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ON THE INTEGRABILITY OF A REPRESENTATION OF sl(2,R)

SALEM BEN SAÏD

Abstract. The Dunkl operators involve a multiplicity function k as parameter. For
positive real values of this function, we consider on the Schwartz space S(RN ) a rep-
resentation ωk of sl(2, R) defined in terms of the Dunkl-Laplacian operator. By means
of a beautiful theorem due to E. Nelson, we prove that ωk exponentiates to a unique
unitary representation Ωk of the universal covering group G of SL(2, R). Next we show
that the Dunkl transform is given by Ωk(g◦), for an element g◦ ∈ G. Finally, the rep-
resentation theory is used to derive a Bochner-type identity for the Dunkl transform.

1. Introduction

In a series of papers [3, 4, 5], B. Ørsted and the present author showed that there exists
an infinitesimal representation of the Lie algebra sl(2,R) on the Schwartz space S(RN )
that can be used as a crucial (and surprising) tool to treat various problems related
to the theory of Dunkl operators. This representation can be thought of as analogue
of the classical infinitesimal metaplectic representation of sl(2,R). Our approach was
mainly inspired by [15, 17] and [26]. See also [23, 20]. More precisely, the representation
theory is used in [3] to show a Hecke-type identity for the Dunkl transform, and in [4] to
prove the validity of Huygens’ principle for the wave equations for the Dunkl-Laplacian
operators. In [5], we prove a Harish-Chandra restriction type theorem for the Dunkl
transform, i.e. the existence of an intertwining operator between the Fourier transform
on Cartan motion groups and the Dunkl transform. The key to all these results is that:
(i) the infinitesimal representation of sl(2,R) exponentiates to a unitary representation
of the universal covering group of SL(2,R), and (ii) the Dunkl transform belongs to the
integrated representation. The proof of the statement (ii) was given in [3] whilst the claim
(i) was conjectured. In this paper, we first prove the conjecture (i) above. Our proof uses
a famous result of E. Nelson [21]. Note that the integrability fact it is not obvious, since
in infinite dimension, the existence of a group representation is not guaranteed from the
existence of a Lie algebra representation. We should mention that the present paper
deals with the “Schrödinger” model of the infinitesimal representation used in [3, 4, 5].
Next, by means of the integrated representation, we prove a Bochner-type identity for
the Dunkl transform. The identity states that the Dunkl transform of a product of a
radial function with a homogeneous “h-harmonic” polynomial (in the sense of Dunkl) is
the product of the same “h-harmonic” polynomial with a new radial function. Further,
it expresses the transform of the radial factor by means of the classical Hankel transform,
which is an integral transform with the Bessel function of the first kind as kernel. The
Bochner formula generalizes the Hecke-type formula for the Dunkl transform proved by
Dunkl in [11], and later in [3] using a representation theory approach.

To be more precise, let G ⊂ O(N) be a finite reflection group on RN with root system
R, and choose a positive subsystem R+ in R. Let k : R → R+, α 7→ kα be a G-invariant
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multiplicity function, and let ∆k be the Dunkl-Laplacian operator (see the next section
for the definition). Consider the operators

Jk :=
N

2
+ γk +

N∑
j=1

xj∂j ,

E :=
Jk −∆k/2− ‖x‖2/2

2
, F :=

Jk + ∆k/2 + ‖x‖2/2
2

, H :=
‖x‖2 −∆k

2
, (1.1)

where γk is a constant depending only on k. Due to the remarkable fact that [∆k, ‖x‖2] =
4Jk (cf. [14, Theorem 3.3]), it follows that the elements E, F and H satisfy the following
commutation relations

[E,H] = −2E, [F,H] = 2F, [E,F] = H. (1.2)

These are the commutation relations of a standard basis of the Lie algebra sl(2,R).
Hence, E,F and H form a Lie algebra of differential operators on RN isomorphic to
sl(2,R). This presentation defines an action ωk of sl(2,R) (which is isomorphic to su(1, 1))
on the Schwartz space S(RN ) by

ωk

[
1/2 i/2
i/2 −1/2

]
= E, ωk

[
0 −i
i 0

]
= H, ωk

[
1/2 −i/2
−i/2 −1/2

]
= F.

Let ϑk be the weight function on RN defined by ϑk(x) =
∏

α∈R+ |〈α, x〉|2kα . For
all X ∈ sl(2,R), we prove that the operator ωk(X) is skew-symmetric in the space
L2(RN , ϑk(x)dx). This is a consequence of the fact that J ∗

k = −Jk in L2(RN , ϑk(x)dx)
(see Proposition 3.9), and the well known fact that ∆k is symmetric with respect to the
weight ϑk. Moreover, we show that ωk satisfies Nelson’s criterion for a skew-symmetric
representation of a Lie algebra to be integrable to a unitary representation of the corre-
sponding simply connected Lie group [21]. Thus, ωk exponentiates to a unique unitary

representation Ωk of the universal covering ˜SL(2,R) of SL(2,R), for every positive real-
valued k (see Theorem 3.12). The representation Ωk descends to SL(2,R) if and only if
γk + N

2 ∈ N, and to the metaplectic group Mp(2,R) if and only if γk + N
2 ∈ N

2 .
In the light of the integrability of ωk, we show that the Dunkl transform, or the gen-

eralized Fourier transform, belongs to Ωk. This statement was proved earlier in [3] (in
view of the conjecture (i) mentioned above) using a generalized Segal-Bargmann trans-
form associated with the Coxeter group G. However, for self-containment we give here
another argument for this fact. As an application, we prove a Bochner-type identity for
the Dunkl transform. The identity asserts that, if p is a homogeneous polynomial such
that ∆kp = 0, then the Dunkl transform of the product of p with a radial function on
RN is again the product of p with a Hankel transform of the radial factor (see Theorem
3.17). This approach was used earlier by R. Howe to give a new proof for the classical
Bochner identity, which corresponds to k ≡ 0 and G = O(N) (cf. [15, 17]). We mention
that the Bochner identity for the Dunkl transform was announced, without proofs, in
the expository paper [5].

We thank the referee for insightful comments that helped us to improve the paper.
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2. Notations and background

Let 〈·, ·〉 be the standard Euclidean scalar product in RN as well as its bilinear exten-
sion to CN ×CN . For x ∈ RN , denote by ‖x‖ = 〈x, x〉1/2. Denote by S(RN ) the Schwartz
space of rapidly decreasing functions equipped with the usual Fréchet space topology.

For α ∈ RN \ {0}, let rα be the reflection in the hyperplane 〈α〉⊥ orthogonal to α

rα(x) := x− 2
〈α, x〉
‖α‖2

α, x ∈ RN .

A root system is a finite spanning set R ⊂ RN of non-zero vectors such that, for every
α ∈ R, rα preserves R. We shall always assume that R is reduced, i.e. R ∩Rα = {±α},
for all α ∈ R. Each root system can be written as a disjoint union R = R+ ∪ (−R+),
where R+ and (−R+) are separated by a hyperplane through the origin. The subgroup
G ⊂ O(N) generated by the reflections {rα | α ∈ R} is called the finite reflection group
associated with R. Henceforth, we shall normalize R so that 〈α, α〉 = 2 for all α ∈ R.
This simplifies formulas, without loss of generality for our purposes. We refer to [18] for
more details on the theory of root systems and reflection groups.

A multiplicity function on R is a G-invariant function k : R → C. Setting kα := k(α)
for α ∈ R, we have khα = kα for all h ∈ G. The C-vector space of multiplicity functions
on R is denoted by K . If m := ]{G-orbits in R}, then K ∼= Cm.

For ξ ∈ CN and k ∈ K , in [9], C. Dunkl defined a family of first order differential-
difference operators Tξ(k) that play the role of the usual partial differentiation. Dunkl’s
operators are defined by

Tξ(k)f(x) := ∂ξf(x) +
∑

α∈R+

kα〈α, ξ〉
f(x)− f(rαx)

〈α, x〉
, f ∈ C 1(RN ). (2.1)

Here ∂ξ denotes the directional derivative corresponding to ξ. This definition is indepen-
dent of the choice of the positive subsystem R+. The operators Tξ(k) are homogeneous
of degree (−1). Moreover, by the G-invariance of the multiplicity function k, the Dunkl
operators satisfy

h ◦ Tξ(k) ◦ h−1 = Thξ(k), ∀h ∈ G, (2.2)
where h ·f(x) = f(h−1 ·x). Remarkably enough, the Dunkl operators mutually commute,
i.e.

Tξ(k)Tη(k) = Tη(k)Tξ(k), ∀ξ, η ∈ RN .

Further, if f and g are in C 1(RN ), and at least one of them is G-invariant, then

Tξ(k)[fg] = gTξ(k)f + fTξ(k)g. (2.3)

We refer to [9, 12] for more details on the theory of Dunkl’s operators.
The counterpart of the usual Laplacian is the Dunkl-Laplacian operator defined by

∆k :=
N∑

j=1

Tξj
(k)2, (2.4)

where {ξ1, . . . , ξN} is an arbitrary orthonormal basis of (RN , 〈·, ·〉). By the normalization
〈α, α〉 = 2, we can rewrite ∆k as

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rαx)
〈α, x〉2

}
,
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where ∆ and ∇ denote the usual Laplacian and gradient operators, respectively (cf. [9]).
It follows from (2.2) and (2.4) that ∆k is equivariant under G,

h ◦∆k ◦ h−1 = ∆k, ∀h ∈ G. (2.5)

Remark 2.1. For the j-th basis vector ξj , we will use the abbreviation Tξj
(k) = Tj(k).

Henceforth, K + denotes the set of multiplicity functions k = (kα)α∈R such that
kα ∈ R+ for all α ∈ R. For k ∈ K +, there exists a generalization of the usual exponential
kernel e〈·,·〉 by means of the Dunkl system of differential equations.

Theorem 2.2. (cf. [10, 22]) Assume that k ∈ K +.
(i) There exists a unique holomorphic function Ek on CN × CN characterized by

Tξ(k)Ek(z, w) = 〈ξ, w〉Ek(z, w) ∀ξ ∈ CN ,
Ek(0, w) = 1. (2.6)

Further, the Dunkl kernel Ek is symmetric in its arguments and Ek(hz,w) = Ek(z, h−1w)
for h ∈ G and z, w ∈ CN .

(ii) (cf. [19]) For x ∈ RN and w ∈ CN , we have

|Ek(x,w)| ≤
√
|G|e‖x‖‖Re(w)‖. (2.7)

For complex-valued k, there is a detailed investigation of (2.6) by Opdam [22]. Theo-
rem 2.2 is a weak version of Opdam’s result. For integral-valued multiplicity function k,
another proof for Theorem 2.2 can be found in [2] by means of a contraction procedure.
When k ≡ 0, we have E0(z, w) = e〈z,w〉 for z, w ∈ CN .

Let ϑk be the weight function on RN defined by

ϑk(x) :=
∏

α∈R+

|〈α, x〉|2kα , x ∈ RN .

It is G-invariant and homogeneous of degree 2γk, with the index

γk :=
∑

α∈R+

kα.

Let dx be the Lebesgue measure corresponding to 〈·, ·〉, and set Lp(RN , ϑk(x)dx) to
be the space of Lp-integrable functions on RN with respect to ϑk(x)dx. Following Dunkl
[11], we define the Dunkl transform on the space L1(RN , ϑk(x)dx) by

Dkf(ξ) := c−1
k

∫
RN

f(x)Ek(x,−iξ)ϑk(x)dx, ξ ∈ RN ,

where ck denotes the Mehta-type constant ck :=
∫

RN e
−‖x‖2/2ϑk(x)dx. In view of (2.7),

the transform Dk is well-defined. Many properties of the Euclidean Fourier transform
carry over to the Dunkl transform. In particular:

Theorem 2.3. (cf. [11, 19]) If k ∈ K +, then:
(i) The Dunkl transform is a homeomorphism of the Schwartz space S(RN ). Its inverse

is given by D−1
k f(ξ) = Dkf(−ξ).

(ii) If f ∈ L1(RN , ϑk(x)dx) ∩ L2(RN , ϑk(x)dx), then Dk(f) ∈ L2(RN , ϑk(x)dx) and
‖Dk(f)‖2 = ‖f‖2. Further, Dk extends uniquely from L1(RN , ϑk(x)dx)∩L2(RN , ϑk(x)dx)
to a unitary operator on L2(RN , ϑk(x)dx).
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To conclude this section, we mention that the Dunkl operators are anti-symmetric
with respect to the weight function ϑk (cf. [9]): if f ∈ S(RN ) and g is smooth such that
both g and Tξ(k)g are at most of polynomial growth, then∫

RN

(Tξ(k)f)(x)g(x)ϑk(x)dx = −
∫

RN

f(x)(Tξ(k)g)(x)ϑk(x)dx. (2.8)

3. A unitary representation of ˜SL(2,R) and a Bochner identity

Choose x1, . . . , xN as the usual system of coordinates on RN , and recall the sl(2,R)-
triple {E,F,H} from the introduction (see (1.1) and (1.2)). What makes {E,F,H} im-
portant is the fact that H is the infinitesimal generator of the maximal compact subgroup
SO(2,R) of SL(2,R). Recall that the commutation relations (1.2) are due to the remark-
able fact that

[∆k, ‖x‖2] = 4Jk, (3.1)
(cf. [14, Theorem 3.3]).

Define the following three spaces

sl+2 := Span{E}, sl02 := Span{H}, sl−2 := Span{F}.
The direct sum

g := sl+2 ⊕ sl02 ⊕ sl−2 (3.2)
is preserved under the usual operator bracket and is isomorphic, as a Lie algebra, to
sl(2,R). This presentation defines an action ωk of sl(2,R) (which is isomorphic to su(1, 1))
on S(RN ). The decomposition (3.2) is an instance of the Cartan decomposition

sl(2,R)C = p+ ⊕ kC ⊕ p−,

with

ωk

[
1/2 i/2
i/2 −1/2

]
=

Jk −∆k/2− ‖x‖2/2
2

, (3.3)

ωk

[
0 −i
i 0

]
=
‖x‖2 −∆k

2
, (3.4)

ωk

[
1/2 −i/2
−i/2 −1/2

]
=

Jk + ∆k/2 + ‖x‖2/2
2

. (3.5)

Henceforth, we will write

k =
[

0 −i
i 0

]
, n+ =

[
1/2 i/2
i/2 −1/2

]
, n− =

[
1/2 −i/2
−i/2 −1/2

]
.

On the other hand, for h ∈ G, denote by π(h) the “left regular” action of the Coxeter
group G on S(RN )

π(h)f(x) = f(h−1x).
The actions of G and sl(2,R) on S(RN ) commute. This is a consequence of (2.5) and
the fact that Jk = (1/4)(∆k ◦ ‖x‖2 − ‖x‖2∆k) (see (3.1)).

To investigate the structure of the representation ωk, we first note that for a polyno-
mial p ∈ P(RN ), we have

eν‖x‖
2/2p(−T (k))e−ν‖x‖2/2 = p(νx− T (k)) for all ν ∈ R. (3.6)
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Here p(T (k)) is the operator derived from p(x) by replacing xj by Tj(k) (recall Remark
2.1 for the notation). The identity (3.6) follows from the product rule (2.3). In particular,
if p(x) =

∑N
j=1 x

2
j , equation (3.6) becomes

eν‖x‖
2/2∆ke

−ν‖x‖2/2 = ν2‖x‖2 + ∆k − ν
∑

j

(
xjTj(k) + Tj(k)xj

)
. (3.7)

Further, using the definition (2.4) of ∆k, it follows that

[∆k, ‖x‖2] = 2
∑

j

(
xjTj(k) + Tj(k)xj

)
.

Thus, in view of (3.1), equation (3.7) becomes

eν‖x‖
2/2∆ke

−ν‖x‖2/2 = ν2‖x‖2 + ∆k − 2νJk, for all ν ∈ R.

This formula allowes us to rewrite the sl(2)-triple {E,F,H} as

E = −1
4
e‖x‖

2/2∆ke
−‖x‖2/2, (3.8)

F =
1
4
e−‖x‖

2/2∆ke
‖x‖2/2, (3.9)

H = e−‖x‖
2/2

(
Jk −

∆k

2

)
e‖x‖

2/2. (3.10)

According to (3.9), the kernel of F consists of functions of the form e−‖x‖
2/2P (x), where P

is h-harmonic, i.e. ∆kP = 0. Now by (3.10), we get H(e−‖x‖
2/2P (x)) = e−‖x‖

2/2JkP (x).
Thus, e−‖x‖

2/2P (x) is an eigenvector for H with eigenvalue (|m| + N
2 + γk) if and only

if P is a homogeneous polynomial of degree |m|. Here m = (m1, . . . ,mN ) ∈ ZN
+ and

|m| = m1 + · · · + mN . In conclusion, P is a h-harmonic homogeneous polynomial of
degree |m| and

H
(
e−‖x‖

2/2P (x)
)

=
(
|m|+ N

2
+ γk

)
e−‖x‖

2/2P (x).

Henceforth, for m ∈ ZN
+ , we set H|m|,k to be the space of h-harmonic homogeneous

polynomials on RN of degree |m|.
On the other hand, for s ∈ N and P ∈ H|m|,k, the vectors vs := Es

(
e−‖x‖

2/2P (x)
)

are
eigenvectors for H with eigenvalues N/2 + γk + |m| + 2s. Further, the vectors vs form
an orthonormal basis for the space of the representation. Denote by WN/2+γk+|m| the
sl(2,R)-representation with lowest weight N/2 + γk + |m|. Moreover, for every ψ in the
Schwartz space S(R+) and P ∈ H|m|,k, one can check that

Jk

(
P (x)ψ(‖x‖2)

)
=

{
(|m|+N/2 + γk)ψ(‖x‖2) + 2‖x‖2ψ′(‖x‖2)

}
P (x), (3.11)

and

∆k

(
P (x)ψ(‖x‖2)

)
= 4

{
‖x‖2ψ′′(‖x‖2) + (|m|+N/2 + γk)ψ′(‖x‖2)

}
P (x). (3.12)

To prove (3.12) one needs to use the identity (3.1), i.e.
∑N

j=1(xjTj(k) + Tj(k)xj) =
2Jk. Thus, for every s ∈ N and P ∈ H|m|,k, the operator Es leaves the set IP :=
{ψ(‖ · ‖2)P | ψ ∈ S(R+)} invariant. In particular, the vectors vs belong to the space
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e−‖x‖
2/2P(RN ), which is dense in S(RN ). We summarize the consequences of the above

computations.

Theorem 3.1. (cf. [4]) Assume that k ∈ K + and N ≥ 1. Let k = so(2) be the Lie
algebra of the compact group SO(2,R).

(i) The space
∑

m∈ZN
+
H|m|,k·I(RN ), where I(RN ) denotes the space of O(N)-invariant

Schwartz functions on RN , is dense in S(RN ).
(ii) As a G× sl(2,R)-module, the G× k-finite vectors in the Schwartz space admit the

following decomposition

S(RN )G×k =
⊕

m∈Z+

H̃|m|,k ⊗W|m|+N
2

+γk
,

where W|m|+N
2

+γk
is the sl(2,R)-representation of lowest weight |m|+ N

2 +γk, and H̃|m|,k

is the O(N)-irreducible module e−‖x‖
2/2H|m|,k. The summands are mutually orthogonal

with respect to the inner product on L2(RN , ϑk(x)dx).

Remark 3.2. (i) The decomposition in (ii) could just as well be formulated for the space
L2(RN , ϑk(x)dx) as for the Schwartz space.

(ii) Those readers who are familiar with the theory of Howe reductive dual pairs [16]
will find that our formulation can be thought of as analogue of this theory.

The following is then immediate.

Corollary 3.3. Under the action of sl(2,R), the k-finite vectors in the Schwartz space
S(RN ) decompose as

S(RN )k =
⊕

m∈ZN
+

dim(H̃|m|,k)W|m|+N
2

+γk
,

where dim(H̃|m|,k) =
( |m|+N − 1

N − 1

)
−

( |m|+N − 3
N − 1

)
. If N > 1, dim(H̃|m|,k) is

always nonzero, but if N = 1, it is zero for |m| ≥ 2.

Remark 3.4. Above we used the fact that the map ∆k : P|m| −→ P|m|−2 is surjective.
Thus, dim(H|m|,k) = dim(ker(∆k)|P|m|

) = dim(P|m|)− dim(P|m|−2). We refer to [12] for
more details on the space H|m|,k.

Theorem 3.1(i) points us to consider the map

αN
m,k : H|m|,k ⊗ S(R+) → S(RN )

defined by
αN

m,k(h⊗ ψ)(x) := h(x)ψ(‖x‖2) (3.13)
with h ∈ H|m|,k and ψ ∈ S(R+). Moreover, using the representation ωk, we construct a
representation πN

m,k of sl(2,R) on S(R+) by

αN
m,k(h⊗ πN

m,k(X)ψ) = ωk(X)(αN
m,k(h⊗ ψ)), X ∈ sl(2,R). (3.14)

Write g = sl(2,R), gC = sl(2,C), and let {h, e+, e−} ⊂ g be the sl(2,R)-triple given
by

h =
[

1 0
0 -1

]
, e+ =

[
0 1
0 0

]
, e− =

[
0 0
1 0

]
.
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One checks easily that

h = n+ + n−, e+ =
i

2
(k− (n+ − n−)), e− = − i

2
(k + (n+ − n−)). (3.15)

The equations (3.11) and (3.12) imply that the action of the basis {h, e+, e−} on S(R+)
is given by the formulas:

πN
m,k(h) = 2t

d
dt

+
(
|m|+ N

2
+ γk

)
, (3.16)

πN
m,k(e

+) = i
t

2
, (3.17)

πN
m,k(e

−) = 2it
d2

dt2
+ 2i

(
|m|+ N

2
+ γk

) d
dt
, (3.18)

where t denotes the positive variable of R+. The following is then immediate.

Lemma 3.5. The action of k+,n+, and n− on S(R+) is given by

πN
m,k(k) = −2t

d2

dt2
− 2

(
|m|+ N

2
+ γk

) d
dt

+
t

2
,

πN
m,k(n

+) = −t d2

dt2
−

((
|m|+ N

2
+ γk

)
− t

) d
dt
− t

4
+

1
2
(
|m|+ N

2
+ γk

)
,

πN
m,k(n

−) = t
d2

dt2
+

((
|m|+ N

2
+ γk

)
+ t

) d
dt

+
t

4
+

1
2
(
|m|+ N

2
+ γk

)
.

Remark 3.6. (i) Observe that πN
m,k depends only on |m|+ N

2 + γk.

(ii) The infinitesimal representation πN
m,k appears also in [7] and in [20] (denoted by

λα and πr, respectively) from a different point of view and for a different reason.

Let U (g) be the universal enveloping algebra of gC, and let C be the quadratic Casimir
element corresponding to the Killing form of gC. By [17, Chap. I, Eq. (1.3.8)], we have

C = h2 + 2e+e− + 2e−e+. (3.19)

Proposition 3.7. The differential operator πN
m,k(C ) is the scalar operator given by

πN
m,k(C ) =

(
|m|+ N

2
+ γk

)(
|m|+ N

2
+ γk − 2

)
. (3.20)

Proof. Clearly we have

πN
m,k(h

2) = 4t2
d2

dt2
+ 4(|m|+ N

2
+ γk + 1)t

d
dt

+ (|m|+ N

2
+ γk)2, (3.21)

and

πN
m,k(e

+e− + e−e+) = −2t2
d2

dt2
− 2(|m|+ N

2
+ γk)t

d
dt
− (|m|+ N

2
+ γk). (3.22)

Now (3.20) follows from (3.21), (3.22) and (3.19). �

Equation (3.14) and Proposition 3.7 now combine to give the following:

Corollary 3.8. For all h ∈ H|m|,k and ψ ∈ S(R+), we have

ωk(C )αN
m,k(h⊗ ψ) =

(
|m|+ N

2
+ γk

)(
|m|+ N

2
+ γk − 2

)
αN

m,k(h⊗ ψ).
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Recall that L2(RN , ϑk(x)dx) denotes the space of square integrable functions on RN

with respect to the weighted measure ϑk(x)dx. If f and g belong to L2(RN , ϑk(x)dx),
we will write

〈〈f, g〉〉k :=
∫

RN

f(x)g(x)ϑk(x)dx.

Proposition 3.9. For every X ∈ g = sl(2,R), the operator ωk(X) is skew-symmetric.

Proof. Let us define the conjugate linear map on gC by X 7→ X∗, so that X∗ = −X for
X ∈ g. We shall prove that

〈〈ωk(X)f, g〉〉k = 〈〈f, ωk(X∗)g〉〉k, (3.23)

for every X ∈ gC. However, since X 7→ 〈〈f, ωk(X∗)g〉〉k is complex linear, it suffices to
prove (3.23) only for the basis {k,n+,n−}, for instance. We first note that

k = i(e− − e+), n+ =
1
2
(h + i(e+ + e−)), n− =

1
2
(h− i(e+ + e−)).

Thus k∗ = k and (n+)∗ = −n−. Now the anti-symmetry of the Dunkl operators with
respect to ϑk(x)dx (see (2.8)), implies the symmetry of ∆k with respect to the same
weighted measure, and therefore (3.23) holds for X = k. On the other hand, since
(n+)∗ = −n−, it suffices then only to prove that

〈〈ωk(n+)f, g〉〉k = −〈〈f, ωk(n−)g〉〉k.

By (1.1), this is equivalent to proving

〈〈Jkf, g〉〉k = −〈〈f,Jkg〉〉k.

One can see this from the following:∫
RN

(Jkf)(x)g(x)ϑk(x)dx

=
∫

RN

{ ∑
j

xj∂jf(x)
}
g(x)ϑk(x)dx+

(
γk +

N

2

) ∫
RN

f(x)g(x)ϑk(x)dx

= −
∫

RN

f(x)
{ ∑

j

∂jxjg(x)
}
ϑk(x)dx−

∫
RN

f(x)g(x)
{ ∑

j

xj∂jϑk(x)
}
dx

+
(
γk +

N

2

) ∫
RN

f(x)g(x)ϑk(x)dx

= −(N + 2γk)
∫

RN

f(x)g(x)ϑk(x)dx−
∫

RN

f(x)
{ ∑

j

xj∂jg(x)
}
ϑk(x)dx

+
(
γk +

N

2

) ∫
RN

f(x)g(x)ϑk(x)dx

= −
∫

RN

f(x)(Jkg)(x)ϑk(x)dx.

Above we used the fact that
∑N

j=1 xj∂jϑk(x) = 2γkϑk(x), since ϑk is homogenous of
degree 2γk. �
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Recall that H|m|,k = P|m| ∩ (Ker∆k) denotes the space of h-harmonic homogenous
polynomials of degree |m| = m1 + · · ·+mN . Let dω be the normalized rotation-invariant
measure on the unit sphere SN−1 ⊂ RN . It is well known that L2(SN−1, ϑk(θ)dω(θ)) =∑⊕

m∈ZN
+
H|m|,k. Let {h(m)

j }j∈J|m| be an orthonormal basis ofH|m|,k. Further, for m ∈ ZN
+ ,

j ∈ J|m|, and a non-negative integer `, define

c`,m :=
(

Γ(N/2)`!
πN/2Γ((N/2) + γk + |m|+ `)

)1/2

,

and

φ`,m,j(x) := c`,mh
(m)
j (x)L

|m|+N
2

+γk−1

` (‖x‖2)e−‖x‖
2/2.

Here Lα
` denotes the classical Laguerre polynomial given by

Lα
` (x) =

(α+ 1)`

`!

∑̀
j=0

(−`)j

(α+ 1)j

xj

j!
.

By [11, Proposition 2.4, Theorem 2.5], the functions

φ`,m,j , ` ∈ N, m ∈ ZN
+ , j ∈ J|m|

form an orthonormal basis of L2(RN , ϑk(x)dx).

Proposition 3.10. The dense subspace, in L2(RN , ϑk(x)dx), spanned by the functions{
φ`,m,j | ` ∈ N,m ∈ ZN

+ , j ∈ J|m|
}
, is stable under the action of ωk(sl(2,C)). More

precisely

ωk(k)φ`,m,j(x) =
(
|m|+ N

2
+ γk + 2`

)
φ`,m,j(x),

ωk(n+)φ`,m,j(x) = (`+ 1)φ`+1,m,j(x),

ωk(n−)φ`,m,j(x) = −
(
|m|+N/2 + γk + `− 1

)
φ`−1,m,j(x),

with φ−1,m,j ≡ 0. We may think of ωk(n+) and ωk(n−) as a creation and an annihilation
operators, respectively.

Proof. Using the following well known recursion relations (cf. [27, Section 6.14])

td2/dt2 Lα
` (t) + (α+ 1− t)d/dt Lα

` (t) = −`Lα
` (t),

td/dt Lα
` (t) = `Lα

` (t)− (`+ α)Lα
`−1(t),

td/dt Lα
` (t) = (`+ 1)Lα

`+1(t)− (`+ α+ 1− t)Lα
` (t),

we obtain

πN
m,k(k)

{
e−t/2L

|m|+N
2

+γk−1

` (t)
}

=
(
|m|+ N

2
+ γk + 2`

)
e−t/2L

|m|+N
2

+γk−1

` (t), (3.24)

πN
m,k(n

+)
{
e−t/2L

|m|+N
2

+γk−1

` (t)
}

= (`+ 1)e−t/2L
|m|+N

2
+γk−1

`+1 (t), (3.25)

πN
m,k(n

−)
{
e−t/2L

|m|+N
2

+γk−1

` (t)
}

= −
(
|m|+ N

2
+ γk + `− 1

)
e−t/2L

|m|+N
2

+γk−1

`−1 (t).

(3.26)

Now the statement holds by means (3.14). �
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Next we turn our attention to the exponentiation of the representation ωk. An operator
O is called essentially self-adjoint, if it is symmetric and its closure is self-adjoint. Let
O be a symmetric operator on a Hilbert space H with domain D(O), and let {fn}n be
a complete orthonormal set in H. If each fn ∈ D(O) and there exists λn ∈ R such that
Ofn = λnfn, for every n, then O is essentially self-adjoint and the spectrum of its closure
O, which is a self-adjoint operator, is given by Spec(O) = {λn | n ∈ Z} . We refer to [6,
Chapter 1] for more details on this matter.

We shall also, for ease reference, recall Nelson’s result [21]. Let g be a Lie algebra
over R, and G be the simply connected Lie group with Lie algebra g. A skew-symmetric
g-module ω is said to be integrable, if there exists a continuous unitary representation Ω
of G in a Hilbert space H such that ω = dΩ. Note that if ω = dΩ1 = dΩ2, then Ω1 = Ω2.
The following is a reformulation of a beautiful theorem due to Nelson [21].

Theorem 3.11. Let X1, . . . , Xl be a basis of g and ω a densely defined g-module in H.
Then ω = dΩ for some continuous unitary representation Ω of G if and only if (i) for all
X ∈ g, ω(X) is a skew-symmetric operator on H, and (ii) the operator ω(X2

1 + · · ·+X2
l )

is essentially self-adjoint.

Henceforth, G denotes the simply connected covering Lie group with Lie algebra
g = sl(2,R).

Theorem 3.12. The representation ωk exponentiates to define a unique unitary repre-
sentation Ωk of G on L2(RN , ϑk(x)dx).

Proof. Let u1 = e+ − e−, u2 = e+ + e− and u3 = h, so that {ui}i is a basis of
g = sl(2,R). In particular

−u1
2 + u2

2 + u3
2 = h2 + 2e+e− + 2e−e+ = C , and u1

2 = −k2.

By Corollary 3.8 and Proposition 3.10, the elements of the orthonormal basis {φ`,m,j :
` ∈ N,m ∈ ZN

+ , j ∈ J|m|} of L2(RN , ϑk(x)dx) are eigenvectors of

ωk(u1
2 + u2

2 + u3
2) = ωk(C − 2k2),

and the eigenvalues are real. Thus, the operator ωk(
∑

i ui
2) is essentially self-adjoint.

Moreover, by Proposition 3.9, ωk(X) is skew-symmetric for all X ∈ g. It follows then
from Theorem 3.11 that ωk exponentiates to define on L2(RN , ϑk(x)dx) a unique unitary
representation Ωk of the simply connected Lie group G. �

Remark 3.13. The above theorem proves the claim stated in [3] about the existence of
the integrated representation Ωk (recall the Introduction).

Remark 3.14. (i) Set 4 = u1
2 + u2

2 + u3
2. Since the elements φ`,m,j are eigenfunctions

normalized to one of ωk(4), it follows that these eigenfunctions are analytic vectors
for ωk(4). Thus, by virtue of [21, Theorem 3], the set {φ`,m,j} provides a dense set of
analytic vectors for the representation Ωk of G.

(ii) After this paper was finished, it came to our attention another beautiful theory of
integrability of Lie algebras representations elaborated by Flato, Simon, Snellman and
Sternheimer [13]. In contrast to Nelson’s theory it gives integrability criteria in terms
of the properties of the generators of the Lie algebra. Generally, Flato et al.’s criteria is
more effective in practical applications, especially for higher dimensional Lie algebras.

(iii) As suggested by the referee, one may also use the explicit action of {k,n+,n−}
on S(R+), and the euclidean Fourier transform to prove the integrability of ωk.
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Since G is simply connected, the following map R −→ K, t 7→ exp(t(e− − e+)), is a
diffeomorphism. Moreover, if Z denotes the center of G, then Z ⊂ K, and

Z = {exp(rπ(e− − e+)) | r ∈ Z} ' Z.

This is a consequence of the fact that Z is the kernel of the adjoint representation and the
fact that (e− − e+) = −ik. On the other hand, by Proposition 3.10, for every element
exp(t(e− − e+)) = exp(−itk) ∈ K we have

Ωk(exp(t(e− − e+)))φ`,m,j = Ωk(exp(−itk))φ`,m,j = e−it(|m|+γk+N
2

+2`)φ`,m,j .

The following two facts then hold:
(i) For γk+N

2 ∈ N, the element exp(rπ(e− − e+)) ∈ Ker Ωk if and only if rπ(e− − e+) ∈
Z2.

(ii) For γk+N
2 ∈ N

2 , the element exp(rπ(e− − e+)) ∈ Ker Ωk if and only if rπ(e− − e+) ∈
Z4.

For d = 1, 2, . . . , the quotient G/Zd is the d-th fold covering of the adjoint group
PSL(2,R). We may identify

SL(2,R) ≡ G/Z2 and Mp(2,R) ≡ G/Z4,

where Mp(2,R) is the metaplectic group, i.e. the double covering of SL(2,R). In the
light of all the above discussions, the following holds.

Proposition 3.15. For all k ∈ K + we have:
(i) The unitary representation Ωk descends to SL(2,R) if and only if γk + N

2 ∈ N.
(ii) The unitary representation Ωk descends to Mp(2,R) if and only if γk + N

2 ∈ N
2 .

(iii) The unitary representation Ωk descends to the universal covering ˜SL(2,R) if and
only if γk + N

2 ∈ R.

Recall that the Dunkl transform on the space L1(RN , ϑk(x)dx) is given by

Dkf(ξ) = c−1
k

∫
RN

f(x)Ek(x,−iξ)ϑk(x)dx, ξ ∈ RN .

Next we will prove that the Dunkl transform can be written as

Dk = ei
π
2
(γk+N

2
)e−i π

4
(‖x‖2−∆k). (3.27)

That is, up to a constant, Dk is an element of the integrated form of the representation ωk,
formulated above. This claim was proved earlier in [3, Corollary 4.14] using a generalized
Segal-Bargmann transform associated with the finite reflection group G. However, for
simplicity and completeness, we shall present here another argument.

As an immediate consequence of Proposition 3.10, we have

Ωk

(
exp(−iπ

2
k)

)
φ`,m,j(x) = (−i)2`+|m|e−i π

2
(γk+N

2
)φ`,m,j(x). (3.28)

On the other hand, by [11, Theorem 2.6], the Dunkl transform of φ`,m,j is given by

Dk(φ`,m,j)(x) = (−i)2`+|m|φ`,m,j(x). (3.29)

Now, since ei
π
2
(γk+N

2
)Ωk

(
exp(−iπ2k)

)
and Dk are unitary operators on L2(RN , ϑ(x)dx),

(3.27) follows from (3.28) and (3.29).
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Remark 3.16. From a representation theory point of view, representing a Fourier-type
transform by a group element, up to a constant, it is not a surprising phenomena. See
for instance [8, 15].

In the light of (3.27), we may define a transform FN
m,k on S(R+) by

αN
m,k

(
h⊗FN

m,k(ψ)
)

:= αN
m,k

(
h⊗ΠN

m,k

(
ei

π
2
(γk+N/2) exp(−iπ

2
k)

)
ψ

)
= Dk

(
αN

m,k(h⊗ ψ)
)
, (by (3.14) and (3.27))

where h ∈ H|m|,k, and ΠN
m,k is the unique unitary representation of the Lie group G such

that dΠN
m,k = πN

m,k (see Theorem 3.19 bellow for more details). Now the following holds.

Theorem 3.17. (Bochner-type formula) Let k ∈ K +. Then we have:
(i) If f(x) = h(x)ψ(‖x‖2), with h ∈ H|m|,k and ψ ∈ S(R+), then

Dk(f)(ξ) = h(ξ)FN
m,k(ψ)(‖ξ‖2),

where FN
m,k depends only on |m|+ N

2 + γk, up to a constant, i.e.

e−i π
2
(γk+N

2
)FN

m,k = e−i π
2
(γk′+

N′
2

)FN ′
m′,k′

if

|m|+ N

2
+ γk = |m′|+ N ′

2
+ γk′ . (3.30)

(ii) The transform FN
m,k coincides with the classical Hankel transform. More precisely,

for ψ ∈ S(R+),
FN

m,k(ψ)(r2) = e−i π
2
|m|H|m|+N

2
+γk−1(ψ ◦Υ)(r), (3.31)

where Υ(t) := t2 for t ∈ R, and

Hαf(r) :=
∫ ∞

0
f(s)

Jα(rs)
(rs)α

s2α+1ds

denotes the Hankel transform, with Jα is the Bessel function of the first kind. In these
circumstances, the statement (i) reads

Dk(hψ(‖ · ‖))(ξ) = e−i π
2
|m|h(ξ)H|m|+γk+N

2
−1(ψ)(‖ξ‖),

for h ∈ H|m|,k and ψ ∈ S(R+).

Proof. The first statement holds from the definition of FN
m,k, and from Lemma 3.5.

To prove (ii), let us start with m ∈ ZN
+ such that |m| = 0, i.e. m = 0. In this

case f(x) = ψ(‖x‖2), i.e. f is a radial function. This case was basically done in [28]
(see also [24]). However, for completeness we shall briefly include the argument for
radial functions. Assume that F (x) = F◦(‖x‖). Using the polar coordinates and the
homogeneity of ϑk, we have

Dk(F )(ξ) = c−1
k

∫ ∞

0
F◦(r)r2γk+N−1

{∫
SN−1

Ek(−irξ, θ)ϑk(θ)dω(θ)
}
dr.

By [28, Corollary 2.2], we have∫
SN−1

Ek(−irξ, θ)ϑk(θ)dω(θ) = ck
Jγk+N/2−1(r‖ξ‖)
(r‖ξ‖)γk+N/2−1

.
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Thus Dk(F )(ξ) = Hγk+N/2−1(F◦)(‖ξ‖). This implies that

Dk(f)(ξ) = Hγk+N
2
−1(ψ ◦Υ)(‖ξ‖)

whenever f(x) = ψ(‖x‖2), and therefore FN
0,k(ψ)(‖ξ‖2) = Hγk+N

2
−1(ψ ◦ Υ)(‖ξ‖). Now

let m ∈ ZN
+ such that |m| 6= 0. Equation (3.30) gives

FN
m,k(ψ)(r2) = e−i π

2
|m|F

2|m|+N
0,k (ψ)(r2) = e−i π

2
|m|Hγk+N

2
+|m|−1(ψ ◦Υ)(r).

�

Example 3.18. (Hecke-type formula) If ψ(s) = e−
s2

2 , then

Dk

(
e−

‖x‖2
2 h

)
(ξ) = e−i π

2
|m|h(ξ)H|m|+γk+N

2
−1

(
e−

s2

2
)
(‖ξ‖)

= e−i π
2
|m|e−

‖ξ‖2
2 h(ξ).

Thus, we recover the Hecke formula for the Dunkl transform which was initially proved
by Dunkl in [11], and later in [3] by Ørsted and the present author using an sl(2,R)-
argument similar to the one illustrated above.

We shall give two representation formulas for FN
m,k, when 2γk +N ∈ N. From (3.31),

substituting t = r2, we have

FN
m,k(ψ)(t) = e−i π

2
|m|

∫ ∞

0
ψ(s2)

J|m|+γk+N
2
−1(s

√
t)

(
√
t)|m|+γk+N

2
−1

s|m|+γk+N
2 ds.

Using the following well known formula(
d

dz

)ℵ [
z−(ν−1)Jν−1(z)

]
= (−1)ℵz−(ν−1)Jν−1+ℵ(z),

we obtain
Jν(

√
ts)

(
√
t)ν

=
(
−2
s

)ℵ dℵ

dtℵ

{
Jν−ℵ(

√
ts)

(
√
t)ν−ℵ

}
.

Hence, the bellow integral representation for FN
m,k holds

FN
m,k(ψ)(t) = e−i π

2
|m|(−2)ℵ

dℵ

dtℵ

{∫ ∞

0
ψ(s2)

J|m|+γk+N
2
−1−ℵ(

√
ts)

(
√
t)|m|+γk+N

2
−1−ℵ

s|m|+γk+N
2
−ℵds

}
.

This expression leads to the following two representation formulas for the transform FN
0,k

(and thus for FN
m,k) when 2γk +N ∈ N:

(i) If 2γk +N = 2ℵ+ 1,

FN
0,k(ψ)(t) =

( 2
π

)1/2
(−2)ℵ

dℵ

dtℵ

{∫ ∞

0
ψ(s2) cos(

√
ts)ds

}
.

(ii) If 2γk +N = 2ℵ+ 2,

FN
0,k(ψ)(t) = (−2)ℵ

dℵ

dtℵ

{∫ ∞

0
ψ(s2)J0(

√
ts)sds

}
.
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Question. In [4], the authors proved that the wave equation associated with ∆k satisfies
the strict Huygens’ principle if and only if γk + (N − 3)/2 ∈ N. Does there exist a link
between the validity of Huygens’ principle and the fact that if 2γk +N is odd then FN

0,k

is given in terms of the cosine transform, while if 2γk +N is even then FN
0,k is given in

terms of the classical Hankel transform?

We conclude this paper by putting together a few facts regarding the representation
πN
m,k, since they are immediate consequences of the results previously elaborated.
For s ∈ R, write es = expG(se+), hs = expG(sh), and κ = expG(π

2 (e− − e+)) =
expG(−iπ2k). Here expG denotes the exponential map of sl(2,R) into G.

Recall that the Laguerre polynomials satisfy the orthogonality relation∫ ∞

0
e−tLα

ı (t)Lα
 (t)tαdt = δı

Γ(α+ ı+ 1)
Γ(ı+ 1)

.

Theorem 3.19. Let k ∈ K + and m ∈ ZN
+ .

(i) The dense subspace, in L2(R+, t|m|+N
2

+γk−1dt), spanned by the Laguerre functions{
e−t/2L

|m|+N
2

+γk−1

` (t)
}

`∈N, is stable under the action of πN
m,k(sl(2,C)), and the spectrum

of πN
m,k(k) is positive.

(ii) There exists a unique unitary representation ΠN
m,k of the simply connected Lie

group G on L2(R+, t|m|+N
2

+γk−1dt), such that πN
m,k(X)f = (d/ds)|s=0ΠN

m,k(exp(sX))f
for f ∈ S(R+). Further, the unitary representation ΠN

m,k may be described by the formu-
las:

① ΠN
m,k(es)f : t 7→ eits/2f(t);

② ΠN
m,k(hs)f : t 7→ e(|m|+γk+N/2)sf(e2st);

③ ΠN
m,k(κ)f : t 7→ 1

2
e−i π

2
(|m|+γk+N/2)H̄|m|+γk+N

2
−1(f)(t), where H̄α is the

Hankel-type transform given by

H̄αf(t) =
∫ ∞

0
f(u)

Jα((ut)1/2)
(ut)α/2

uαdu,

where Jα is the Bessel function of the first kind.

Proof. (i) This statement is just (3.24), (3.25), and (3.26).
(ii) The existence and the uniqueness of ΠN

m,k follow from Theorem 3.12 and (3.14).
However, in the light of the statement (i), one may also prove the integrability of πN

m,k

in a direct fashion using Nelson’s theorem, as we did previously with ωk. Both formulas
① and ② are clear. Formula ③ follows from the definition of FN

m,k and (3.31). �

Remark 3.20. Let %0(t) := e−t/2L
|m|+N/2+γk−1
0 (t) = e−t/2 be the vector annihilated by

πN
m,k(n

−) (see (3.26)). A simple change a variable gives(
ΠN

m,k(hs)%0, %0

)
:=

∫
R+

(
ΠN

m,k(hs)%0(t)
)
%0(t)t|m|+N

2
+γk−1dt

=
∫

R+

e−t cosh(s)t|m|+N
2

+γk−1dt

= Γ(|m|+ N

2
+ γk) cosh(s)−(|m|+N

2
+γk).
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On the other hand, every element of G can be written as exp(−iθ1k)hs exp(−iθ2k), with
θ1, θ2 ∈ R and s ≥ 0, and the corresponding Haar measure is |e2s − e−2s|dsdθ1dθ2 (cf.
[1, 25]). This decomposition of G and formula (3.24) imply that ΠN

m,k is square integrable
on G/Z only if |m|+N/2 + γk > 1.
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