−K0(−z) = iπI0(z) (cf. [36, p. 428]).
Now the following is clear.

Corollary 3.4. For almost every λ ∈ Cn, we have

F̃ d(fd)(λ) =
c(d)
c(Ω)

∑
τ=(τi)i∈{±1}n

n∏
i=1

{(−τiλi)−1/2(τiλi)1/2}L̃ (f)(τλ), ∀f ∈ C∞c (c◦max)
W◦ .

In particular, the right hand side extends to an analytic function on Cn.

The inversion formula for the transform L̃ is now immediate.

Theorem 3.5. If f ∈ C∞c (c◦max)
W◦ , then there exists a positive constant such that

f(t) = const.
∫

iRn

L̃ (f)(λ)Φ(λ, t)ω(λ)
n∏

i=1

λi

|λi|
dλ

for all t ∈ a−. Here ω(λ) is as in (3.4).
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Proof. For t ∈ a− we have

f(t) = const.
∫

iRn

F̃ d(fd)(λ)Φ(λ, t)ω(λ)dλ

= const.
∫

iRn

{ ∑
τ∈{±1}n

(
n∏

i=1

τi)L̃ f(τλ)
}

Φ(λ, t)ω(λ)
n∏

i=1

λi

|λi|
dλ.

The statement is now due to the W-invariance of Φ and ω(λ)dλ. �

4. The Paley-Wiener theorem

For R > 0, let BR := {t ∈ Rn | ‖t‖ ≤ R}. Denote by C∞R (a) the space of smooth func-
tions on a with support contained in the closed ball BR. Define the Paley-Wiener space
HR
W(Cn) as the space of W-invariant holomorphic functions on Cn with the property

that for each M ∈ N there exists a constant cM > 0 such that

|g(λ)| ≤ cM (1 + ‖λ‖)−MeR‖<(λ)‖,

for all λ ∈ Cn. By HW(Cn) we will denote the union of the spaces HR
W(Cn) over all

R > 0.

Theorem 4.1. (cf. [19]) The Bessel-Fourier transform f 7→ F̃ d(f) is a bijection of
C∞c (a)W onto HW(Cn). The function f has support in the ball BR if and only if F̃ d(f) ∈
HR
W(Cn), for all R > 0.

Next we will discuss a Paley-Wiener theorem for L̃ . For 0 < r < R < ∞, denote
by PWr,R

◦ (Cn) the space of W◦-invariant meromorphic functions g on D with at most
simple poles at λi + λj = 0 for some 1 ≤ i 6= j ≤ n, such that:

(P1) The map

λ 7→ av(g)(λ) :=
∑

τ∈{±1}n

n∏
i=1

{(−τiλi)−1/2(τiλi)1/2}g(τλ)

extends to a function in HR
W(Cn).

(P2) For all M ∈ N, there exists a constant cM such that for λ ∈ D with <(λi) ≥ 0
(1 ≤ i ≤ n) we have

n∏
i=1

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j | |g(λ)| ≤ cM (1 + ‖λ‖)−Me−r〈<(λ),t0〉,

where t0 := (1, . . . , 1).
Denote by PW◦(Cn) the union of the spaces PWr,R

◦ (Cn) over all 0 < r < R <∞.

Claim 1. For all λ ∈ D such that <(λi) ≥ 0 (1 ≤ i ≤ n), and for all t ∈ Rn such that
ti ≥ r > 0 (1 ≤ i ≤ n), we have

|Ψ(λ, t)|
∏

1≤i<j≤n

|t2j − t2i |
n∏

i=1

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j | ≤ n!cre−r〈<(λ),t0〉,

where t0 = (1, . . . , 1) and cr is a constant which depends only on r.
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For all t ∈ Rn we have

|Ψ(λ, t)|
n∏

i=1

|λi|1/2
∏

1≤i<j≤n

|t2i − t2j | |λ2
i − λ2

j | =
n∏

i=1

|λi|1/2
∣∣∣ det
1≤i,j≤n

(
K0(λitj)

)∣∣∣
≤

∑
σ∈Sn

n∏
i=1

|λi|1/2
∣∣K0(λitσ(i))

∣∣ .
It is well known that for z ∈ C\] − ∞, 0] we have K0(z) =

√
π
2zW0,0(2z), where W0,0

denotes the Whittaker function. Using the expression (4), p. 317 of [36], and the
asymptotic expression (1), p. 202 of [37], we get

|z|1/2|K0(z)| ≤ const. e−<(z), z ∈ C\]∞, 0].

Thus, if tσ(i) ≥ r > 0 and λi ∈ C\]−∞, 0], then

|λi|1/2|K0(λitσ(i))| ≤ cre
−<(λi)tσ(i) .

If in addition <(λi) ≥ 0, we obtain

|λi|1/2|K0(λitσ(i))| ≤ cre
−r<(λi).

The desired claim is now clear.
Recall that BR = { t ∈ Rn | ‖t‖ ≤ R } with R > 0, and, for 0 < r < ∞, set

Cr := { t ∈ Rn | ti ≥ r (1 ≤ i ≤ n) } . Denote by C∞r,R(c◦max)
W◦ the space of functions

f ∈ C∞c (c◦max)
W◦ with support contained in Cr ∩ BR. Note that C∞r,R(c◦max)

W◦ = {0}
if R ≤ r. The union of the spaces C∞r,R(c◦max)

W◦ over all 0 < r < R < ∞ coincides with
C∞c (c◦max)

W◦ .

Claim 2. For all 0 < r < R <∞, the transformation L̃ maps C∞r,R(c◦max)
W◦ injectively

into PWr,R
◦ (Cn).

Since the function λ 7→ Ψ(λ, t) is meromorphic on D with simple poles at λi +
λj = 0 for 1 ≤ i 6= j ≤ n, it follows that λ 7→ L̃ (f)(λ) extends to a meromorphic
function on D with simple poles at λi + λj = 0 for i 6= j. Further, the W◦-invariance
of the Bessel functions Ψ implies that λ 7→ L̃ (f)(λ) is a W◦-invariant map for all
f ∈ C∞c (c◦max)

W◦ . Moreover, by means of Corollary 3.4, the Bessel-Laplace transform L̃

satisfies the property (P1). One can also check that L̃ obeys the property (P2). Indeed,
for f ∈ C∞r,R(c◦max)

W◦ we have

|L ◦(f)(λ)|
n∏

i=1

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j |

≤
∫
a−∩supp(f)

|f(t)| |Ψ(λ, t)|
n∏

i=1

|λi|1/2
∏

1≤i<j≤n

|λ2
i − λ2

j |ω(t)dt

≤cr,R e−r〈<(λ),t0〉.

Above we used Claim 1. To reach the conclusion, it is enough to recall that Ψ(λ, t)
satisfies a Bessel system of differential equations (cf. [11, (4.8)]).

The injectivity of L̃ follows from the inversion formula in Theorem 3.5.
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Claim 3. If av(L̃ (f))(λ) = 0 with f ∈ C∞c (c◦max)
W◦ , then f ≡ 0.

The statement of Corollary 3.4 can also be written as F̃ d(fd)(λ) = c(d)
c(Ω)av(L̃ (f))(λ)

where fd
|a− ≡ f|a− . Thus, the claim is an easy consequence of the injectivity of the

Bessel-Fourier transform F̃ d.
The following property can be proved in a similar way as Lemma 9.1 in [2]. The

function g in the statement bellow plays the same role as g1 in the proof of [2, Lemma
9.1].

Claim 4. Let g be a meromorphic function on D which satisfies the condition (P2) for
some r > 0. If av(g) ≡ 0, then g ≡ 0.

Now we can state and prove the first main result of the paper, i.e. a Paley-Wiener
theorem for L̃ . Our approach is similar to the one used in [2] for the spherical Laplace
transform L .

Theorem A. The Bessel-Laplace transform L̃ is a bijection of C∞r,R(c◦max)
W◦ onto

PWr,R
◦ (Cn) for every 0 < r < R <∞, and of C∞c (c◦max)

W◦ onto PW◦(Cn).

Proof. By virtue of Claim 2 we only need to prove the surjectivity of L̃ from C∞r,R(c◦max)
W◦

to PWr,R
◦ (Cn). From Theorem 3.1(i) we have

Φ(λ, t) =
det

1≤i,j≤n

(
I0(λitj)

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(t2j − t2i )

=
∑
σ∈Sn

(−1)σ

n∏
i=1

I0
(
λσ(i)ti

)
∏

1≤i<j≤n

(λ2
j − λ2

i )
∏

1≤i<j≤n

(t2j − t2i )

=
∑
σ∈Sn

1∏
1≤i<j≤n

(t2j − t2i )

n∏
i=1

I0
(
λσ(i)ti

)
∏

1≤i<j≤n

(λ2
σ(j) − λ2

σ(i))

=
∑
σ∈Sn

Ξ(σ(λ), t),

where

Ξ(λ, t) :=

n∏
i=1

I0(λiti)∏
1≤i<j≤n

(t2j − t2i )
∏

1≤i<j≤n

(λ2
j − λ2

i )
,

with ti 6= ±tj and λi 6= ±λj for i 6= j.

For fixed r and R, we define the wave packet of g ∈ PWr,R
◦ (Cn) by

I g(t) =
∫

iRn

g(λ)Φ(λ, t)ω(λ)
n∏

i=1

λi

|λi|
dλ
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when t ∈ a−. The function I g is well defined and it belongs to C∞(c◦max)
W◦ . This follows

from the growth behavior of g ∈ PWr,R
◦ (Cn), and the fact that

|∂α1
t1
. . . ∂αn

tn Φ(λ, t)| ≤ const. ‖λ‖α1+···+αn ,

with λ ∈ iRn and t ∈ Rn. Here the constant “const. ” depends on α1, . . . , αn. Bellow we
will prove that the support of I g is contained in Cr ∩BR, i.e. I g ∈ C∞r,R(c◦max)

W◦ .

By the W◦-invariance of g and ω(λ), we have

I g(t) = n!
∫

iRn

g(λ)Ξ(λ, t)ω(λ)
n∏

i=1

λi

|λi|
dλ, t ∈ a−.

On the other hand, using the expression of I0 in [37, p. 77] and the asymptotic
expression (2), p. 203 of [37], it follows that there exist two positive constants such that

|I0(z)| ≤ const. , 0 ≤ |z| ≤ 1,
|I0(z)| ≤ const. |z|−1/2e<(z), 1 ≤ |z|.

Thus, for fixed t ∈ a−,

|Ξ(λ, t)|ω(λ)1/2 ≤ const.
1

n∏
i=1

t
1/2
i

∏
1≤i<j≤n

(t2j − t2i )

(4.1)

if |λi| ≤ t−1
i for all i, and

|Ξ(λ, t)|ω(λ)1/2 ≤ const.
e〈<(λ),t〉

n∏
i=1

t
1/2
i

∏
1≤i<j≤n

(t2j − t2i )

(4.2)

if |λi| ≥ t−1
i for all i.

Now let t ∈ a−\Cr. By [2, p. 721], there exists an element λ◦ ∈ Rn
+ such that

ζ := 〈λ◦, t− rt◦〉 < 0, where t◦ = (1, . . . , 1). Hence, for arbitrary α >> 0, we have

|Ξ(λ + αλ◦, t)|ω(λ + αλ◦)
1
2 =

n∏
i=1

|λi + αλ◦i |
1/2

n∏
i=1

∣∣I0((λi + αλ◦i )ti
)∣∣

∏
1≤i<j≤n

(t2j − t2i )

∼ e〈<(λ+αλ◦),t〉

n∏
i=1

t
1/2
i

∏
1≤i<j≤n

(t2j − t2i )

as α→∞.

Above we used the fact that

I0(z) ∼ z−1/2ez as z →∞.

In particular, if λ ∈ iRn and t ∈ a−\Cr, then there exists a constant not depending on
λ such that |Ξ(λ + αλ◦, t)|ω(λ + αλ◦)1/2 is bounded by ceα〈λ

◦,t〉 as α goes to infinity.
That is

|Ξ(λ + αλ◦, t)|ω(λ + αλ◦)1/2 ≤ ceαζerα〈λ◦,t◦〉 as α→∞. (4.3)
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By virtue of (4.1), (4.2), (4.3), and the growth behavior of g ∈ PWr,R
◦ (Cn), Cauchy’s

theorem and a contour shift imply that

I g(t) = n!
∫

iRn

g(λ)Ξ(λ, t)ω(λ)
n∏

i=1

λi

|λi|
dλ

= n!
∫

iRn

g(λ + αλ◦)Ξ(λ + αλ◦, t)ω(λ + αλ◦)
n∏

i=1

λi + αλ◦i
|λi + αλ◦i |

dλ

−→ 0 as α→∞.

Thus I g vanishes on a− \ Cr, and, by the continuity and the W◦-invariance of I g,
this is equivalent to I g ≡ 0 on c◦max\ Cr. Furthermore, the wave packet vanishes also
on c◦max \BR. One can see this as follows: Recall that W◦ \ W ∼= {±1}n. Using the
W-invariance of Φ and ω(λ), we have (for t ∈ a−)

I g(t) =
∫

iRn

g(λ)Φ(λ, t)ω(λ)
n∏

i=1

λi

|λi|
dλ

=
1
2n

∫
iRn

∑
τ∈{±1}n

n∏
i=1

{(−τiλi)−1/2(τiλi)1/2}g(τλ)Φ(λ, t)ω(λ)dλ

=
1
2n

c(Ω)
c(d)

∫
iRn

av(g)(λ)Φ(λ, t)ω(λ)dλ.

Comparing this integral formula with (3.3), we get (up to a positive constant which does
not depend on λ)

F̃ d(I g)(λ) = const. av(g)(λ). (4.4)

Since g ∈ PWr,R
◦ (Cn), the property (P1) implies that F̃ d(I g) belongs to the Paley-

Wiener space HR
W(Cn). Hence, by Theorem 4.1, we conclude that Supp(I g) ⊂ BR, i.e.

I g(t) = 0 for all t ∈ c◦max \BR. Thus we draw the conclusion that I g ∈ C∞r,R(c◦max)
W◦ .

Moreover, by Corollary 3.4, equation (4.4) yields

c(d)
c(Ω)

av(L̃ (I g))(λ) = F̃ d(I g)(λ) = const. av(g)(λ),

for all g ∈ PWr,R
◦ (Cn). Now, Claim 4 implies that (up to a constant) L̃ (I (g)) = g for

all g ∈ PWr,R
◦ (Cn). This finishes the proof of Theorem A. �

5. The inverse flat Abel transform for SU(n, n)/SL(n,C)× R∗
+

Replacing the Cartan involution by the involution σ in the proof of [21, Theorem
I.5.17], one can prove that for f ∈ Cc(C◦

max)∫
C◦max

f(Y )dY = const.
∫

H

∫
a−
f(Ad(h)X)

∏
α∈Σ+

|〈α,X〉|mαdhdX,

where “const.” is some positive constant depending only on the normalization of the
measures. Thus, for λ ∈ a∗C such that <(λi) > 0 (1 ≤ i ≤ n), the Bessel-Laplace
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transform of all f ∈ C∞c (c◦max)
W◦ ∼= C∞c (C◦

max)
Ad(H) can be written as

L̃ (f)(λ) =
∫
a−
f(X)Ψ(λ, X)ω(X)dX

=
∫
a−
f(X)

( ∫
H
e−λ(Ad(h)X)dh

)
ω(X)dX

= const.
∫

C◦max

f(X)e−λ(X)dX.

Above we used the following integral representation

Ψ(λ, X) =
∫

H
e−λ(Ad(h)X)dh.

We refer to [11, Theorem 4.12] for more details on the integral representation of Ψ(λ, X).
Denote by a⊥ the orthogonal complement of a in q. Thus, for λ ∈ a∗ such that λi > 0
(1 ≤ i ≤ n), we have

L̃ (f)(λ) = const.
∫

C◦max∩a
e−λ(X)

( ∫
C◦max∩a⊥

f(X + Y )dY
)
dX

= const.
∫

c◦max

e−λ(X)A (f)(X)dX, (5.1)

where

A (f)(X) :=
∫

C◦max∩a⊥
f(X + Y )dY

denotes the “flat Abel” transform of f ∈ C∞c (C◦
max)

Ad(H) ∼= C∞c (c◦max)
W◦ at X ∈ c◦max.

The expression (5.1) is an analogue to the one proved by Helgason in [19] for the Bessel-
Fourier transform on p. It follows that

L̃ (f)(λ) = const.
∫

c◦max

e−λ(X)A (f)(X)dX = const.F
(
A (f)

)
(λ), (5.2)

where F stands for the Euclidean-Laplace transform associated with c◦max. In particu-
lar, if we set V(x1, . . . , xn) :=

∏
1≤i<j≤n(x2

j − x2
i ), then there are two ways of writing

V(λ1, . . . , λn)L̃ (f)(λ). First, by (5.2), we have

V(λ1, . . . , λn)L̃ (f)(λ) = const.V(λ1, . . . , λn)F
(
A (f)

)
(λ)

= const.F
[
V(∂1, . . . , ∂n)A (f)

]
(λ). (5.3)
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Second, for every f ∈ C∞c (c◦max)
W◦ , we have

V(λ1, . . . , λn)L̃ (f)(λ) = const.
∫
a−
f(t) det

1≤i,j≤n

(
K0(λitj)

) ω(t)∏
1≤i<j≤n

(t2j − t2i )
dt

= const.
∫
a−
f(t) det

1≤i,j≤n

(
K0(λitj)

) n∏
i=1

ti
∏

1≤i<j≤n

(t2j − t2i )dt

= const.
∑
σ∈Sn

∫
a−
f(t)

n∏
i=1

tσ(i)K0

(
λitσ(i)

) ∏
1≤i<j≤n

(t2σ(j) − t2σ(i))dt

= const.
∫

c◦max

f(t)V(t1, . . . , tn)
n∏

i=1

ti

n∏
i=1

K0

(
λiti

)
dt. (5.4)

Moreover, for z, ν ∈ C such that <(z) > 0 and <(ν) > −1/2, we have

Kν(z) =
√
πzν

2νΓ(ν + 1/2)

∫ ∞

0
e−z ch(u) sh2ν(u)du.

A change of variable implies that

Kν(zt) =
√
π

2νΓ(ν + 1/2)
(zt−1)ν

∫ ∞

t
e−zs(s2 − t2)ν−1/2ds

with t > 0. In particular, for <(z) > 0 and t > 0,

K0(zt) =
∫ ∞

t

e−zs

√
s2 − t2

ds.

Substituting the above integral representation of K0(λiti) in (5.4), we get

V(λ1, . . . , λn)L̃ (f)(λ)

= const.
∫

c◦max

f(t1, . . . , tn)V(t1, . . . , tn)
n∏

i=1

ti

{∫ ∞

t1

· · ·
∫ ∞

tn

n∏
i=1

e−λisi√
s2i − t2i

dsi

}
dt

= const.
∫

c◦max

n∏
i=1

e−λisi

[ ∫ s1

0
· · ·

∫ sn

0
f(t1, . . . , tn)V(t1, . . . , tn)

n∏
i=1

ti√
s2i − t2i

dti

]
ds

= const.F
(
A⊗n

1 (fV)
)
(λ), (5.5)

where A⊗n
1 denotes the n-fold tensor product of the one dimensional integral transfor-

mation

A1(F )(s) :=
∫ s

0
F (t)

t√
s2 − t2

dt, F ∈ C∞c (R+), s > 0.

The later transform satisfies

F (t) = const.
1
t

d
dt

∫ t

0
A1(F )(s)

s√
t2 − s2

ds. (5.6)

Comparing (5.3) with (5.5), and using the injectivity of the Euclidean-Laplace transform
F , we obtain

V(∂1, . . . , ∂n)A (f)(t) = const.A⊗n
1 (fV)(t).
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In view of (5.6), we obtain the second main result of the paper.

Theorem B. Assume that f ∈ C∞c (c◦max)
W◦ . For every t ∈ a−, the inverse Abel trans-

form is expressed as

V(t1, . . . , tn)f(t) = const.
n∏

i=1

1
ti

d
dti

∫ t1

0
· · ·

∫ tn

0
V(∂1, . . . , ∂n)A (f)(s)

n∏
i=1

si√
t2i − s2i

ds,

where V(x1, . . . , xn) =
∏

1≤i<j≤n(x2
j − x2

i ).

Remark 5.1. (Another way of computing the Bessel function Ψ(λ, t) via the rank one
case) Denote by M(1)

(1,0) the rank one symmetric space SO0(1, 2)/SO0(1, 1). The associ-
ated restricted root system is given by {±α}, where α(t) = −t defines the positive root.
Here a ∼= R, and mα = 1. By [11, Example 4.13], the Bessel functions associated with
M(1)

(1,0) are given by

Ψ(1)
(1,0)(λ, t) = K0(λt), <(λ) > 0, t > 0.

Let M(n)
(1,0) be the product of n-copies of M(1)

(1,0), and define on M(n)
(1,0) the pseudo-Bessel

function

Ψ(n)
(1,0)(λ, t) :=

∑
σ∈Sn

n∏
i=1

K0(λσ(i)ti).

On the other hand, recall that the restricted root system Σ(g, a) associated with M =
SU(n, n)/SL(n,C)×R+

∗ consists of long roots with multiplicities 1 and short roots with
multiplicities 2. By [30] we can prove that we may obtain the Bessel function Ψ(λ, t)
associated with M via Ψ(n)

(1,0)(λ, t) as followsing:

Ψ(λ, , t) =
const.∏

1≤i<j≤n

(λ2
j − λ2

i )
2
D(0,2)Ψ

(n)
(1,0)(λ, t), (5.7)

where D(0,2) denotes the shift operator∏
1≤i<j≤n

(t2j − t2i )
−1

∏
1≤i<j≤n

(
L (tj , ∂tj )−L (ti, ∂ti)

)
,

with

L :=
d2

dt2
+

1
t

d

dt
.

Using the fact that Kν(z) is a solution to

u′′ +
1
z
u′ −

(
1 +

ν2

z2

)
u = 0,
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we deduce that

Ψ(λ, t) =
const.∏

1≤i<j≤n

(t2j − t2i )(λ
2
j − λ2

i )
2

∑
σ∈Sn

n∏
i=1

K0(λσ(i)ti)
∏

1≤i<j≤n

(λ2
σ(j) − λ2

σ(i))

=
const.∏

1≤i<j≤n

(t2j − t2i )(λ
2
j − λ2

i )

∑
σ∈Sn

(−1)σ
n∏

i=1

K0(λσ(i)ti)

= const.
det

1≤i,j≤n

(
K0(λitj)

)
∏

1≤i<j≤n

(t2j − t2i )
∏

1≤i<j≤n

(λ2
j − λ2

i )
,

which coincides with Theorem 3.1(ii). Notice that one may use formula (5.7) to give
another proof for Theorem A. In a forthcoming paper we shall develop this approach fur-
ther to prove a Paley-Wiener theorem for a larger class of noncompact causal symmetric
spaces.

References

[1] J. Arthur, A Paley-Wiener theorem for real reductive groups, Acta Math. 150 (1983), 1–89
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[3] N.B. Andersen and G. Ólafsson, A Paley-Wiener theorem for the spherical Laplace transform on
causal symmetric spaces of rank 1, Proc. Amer. Math. Soc. 129 (2001), 173–179

[4] N.B. Andersen and J. Unterberger, Harmonic Analysis on SU(n, n)/SL(n, C) × R∗+, J. Lie Theory
10 (2000), 311–322

[5] , An application of shift operators to ordered symmetric spaces, Ann. Inst. Fourier (Grenoble)
52 (2002), 275–288

[6] E.P. van den Ban and H. Schlichtkrull, A Paley-Wiener theorem for reductive symmetric spaces,
math.RT/0302232

[7] , Paley-Wiener spaces for real reductive Lie groups, Indag. Math. 16 (2005), 321–349
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pour les espaces symétriques, C. R. Acad. Sci. Paris Sr. I Math. 320 (1995), 139–144

[36] Z.X. Wang and D.R. Guo, Special functions, World Scientific Publishing Co., Inc., Teaneck, NJ,
(1989)

[37] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cam-
bridge, England; The Macmillan Company, New York, (1944)

[38] J. A. Wolf, Spherical functions on Euclidean space, J. Funct. Anal. 239 (2006), 127–136
[39] F. Zhu, On the inverse Abel transformation for certain Riemannian symmetric spaces of rank two,

Math. Ann. 305 (1996), 617–637
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