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THE FUNCTIONAL EQUATION OF ZETA DISTRIBUTIONS
ASSOCIATED TO NON-EUCLIDEAN JORDAN ALGEBRAS

SALEM BEN SAÏD

Abstract. The paper is devoted to study certain zeta distributions associated with
simple non-Euclidean Jordan algebras. An explicit form of the corresponding func-
tional equation and Bernstein-type identities are obtained.

1. Introduction

In 1859 B. Riemann published his only paper in number theory which shows the
use of complex analysis into the subject. Riemann’s main goal was to outline the
eventual proof of the prime number theorem by counting the primes using complex
integration. In doing this, he introduced what is nowadays called the Riemann zeta
function ζ(s) =

∑∞
n=1 n

−s, for Re(s) > −1. Riemann proved that his ζ-function extends
meromorphically to the entire complex plane and satisfies the functional equation

π−s/2Γ(s/2)ζ(s) = π(1−s)/2Γ((1− s)/2)ζ(1− s).

This is the symmetric form of the functional equation, which represents one of the
fundamental results of zeta function theory.

Since then, there have been many generalizations of ζ(s), which are also known
as zeta functions. These functions arise naturally in many branches of analytic and
algebraic number theory, and their study has many important applications. Many of
these functions admit an analogue of the functional equation for ζ(s), and bear other
similarities to ζ(s). Probably the most important generalization of ζ(s) is due to Hecke,
where the functional equation of the twisted zeta function of algebraic number fields
was proved. In his celebrated 1950 Ph.D. thesis, Tate [20] lifted the zeta function to a
zeta integral defined on an adelic space, and reinterpreted Hecke’s results in terms of
Fourier analysis on the adelic object and its quotients, and the right mixture of their
multiplicative and additive structures. Tate’s method is powerful enough to uniformly
reprove the analytic continuation and functional equations of Hecke’s L-functions.

In the Archimedean case, the general theory of zeta integrals really begins around
1970 when Bernstein and Gel’fand jointly [4] and Atiyah [1] independently proved the
fundamental theorem of complex powers. This theorem states that the zeta integrals
have a meromorphic continuation to the whole complex plane with poles in a finite
number of arithmetic progressions of negative rational numbers. Bernstein later proved
the theorem again using his theory of Bernstein polynomials [5].

In 1972, Godment and Jacquet [12] generalized Tate’s results obtaining functional
equation for zeta integrals on the space of square matrices M(n,F), where F = R,C,
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or H. We mention that the study of zeta integrals and their functional equations in the
setting of prehomogeneous vector spaces has a long and rich history [19, 17, 18, 11, 6, 8].
(Of course, this list of references is not complete.)

The purpose of this paper is to give an explicit expression for the Fourier transform
of a new class of zeta integrals associated to a certain class of Lie groups defined by
Jordan algebras. We consider Lie groups which are related to conformal groups of an
non-Euclidean Jordan algebra. See the tables below for a precise list of the groups
under consideration. Bernstein-type identities are also obtained. Our results generalize
the functional equation and the Bernstein polynomials obtained in [3]. The Euclidean
case was treated earlier in [11].

To be more precise, let V be an non-Euclidean Jordan algebra of dimension m and
rank n, and let L be the structure group of V. According to the tables below, there
exists one and only one open and dense L-orbit O in V (cf. [9]).

Let ν be a Cartan involution of V, and set V = ν(V). For s = (s1, s2, . . . , sn) ∈ Cn,
let ∇s (resp. ∇s) be a type of kind of generalized power function defined on V (resp.
V). For instance, when V is the Jordan algebra of complex symmetric matrices, we have
∇s = |∇1|s1|∇2|s2−s1 · · · |∇n|sn−sn−1, where ∇j is the determinant of a block matrix of
size (n− j + 1)× (n− j + 1).

Let S (V) be the space of Schwartz functions on V. For h ∈ S (V) and f ∈ S (V),
define the following zeta integrals

Z(h, s) =

∫
O

∇s(X)h(X)dX, Z(f, s) =

∫
O

∇s(Y )f(Y )dY.

Here O is the open and dense L-orbit in V. The S ′-distributions defined by analytic
continuation of these two integrals are called zeta distributions. The main result of
the paper is to give, in a uniform way, an explicit expression of the functional equation
involving Z and Z for non-Euclidean Jordan algebras. The existence of such a functional
equation can be found in [7]. In order to do so, it is enough to find the functional
equation for a special subclass of functions in S (V). Using a decomposition theorem
proved in [14], we prove that

Z(f, s) = π−
m
2 π−|s|

n∏
j=1

Γ
(

sj+(e+1)+d(n−j)

2

)
Γ

(
−sj−d(n−j)

2

) Z(F (f),−s∗ − m

n
), (1)

where −s∗ − m
n

=
(
− sn − m

n
,−sn−1 − m

n
, . . . ,−s1 − m

n

)
, |s| = s1 + · · ·+ sn, and F (f)

is the Fourier transform of f. Here d and e are certain integers which depend on V.
In [6], the authors prove (1) where V is the complexification of an Euclidean Jordan

algebra. Further, in the particular case where s1 = s2 = · · · = sn, equation (1) coincides
with the functional equation proved in [3].

Using (1), we prove certain Bernstein-type identities for ∇s, in the sense that

∇`(∂X)2∇s(X) =
n∏

κ=`

(
sn−κ+1 + d(κ− 1)

)(
sn−κ+1 + (e− 1) + d(κ− 1)

)
∇s(`)(X)

where s(`) = (s1 − 2, . . . , sn−`+1 − 2, sn−`+2, . . . , sn) for 1 ≤ ` ≤ n.
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2. Preliminary results

Let V be a simple Jordan algebra. The structure group L of V is the group of linear
transformations g of V for which the polynomial det(X), the determinant of X ∈ V, is
semi-invariant, i.e.

det(gX) = χ(g) det(X),

where χ is the R∗-valued character of L. Denote by N the group of transformations nX

nX : v 7→ v +X, for v ∈ V,
and let P := LnN. Let j be the rational transformation of V defined by j(X) = −X−1,
the inverse in Jordan algebra sense. The conformal group G, or Kantor-Koecher-Tits
group of V, is the group of rational transformations of V generated by P and j. It
is a Lie group and P is a maximal parabolic subgroup of G, where N is abelian and
isomorphic to V. Hence, the Lie algebra n := Lie(N) has a natural structure of a Jordan
algebra. Next we shall make the list of the groups G under consideration, precise.

For X, Y ∈ V, let L (X)Y := XY, and define τ(X, Y ) := tr(L (XY )). Set ν to be a
Cartan involution of V, i.e. ν is an involutive automorphism of V such that the bilinear
form τ(ν(X), Y ) is positive definite. The involution

θ(g) := ν ◦ j ◦ g ◦ j ◦ ν, g ∈ G
is a Cartan involution for G. By abuse of notation, we also use θ to indicate its differ-
ential.

Let g = Lie(G) and l = Lie(L). The Lie algebra g is called the Kantor-Koecher-Tits
algebra of the Jordan algebra V, and let g = k ⊕ p be its Cartan decomposition with
respect to θ. Fix a maximal toral subalgebra t in the orthogonal complement of k∩ l in
k. The rank of V is n := dimR(t). The roots of tC, the complexification of tno , in gC,
form a root system of type Cn, and we fix a basis {γ1, γ2, . . . , γn} of t∗ such that

∆(gC, tC) =
{
± (γi ± γj)/2,±γj

}
.

For the subsystem ∆(kC, tC), there are three possibilities

An−1 =
{
± (γi − γj)/2

}
, Dn =

{
± (γi ± γj)/2

}
, and Cn.

The An−1 case arises when V is an Euclidean Jordan algebra.
Now we turn our attention to gC. For the Lie algebra sl2(C), we define

x =

[
0 1
0 0

]
, y =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
,

X =
1

2

[
i 1
1 −i

]
, Y =

1

2

[
−i 1
1 i

]
, H = i

[
0 1
−1 0

]
.

The Cayley transform is the automorphism of sl2(C) given by

c = Ad
1√
2

[
1 i
i 1

]
.

It satisfies
c(X) = x, c(Y ) = y, c(H) = h.

For 1 ≤ j ≤ n, let Ψj be the holomorphic homomorphisms

Ψj : sl2(C) → gC,
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such that Ψj(X) spans the root space pγj
, and write

Xj = Ψj(X), xj = Ψj(x), hj = Ψ(h), . . . .

The Cayley transform of gC is the product

c =
n∏

j=1

exp
{

ad
iπ

4
(xj + yj)

}
.

Thus we obtain an R-split toral subalgebra a defined by

a = c(it) = Rh1 ⊕ · · · ⊕ Rhn.

The roots of a in g are

∆(g, a) =
{
± εi ± εj; ±2εj

}
where εi =

1

2
γi ◦ c−1.

Let 2d be the multiplicity of the short roots, and let (e+1) be the multiplicity of the
long roots. If m := dim(V), then m = n

(
(e+ 1) + d(n− 1)

)
. The integers d and e are

listed in the tables below.
Recall that for X, Y ∈ V, L (X)Y = XY. If x is a primitive idempotent element,

then the possible eigenvalues of L (x) are 1, 1/2, and 0; and the Peirce decomposition
of V associated to x is given by V = V(x, 1)⊕V(x, 1

2
)⊕V(x, 0), where V(x, λ) := {v ∈

V | L (x)v = λv}. For ` = 1, . . . n, write V(n−`+1)
r := V(x` + · · ·+ xn, 1). Each V(n−`+1)

r

is a Jordan algebra of rank n− `+ 1, and V(1)
r ⊂ V(2)

r ⊂ · · · ⊂ V(n)
r = V. Also, one can

define the subalgebras V(`)
l := V(x1 + · · ·+ x`, 1) of rank `.

Let G be the set of conformal transformations defined at 0. Then G is an open dense
set in G and {

g ∈ G | g(0) = 0
}

= P ,

where P := L n N and N = θ(N). Moreover, G = NLN, and the map ψ : N ×
L×N → G is a diffeomorphism. The latter decomposition is called Gelfand-Naimark
decomposition. One can prove that if g ∈ G and X ∈ V, then gnX ∈ NLN and its
Gelfand-Naimark decomposition is given by

gnX = ng·XDg(X)n′,

where Dg(X) ∈ L is the differential of the map X 7→ g · X, and n′ ∈ N (cf. [15,
Proposition 1.2.2]).

Set V := ν(V). Observe that the Lie algebra n (resp. n) of N (resp. N) can be
identified with V (resp. V).

Define Λ` :=
∑n

k=` εk, and let V(n−`+1) (resp. V(n−`+1)
) be a Jordan algebra in V

(resp. V) of rank n − ` + 1. On open and dense subsets of V(n−`+1) and V(n−`+1)
,

respectively, we may define the functions

∇`(X) := eΛ` log(Dj(X−1)),

for X ∈ V and 1 ≤ ` ≤ n, and the functions

∇1(X) := ∇1(ν(X)), ∇`(X) :=
∇1(ν(X))

∇n−`+2(ν(X))
,
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for X ∈ V and 2 ≤ ` ≤ n. We mention that our definition of ∇` and ∇` is different
from the one in [6]. (See also Remark 7 below.) Using [10, Section II.3], one can see
that ∇` and ∇` are given in terms of the principal minors associated to V and V,
respectively. See the tables below for more information. Moreover, ∇2

` and ∇2

` are two
homogeneous polynomials of degree 2(n− `+ 1). Thus, both ∇` and ∇` extend to well

defined functions on V(n−`+1) and V(n−`+1)
, respectively.

For a given simple non-Euclidean Jordan algebra, the Kantor-Koecher-Tits group
and algebra are not quite unique. Groups with different centers or fundamental groups
may arise. Bellow we give the precise list of the Lie groups G under consideration. We
shall also use the following notations: for 1 ≤ ` ≤ n, we denote by det` the determinant
of the block matrix

 a`,` · · · a`,n
...

...
an,` · · · an,n

 .

For X = (X1, . . . , Xn) ∈ Cn, we shall write ‖X‖1 = |X1|2 − |X2|2 − · · · − |Xn|2, and
‖X‖2 = |X1|+|Xn|. Further, we will view the quaternionic matrices as complex matrices

of the form

[
A B
−B A

]
.

V G L ∇` d e

Symn(C) Spn(C) GLn(C) |det`| 1 1

Mn(C) SL2n(C) S(GLn(C)2) |det`| 2 1

Skew2n(C) SO4n(C) GL2n(C) |Pfaffian`| 4 1

Herm3(O)C E7,C E6,C × C∗ |deg.(4− `) C-poly.| 8 1

Cn SOn+1(C) On−1 × R+ ‖ · ‖` n− 2 1

Non-Euclidean Jordan algebras of type I: the complex cases

V G L ∇` d e

Sym2n(C) ∩Mn(H) Spn,n GLn(H) |det`(A+ iB)| 2 2

Mn(H) SL2n(H) GLn(H)2 |det`(A+ iB)| 4 3

Rn×1 SOn,1 On−1 × R∗ ‖ · ‖1/2
` 0 n− 1

Non-Euclidean Jordan algebras of type I: the non-complex cases
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V G L ∇` d e

Mn(R) GL2n(R) GL2n(R)2 |det`| 1 0

Skew2n(R) O2n,2n GLn(R) Pfaffian` 2 0

Herm3(Os) E7(7) E6(6)× R+ |deg. (4− `) R-poly.| 4 0

Rp−1 × Rq−1 Op,q, p, q ≥ 3 SOp−1,q−1 × R+ ‖ · ‖` (p+ q − 4)/2 0

Non-Euclidean Jordan algebras of type II

3. The functional equation

Next, we turn our attention to the functional equation. For that we need to introduce
some notation for the Fourier transform. Recall that τ(X, Y ) = tr(L (XY )), and ν is
an involution of V such that τ(ν(X), Y ) is positive definite. We consider the inner
product on V defined by

〈X, Y 〉 :=
n

m
τ(X, Y ). (2)

The corresponding norms are

‖X‖2 := 〈ν(X), X〉 for X ∈ V, and ‖Y ‖2 := 〈ν(Y ), Y 〉 for Y ∈ V.
These norms determine the Lebesgue measure dX on V and dY on V, in a standard
way.

Recall that g denotes the Lie algebra of the conformal group G. Set

〈〈·, ·〉〉g =
n

4m
B( · , · )

to be the non-degenerate pairing between n ∼= V and n ∼= V. Here B is the Killing form
of g.

Lemma 1. Let V(`) ⊂ V be a smaller Jordan algebra of rank ` ≤ n. If g` denotes the
Lie algebra of the conformal group G` associated to V(`), then the restriction of 〈〈·, ·〉〉g
to g` × g` coincides with 〈〈·, ·〉〉g`

.

Proof. Since g` is simple and 〈〈·, ·〉〉g is g`-invariant, there exists a nonzero constant c
such that 〈〈·, ·〉〉g = c〈〈·, ·〉〉g`

on g` × g`. To see that c = 1, compute

〈〈H1, H1〉〉g = tr(ad(H1)
2) =

n

4m
8(d(n− 1) + (e+ 1)) = 2,

and, if m` = dim(V(`)), then

〈〈H1, H1〉〉g`
= tr(ad(H1)

2∣∣g`

) =
`

4m`

8(d(`− 1) + (e+ 1)) = 2.

�

The significance of the above lemma is that when we pass from V to a smaller Jordan
algebra V(`) in the induction argument below the pairing (2) is unchanged.

Set O(n)
ξ to be the open L-orbit of the element

∑n
j=1 ξjxj in a simple Jordan algebra

V, where ξj = ±1. If V is an Euclidean Jordan algebra, then ξj = 1 for 1 ≤ j ≤ p and
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ξj = −1 for p+ 1 ≤ j ≤ n; and there are n+ 1 open L-orbits. If V is a Jordan algebra
of type I or of type II, and for the choices of G we work with, we have ξj = 1 for all

1 ≤ j ≤ n (cf. [9]). Denote by O(n)
1 the orbit of the element

∑n
j=1 xj, which is open

and dense in V, and is a semisimple symmetric space.
For s = (s1, s2, . . . , sn) ∈ Cn, define

∇s(X) := ∇1(X)s1∇2(X)s2−s1 · · ·∇n(X)sn−sn−1 , for X ∈ V,
and

∇s(Y ) := ∇1(Y )s1∇2(Y )s2−s1 · · ·∇n(Y )sn−sn−1 , for Y ∈ V.
Denote by S (V) and S (V) the spaces of Schwartz functions on V and V, respectively.

For f ∈ S (V) and h ∈ S (V), define

Z(f, s) :=

∫
O

(n)
ξ

f(Y )∇s(Y )dY, Z(h, s) :=

∫
O

(n)
ξ

h(X)∇s(X)dX.

For the case when V is an Euclidean Jordan algebra, a functional equation involving
Z(·, s) and Z(·, s) was proved in [11, Theorem 1]. Thus, we shall restrict our attention
to the cases where V is of type I and type II.

In the set s ∈ Cn for which ∇s and ∇s are absolutely convergent on V and V,
respectively, the integrals Z(f, s) and Z(h, s) are complex meromorphic functions of
s ∈ Cn. Next, we will show that there is a meromorphic continuation to all of Cn,
and a functional equation relating the two integrals, via the Fourier transform, holds.
A general reason for the existence of the functional equation and the meromorphic

continuation can be found in [7]. Since O(n)
1 is dense in V, we may rewrite Z(f, s) and

Z(h, s) as integrals over V and V, respectively.
For p, q ∈ {0,±1}, let

g(p, q; `) =
{
X ∈ g | ad(h1 + · · ·+ h`)X =

p

2
X, ad(h`+1 + · · ·+ hn)X =

q

2
X

}
.

By [14], we have V ∼= V(`)
l ⊕ g(1,−1; `)⊕V(n−`)

r . Fix `. For the smaller Jordan algebras

V(`)
l and V(n−`)

r , we will denote the analogs of ∇j by ∇l,j and ∇r,j. Similarly, we write

∇l,j and ∇r,j for V(`)

l and V(n−`)

r .

If h ∈ L 1(V, dX) and f ∈ L 1(V, dY ), then by [14] we have∫
V
h(X)dX =

∫
g(1,−1;`)

∫
V(n−`)
r

∫
V(`)

l

h
(

exp(u)(X +X ′)
)
∇l,1(X)2d(n−`)dXdX ′du, (3)

and ∫
V
f(Y )dY =

∫
g(1,−1;`)

∫
V(n−`)
r

∫
V(`)

l

f
(

exp(v)(Y + Y ′)
)
∇r,1(Y

′)2d`dY dY ′dv, (4)

(see [3] for the proof). Here we give the subspaces g(1,−1; `),V(`)
l ,V

(n−`)
r ,V(`)

l , and

V(n−`)

r the Lebesgue measures determined by the restriction of 〈·, ·〉 to each subspace,
and we normalize them in the same way as the measure dX on V and dY on V.

Remark 2. (i) For u ∈ g(1,−1; `)

ad(u) : V(`)
l → g(1, 1; `), ad(u) : g(1, 1; `) → V(n−`)

r , ad(u) : V(n−`)
r → 0.
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Hence Ad(exp(u)) = I + ad(u) + 1
2
ad(u)2 on V(`)

l , and ad(u)2 : V(`)
l → V(n−`)

r .

(ii) For u ∈ g(1,−1; `) and X in a compact set in V(`)
l , such that ∇l,1(X) 6= 0, there

exist two constants C and C ′ such that C‖u‖ ≤ ‖ ad(u)(X)‖ ≤ C ′‖u‖.

For f ∈ S (V) and h ∈ S (V), define the Fourier transforms by

F (f)(X) =

∫
V
f(Y )e−2πiτ(X,Y )dY, F (h)(Y ) =

∫
V
h(X)e−2πiτ(X,Y )dX.

We normalize the Lebesgue measures on V and V by F 2(f)(X) = f(−X) and F 2(h)(Y ) =

h(−Y ). Further, we define T f ∈ C∞(V(`)

l × V(n−`)

r ) and Th ∈ C∞(V(`)
l × V(n−`)

r ) by

T f (Y, Y
′) =

∫
g(1,−1;`)

f
(
exp(u)(Y+Y ′)

)
du, Th(X,X

′) =

∫
g(1,−1;`)

h
(
exp(v)(X+X ′)

)
dv.

The functions T f and Th are not defined everywhere. For example the integral defining
Th(0, 0) is not convergent when h(0, 0) 6= 0. However, among other things, we can show
that T f and Th are defined almost everywhere for the Schwartz functions f and h.

Henceforth we fix ` = 1. For V(1)
l , set

O(1)
l :=

{
X ∈ V(1)

l | ∇l,1(X) 6= 0
}
.

The orbit O(1)
l is open and dense in V(1)

l .

Lemma 3. Let h ∈ S (V) and f ∈ S (V).

(i) For fixed X ′ ∈ V(n−1)
r (resp. Y ∈ V(1)

l ), the integral defining Th(X,X
′) (resp.

T f (Y, Y
′)) is finite when ∇l,1(X) 6= 0 (resp. ∇r,1(Y

′) 6= 0), i.e. Th and T f are defined
almost everywhere.

(ii) For a compact K in O(1)
l and an integer N, there exists a constant C such that

Th(X,X
′) ≤ C(1 + ‖X ′‖)−N , for X ∈ K.

Further, for X ∈ O(1)
l , Th(X, ·) ∈ S (V(n−1)

r ).

Proof. (i) Recall that Ad(exp(u)) = I + ad(u) + 1
2
ad(u)2 on V(1)

l . Since h is a Schwartz
function in each variable, then for an integer N , there exists a constant C such that∣∣h( exp(u)(X +X ′)

)∣∣ =
∣∣h(X + ad(u)X +X ′ +

1

2
ad(u)2(X)

)∣∣
≤ C(1 + ‖ ad(u)X‖)−N

≤ C ′(1 + ‖u‖)−N .

Now if N is big enough, then (1 + ‖u‖)−N is no n an L 1-function on g(1,−1; 1). The
corresponding statement for T f follows in a similar way.

(ii) Again, since h is a Schwartz function in each variable, then for M,N ∈ N, there
exists a constant C such that∣∣h( exp(u)(X +X ′)

)∣∣ ≤ C
(
1 +

∥∥X ′ +
1

2
ad(u)2(X)

∥∥)−N(
1 +

∥∥ ad(u)X
∥∥)−M

.

Using Remark 2, and the fact that

1 + ‖X ′‖
1 +

∥∥X ′ + 1
2
ad(u)2(X)

∥∥ ≤ 1 +
∥∥1

2
ad(u)2(X)

∥∥,
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we can see that for X ∈ K, Th(X,X
′) ≤ C ′(1 + ‖X ′‖)−N . The last claim in (ii) follows

by using the same method applied to the derivatives of h with respect to the variable

in V(n−1)
r . �

Let O :=
{
X ∈ V | Proj(X) ∈ O(1)

l

}
where Proj : V −→ V(1)

l is the orthogonal
projection. For an arbitrary domain Ξ, we denote by D(Ξ) the set of smooth functions
having compact support in Ξ.

Lemma 4. If h ∈ D(O), then Th ∈ D(O(1)
l × V(n−1)

r ).

Proof. The change of coordinates (X, u,X ′) 7→ exp(u)(X +X ′) is a smooth one-to-one

map V(1)
l ×g(1,−1; 1)×V(n−1)

r −→ V, and is a diffeomorphism from O(1)
l ×g(1,−1; 1)×

V(n−1)
r onto O, with Jacobian ∇l,1(X)2d(n−1) as proved in [3, Lemma 3.14]. Then

h
(
exp(u)(X +X ′)

)
= h

(
X + ad(u)X +X ′ + 1

2
ad(u)2X

)
is smooth and has a compact

support contained in O(1)
l × g(1,−1; 1)× V(n−1)

r . Hence, the lemma holds. �

Let V] :=
{
X ∈ V | ∇1(X) · · ·∇n(X) 6= 0

}
⊂ O(n)

1 (recall that O(n)
1 is the open

dense L-orbit in V). For the zeta distributions Z and Z, we shall use the subscript `
to indicate the rank. Further, observe that the integers d and e for a Jordan algebra
V(`) ⊂ V of rank ` ≤ n are the same as for V, unless ` = 1 where d = 0 for V(1).

Proposition 5. Let h ∈ D(O ∩ V]). If s = (s1; s̃) where s̃ := (s2, . . . , sn), then
(i) Zn−1(Th(X, ·), s̃) is a smooth function with compact support in the X-variable.
(ii) As meromorphic functions of s

Z(h, s) = Z1

(
∇l,1(·)2d(n−1)Zn−1(Th, s̃), s1

)
.

Proof. (i) Notice that if exp(u)(X +X ′) ∈ O ∩ V], then

∇r,s̃(X
′) := ∇r,1(X

′)s2∇r,2(X
′)s3−s2 · · ·∇r,n−1(X

′)sn−sn−1 6= 0.

Thus

Zn−1(Th(X, ·), s̃) =

∫
V(n−1)
r

Th(X,X
′)∇r,s̃(X

′)dX ′

for all X ∈ V(1)
l and s̃ ∈ Cn−1. By differentiating inside the integral, we can see that

Zn−1(Th(X, ·), s̃) is smooth and, by the previous lemma, has compact support.
(ii) Start with s such that ∇s is absolutely convergent. Using the fact that

∇1(X +X ′) = ∇l,1(X)∇r,1(X
′)

∇`(X +X ′) = ∇r,`−1(X
′), 2 ≤ ` ≤ n,
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for X ∈ V(1)
l and X ′ ∈ V(n−1)

r , and the integral formula (3), we obtain

Z(h, s) =

∫
V
h(X)∇s(X)dX

=

∫
V(1)

l

∫
V(n−1)
r

Th(X,X
′)∇s(X +X ′)∇l,1(X)2d(n−1)dX ′dX

=

∫
V(1)

l

∫
V(n−1)
r

Th(X,X
′)∇r,s̃(X

′)∇l,1(X)s1∇l,1(X)2d(n−1)dX ′dX

=

∫
V(1)

l

Zn−1

(
Th(X, ·), s̃

)
∇l,1(X)2d(n−1)∇l,1(X)s1dX

= Z1

(
∇l,1(·)2d(n−1)Zn−1(Th, s̃), s1

)
.

Now, by meromorphic continuation, the statement holds for general s. �

Notice that if m` denotes the dimension of a smaller Jordan algebra of rank ` ≤ n,

then
m

n
=
m`

`
+ d(n− `). The dimension of a Jordan algebra of rank 1 is (e+ 1).

Theorem 6. Let s ∈ Cn and f ∈ S (V). As meromorphic functions

Z(f, s) = π−
m
2 π−|s|

n∏
j=1

Γ
(

sj+(e+1)+d(n−j)

2

)
Γ

(
−sj−d(n−j)

2

) Z(F (f), t(s))

where

t(s) =
(
−sn −

m

n
,−sn−1 −

m

n
, . . . ,−s1 −

m

n

)
,

and |s| = s1 + · · ·+ sn. Here Γ denotes the Euler gamma function.

Proof. We shall proceed by induction on the rank n of V.
For n = 1, the Jordan algebra V ≡ V ≡ Rm. Let s ∈ C be such that −m < Re(s) < 0.

For s in this range, both |x|s and |x|−s−m are locally L 1-functions on Rm. Since f and

e−πt|·|2 , for t > 0, are absolutely convergent, then∫
Rm

f(x)t−
m
2 e−

π|x|2
t dx =

∫
Rm

F (f)(y)e−πt|y|2dy.

Multiplying both sides by t
m+s

2
−1 and integrating over t > 0, we get∫ ∞

0

∫
Rm

t
s
2
−1f(x)e−

π|x|2
t dxdt =

∫ ∞

0

∫
Rm

t
m+s

2
−1F (f)(y)e−πt|y|2dydt. (5)

To evaluate the right hand side of (5), we switch the order of integration, and using
the substitution v = πt|y|2 instead of t, we obtain the right hand side of the functional
equation. For the left hand side of (5), we use again Fubini-Tonelli theorem to switch

the order of integration and use the change of variable u = π|x|2
t

instead of t. Then we
obtain the left hand side of the functional equation.

Next, we assume that the statement holds for every non-Euclidean Jordan algebra of
rank less than n.
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By [7], there exists a constant c(t(s)) such that Z(F (f), t(s)) = c(t(s))Z(f, s), for
f ∈ S (V). To explicitly compute the constant c(t(s)), it is enough to consider a subclass
of functions f in S (V).

Assume that Re(s1) � Re(s2) � · · · � Re(sn) � 0, so the integrals stated below

converge. For Y ∈ V(1)

l and Y ′ ∈ V(n−1)

r , we have

∇`(Y + Y ′) = ∇l,1(Y )∇r,`(Y
′), for 1 ≤ ` ≤ n− 1,

∇n(Y + Y ′) = ∇l,1(Y ).

Using the integral formula (4), Lemma 3, and Lemma 4, we obtain

Z(F (f), t(s))

=

∫
V

F (f)(X)∇t(s)(X)dX

=

∫
V(1)

l

∫
V(n−1)
r

∫
g(1,−1;1)

F (f)(exp(u)(X +X ′))∇t(s)(X +X ′)∇r,1(X
′)2ddudX ′dX

=

∫
V(1)

l

∫
V(n−1)
r

TF (f)(X,X
′)∇r,1(X

′)d∇l,1(X)−s1−m
n

∇r,1(X
′)−sn−m

n
+d∇r,2(X

′)sn−sn−1 · · ·∇r,n(X ′)s3−s2dX ′dX

=

∫
V(1)

l

∫
V(n−1)
r

TF (f)(X,X
′)∇r,1(X

′)d∇l,1(X)−s1−m
n ∇r,t(s̃)(X

′)dX ′dX

where

t(s̃) =
(
− sn −

mn−1

n− 1
,−sn−1 −

mn−1

n− 1
, . . . ,−s2 −

mn−1

n− 1

)
.

Using Proposition 5 and the following fact (cf. [14])

TF (f)(X,X
′)∇r,1(X

′)d = F1

(
∇l,1(·)d(n−1)Fn−1(Tf )

)
(X,X ′),
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where F1 (resp. Fn−1) is the Fourier transform on V(1)

l (resp. V(n−1)

r ), we conclude
that

Z(F (f), t(s))

=

∫
V(1)

l

∫
V(n−1)
r

F1

(
∇l,1(·)d(n−1)Fn−1(Tf )

)
(X,X ′)∇l,1(X)−s1−m

n ∇r,t(s̃)(X
′)dX ′dX

=

∫
V(1)

l

F1

(
∇l,1(·)d(n−1)Zn−1

(
Fn−1(Tf ), t(s̃)

))
∇l,1(X)−s1−m

n dX

= Z1

(
F1

(
∇l,1(·)d(n−1)Zn−1

(
Fn−1(Tf ), t(s̃)

))
,−s1 − d(n− 1)− (e+ 1)

)
= π−

(e+1)(n−1)
2

− d(n−1)(n−2)
2 π−|t(s̃)|π−

(e+1)
2 πs1+d(n−1)+(e+1) Γ

(−s1−d(n−1)
2

)
Γ
(

s1+d(n−1)+(e+1)
2

)
n−1∏
j=1

Γ
(−sj+1−d(n−1−j)

2

)
Γ
( sj+1+d(n−1−j)+(e+1)

2

)Z1

(
∇l,1(·)d(n−1)Zn−1(Tf , s̃), s1 + d(n− 1)

)
= π−

m
2 π−|t(s)|

n∏
j=1

Γ
(−sj−d(n−j)

2

)
Γ
( sj+d(n−j)+(e+1)

2

)Z1

(
Zn−1(Tf , s̃), s1 + 2d(n− 1)

)
= π−

m
2 π−|t(s)|

n∏
j=1

Γ
(−sj−d(n−j)

2

)
Γ
( sj+d(n−j)+(e+1)

2

)Z(f, s).

Now the theorem follows by meromorphic continuation. Notice that t(t(s)) = s. �

Remark 7. In [6], the authors consider the case of complex Jordan algebras where
they also prove the functional equation. Our definitions of ∇` and ∇` on V and V,
correspond to their definitions of |∆`|1/2 and |∇∗

` |1/2 on V and V, respectively. The fact
that these definitions are reversed explains the shift between the constants in [6] and
our constants.

4. Bernstein identities for ∇s

Recall that P`(X) := ∇`(X)2 and P `(Y ) := ∇`(Y )2 are two homogeneous polynomi-
als de degree 2(n− `+ 1). Then, define the constant coefficient operators characterized
by

P`(∂X)eτ(X,Y ) = P `(Y )eτ(X,Y ) and P `(∂Y )eτ(X,Y ) = P`(X)eτ(X,Y ).

Theorem 8. There exists a polynomial b`(s) on s so that

P `(∂Y )∇s(Y ) = b`(s)∇s(`)(Y ),

where
s(`) = (s1 − 2, s2 − 2, . . . , sn−`+1 − 2, sn−`+2, . . . , sn)

and

b`(s) =
n∏

κ=`

(
sn−κ+1 + d(κ− 1)

)(
sn−κ+1 + (e− 1) + d(κ− 1)

)
.

The polynomials b` are the so-called Bernstein polynomials of ∇s.
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Proof. Denote by c(s) = π−
m
2 π−|s|

n∏
κ=1

Γ
(

sκ+(e+1)+d(n−κ)
2

)
Γ

(
−sκ−d(n−κ)

2

) . By Theorem 6 we have

∫
V
f(Y )∇s(Y )dY = c(s)

∫
V

F (f)(X)∇t(s)(X)dX.

Changing f by P `(∂Y )f in the above equation, and using the fact that

F (P `(∂Y )f)(X) = (−1)n−`+1(2π)2(n−`+1)P`(X)F (f)(X),

we obtain∫
V
P `(∂Y )f(Y )∇s(Y )dY = (−1)n−`+1(2π)2(n−`+1)c(s)

∫
V

F (f)(X)P`(X)∇t(s)(X)dX.

(6)
On the other hand, if 2(n−`+1) denotes the vector (0, . . . , 0, 2, . . . , 2︸ ︷︷ ︸

n−`+1

), we can rewrite

P`(X)∇t(s)(X) as ∇t(s)+2(n−`+1)(X), where

∇t(s)+2(n−`+1) = ∇t(s(`)).

Here s(`) is the parameter introduced in the statement of the theorem. Using integration
by parts on the left hand side of (6), we get∫

V
f(Y )P `(∂Y )∇s(Y )dY = (−1)n−`+1(2π)2(n−`+1)c(s)

∫
V

F (f)(X)∇t(s(`))(X)dX

= (−1)n−`+1(2π)2(n−`+1) c(s)

c(s(`))

∫
V
f(Y )∇s(`)(Y )dY.

Hence

P `(∂Y )∇s(Y ) = (−1)n−`+1(2π)2(n−`+1) c(s)

c(s(`))
∇s(`)(Y ).

An easy computation shows that

c(s)

c(s(`))
=

1

π2(n−`+1)

n−`+1∏
κ=1

Γ
(

sκ+(e+1)+d(n−κ)
2

)
Γ

(
−sκ−d(n−κ)

2

) n−`+1∏
κ=1

Γ
(
−sκ−d(n−κ)

2
+ 1

)
Γ

(
sκ+(e+1)+d(n−κ)

2
− 1

) .
Using the fact that Γ(z + 1) = zΓ(z), we can see that

c(s)

c(s(`))
=

1

π2(n−`+1)

n−`+1∏
κ=1

(sκ + (e+ 1) + d(n− κ)

2
− 1

)(−sκ − d(n− κ)

2

)
=

(−1)n−`+1

(2π)2(n−`+1)

n−`+1∏
κ=1

(
sκ + d(n− κ)

)(
sκ + (e− 1) + d(n− κ)

)
.

�

For t ∈ Nn such that tn ≥ tn−1 ≥ · · · ≥ t1, we set

P t(∂Y ) := P 1(∂Y )t1P 2(∂Y )t2−t1 · · ·P n(∂Y )tn−tn−1 .
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Theorem 9. For t ∈ Nn such that tn ≥ tn−1 ≥ · · · ≥ t1, the following holds

P t(∂Y )∇s(Y ) = bt(s)∇s−2t∗(Y ),

where

bt(s) =
n∏

κ=1

(
sκ +

m

n
− d(κ− 1)− 2tκ

)
tκ,even

(
sκ + d(n− κ)

)
tκ,even

,

and t∗ = (tn, . . . , t1). Here (a)t,even := a(a+ 2)(a+ 4) · · · (a+ 2t).

Proof. Let |t| = t1 + · · · + tn. Since F (P t(∂Y )f)(X) = (−1)|t|(2π)2|t|P t(X)F (f)(X),
we can employ the same argument used in the proof of Theorem 8 with 2|t| integrations
by parts to obtain

P t(∂Y )∇s(Y ) = (−1)|t|(2π)2|t| c(s)

c(s− 2t∗)
∇s−2t∗(Y ).

�

Next we shall use
(
−m

n

)
to denote (−m

n
, . . . ,−m

n
).

Corollary 10. For any f ∈ S (V)

Z(f, s)∏n
j=1 Γ

( sj+
m
n
−d(j−1)

2

) ∣∣∣∣s=(
−m

n

) =
π

m
2∏n

j=1 Γ
( m

n
−d(j−1)

2

)f(0).

Proof. By the functional equation, we have

Z(f, s)∏n
j=1 Γ

( sj+(e+1)+d(n−j)

2

) =
π−

m
2 π−|s|Z(F (f), t(s))∏n
j=1 Γ

(−sj−d(n−j)

2

) .

Since
n∏

j=1

Γ

(
sj + (e+ 1) + d(n− j)

2

)
=

n∏
j=1

Γ

(
sj + m

n
− d(j − 1)

2

)
,

the corollary follows by Fourier inversion. �

The next corollary is a consequence of Corollary 10 and the fact that

Z(P t(∂Y )f, s) = bt(s)Z(f, s− 2t∗).

Corollary 11.

(
π−

m
2 bt(s)

n∏
j=1

Γ
(
−sj−d(n−j)

2

)
Γ

(
sj+

m
n
−d(j−1)

2

)Z(f, s− 2t∗)
)∣∣∣

s=(−m
n )

= P t(∂Y )δ

where δ denotes the Dirac function at 0.

Remark 12. This remark is an extension of Théorème III.10 in [2], which can be
derived by an almost straightforward modification of the proof in [2]. To simplify
the presentation of our statement, we shall slightly change the definition of ∇s. For
α = (α1, α2, . . . , αn) ∈ Cn, set ∇α := ∇α1

1 ∇α2
2 · · ·∇αn

n . The relation between ∇α and
∇s is that ∇α = ∇s if and only if α1 = s1 and αi = si−si−1 for 2 ≤ i ≤ n. For α ∈ Cn,
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such that Re(αi) � 0 for all 1 ≤ i ≤ n, the function ∇α is absolutely convergent. We
claim that if f ∈ S(V), then the function

α 7→ Rα(f),

where

Rα(f) :=

∫
V
f(X)∇α(X)dX∏

1≤i≤j≤n

Γ
(
αi + · · ·+ αj + d(n− j) + 1

)
Γ
(
αi + · · ·+ αj + d(n− j) + e

) ,
extends holomorphically to all of Cn. We shall only present the main steps of the
argument. In this setting, Rα deserves the name of Riesz distribution associated to
the non-Euclidean Jordan algebra V.

From Theorem 8, one can see that if we apply the polynomial differential operator
P`(∂X) to ∇α, then the shift is only negative in the power of the first factor in ∇α,
for every `. In order to shift the power of the other factors in ∇α we will use different
differential operators.

For X ∈ V] = {X ∈ V | ∇1(X) · · ·∇n(X) 6= 0 } and for 1 ≤ ` ≤ n, set

D`(α, ∂X) = ∇1(X)2+α1 · · ·∇`−1(X)2+α`−1 ◦ P`(∂X) ◦ ∇1(X)−α1 · · ·∇`−1(X)−α`−1 .

Using Theorem 9, we obtain

D`(α, ∂X)∇(X)α =
n−`+1∏
κ=1

(
α` + · · ·+ αn−κ+1 + d(κ− 1)

)
(
α` + · · ·+ αn−κ+1 + d(κ− 1) + (e− 1)

)
∇(X)α−2`+21+···+2`−1 ,

where 2j = (0, . . . , 0, 2, 0, . . . , 0) and

α− 2` + 21 + · · ·+ 2`−1 = (α1 + 2, . . . , α`−1 + 2, α` − 2, α`+1, . . . , αn).

Now we shall construct new differential operators which will allow us to shift down
the power of any factor in ∇α.

For 1 ≤ ` ≤ n and 1 ≤ j ≤ `− 1, let

Ej,`(α, ∂X) =
2`−1−j∏

i=1

Dj

(
a(α, `, i, j), ∂X

)
where

a(α, `, i, j) = α− 2` +
(
2`−1−j − (i− 1)

)
2j +

{
(i− 1) + 2`−1−j

}(
21 + · · ·+ 2j−1

)
.

The operator P`(α, ∂X) := E1,`(α, ∂X) ◦ · · · ◦ E`−1,`(α, ∂X) ◦ D`(α, ∂X) satisfies

P`(α, ∂X)∇(X)α =
n−`+1∏
κ=1

N`,κ(α)
`−1∏
j=1

2`−1−j∏
i=1{ n−`+1∏

κ=1

Nj,κ(α + 2`−1−j − 2i)

n−j+1∏
κ=n−`+2

Nj,κ(α + 2`−1−j − 2(i− 1))
}
∇(X)α−2` , (7)
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where

Nj,κ(α) :=
(
αj + · · ·+ αn−κ+1 + d(κ− 1)

)(
αj + · · ·+ αn−κ+1 + d(κ− 1) + (e− 1)

)
.

Now, we consider a second family of operators defined by

Fj,`(α, ∂X) =
2`−1−j∏

i=1

Dj

(
b(α, `, i, j), ∂X

)
where b

(
α, `, i, j

)
= α− (i− 1)2j +

{
i− 1− 2`−j

}(
21 + · · · + 2j−1

)
for 1 ≤ j ≤ `− 1.

The operator

P′
`(α, ∂X) := D`

(
α− (21 + · · ·+ 2`−1), ∂X

)
◦ F`−1,`(α, ∂X) ◦ · · · ◦ F1,`(α, ∂X)

satisfies

P′
`(α, ∂X)∇(X)α =

n−`+1∏
κ=1

N`,κ(α)
`−1∏
j=1

2`−1−j∏
i=1

n−j+1∏
κ=1

Nj,κ

(
α − 2(i − 1)

)
∇(X)α−2` . (8)

The purpose of P` and P′
` is to obtain, as nearly as we can, the set of possible

poles of ∇α. Indeed, by [2, Théorème III.10], only the common zeros of the Bernstein
polynomials in (7) and (8) can give a potential pole. Further, for every fixed ` ≤ n, one
can check that the common factors in (7) and (8) are∏

1≤j≤`≤i≤n

(
αj + · · ·+ αi + d(n− i)

)(
αj + · · ·+ αi + d(n− i) + (e− 1)

)
. (9)

Now we come to the last step in the proof of the claim above. For α ∈ Cn such that
Re αi � 0, for 1 ≤ i ≤ n, the function ∇α is absolutely convergent. By [2, Théorème
III.10], the factor (9) is the greatest common divisor of each Bernstein-type polynomial
b(α) that satisfies D`(α, ∂X)∇α = b(α)∇α−2` , for all 1 ≤ ` ≤ n and for all polynomial
differential operators D`(α, ∂X). Hence, the set of potential poles of Z(f,α) is included
in the set of those of∏

1≤j≤i≤n

Γ
(
αj + · · ·+ αi + d(n− i) + 1

)
Γ
(
αj + · · ·+ αi + d(n− i) + (e− 1) + 1

)
.

Remark 13. The distributions Rα are related to classical Riesz distributions and gener-
alizations. For instance, when V is a simple Euclidean Jordan algebra with symmetric
cone Ω, then families of Riesz distributions are associated to Ω. We refer to Faraut-
Korányi’s book [10] for a throughout study on Riesz distributions for symmetric cones.
See also [13]. In [10], the authors investigate the set of multi-parameters α for which
Rα is of positive type, i.e. Rα is a positive measure. For example, on the line,
and in Faraut-Korányi’s setting, Rα coincides with the Riemann-Liouville distribution

1
Γ(α)

xα−1
+ , which is positive if and only if α ≥ 0. In the framework of non-Euclidean

Jordan algebras, it is a natural question to ask for conditions on α such that Rα is of
positive type. In the case where α1 6= 0 and α2 = α3 = · · · = αn = 0, this problem has
a solution in [3], but the general case remains open.
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5. Appendix

For the convenience of the reader we briefly give some details on the notations that
we used in this paper for the case g = sp(n,C).

Assume that g is the Lie algebra sp(n,C) which is given by

sp(n,C) =

{[
U V
W −U t

]
| V,W ∈ Sym(n,C), U ∈M(n,C)

}
,

where Sym(n,C) denotes the subspace of symmetric matrices in M(n,C). The Lie
algebra g can be written as g = V⊕ l⊕ V where

V =

{[
0 V
0 0

]
| V ∈ Sym(n,C)

}
,

V =

{[
0 0
W 0

]
| W ∈ Sym(n,C)

}
,

l =

{[
U 0
0 −U t

]
| U ∈M(n,C)

}
.

In this example, mR = n(n + 1), e = 1, and d = 1. On V, the involution ν is given by

ν

[
0 V
0 0

]
=

[
0 0
V 0

]
. The action of the structure group L on V is given by[
u 0
0 {ut}−1

]
·
[

0 V
0 0

]
=

[
0 uV ut

0 0

]
.

For g1, g2 ∈ g, the pairing 〈〈g1, g2〉〉g = Re
(
Tr(g1g2)

)
. We choose the Lebesgue mea-

sures dX on V and dY on V to be

dX = (
√

2)n(n−1)
∏
i≤j

dvi,j, X =

[
0 (vi,j)i,j

0 0

]
∈ V,

dY = (
√

2)n(n−1)
∏
i≤j

dwi,j, Y =

[
0 0

(wi,j)i,j 0

]
∈ V.

For 1 ≤ ` ≤ n, we have the following subalgebras

V(`)
l =

{[
0 A
0 0

]
| A =

[
a 0
0 0

]
, a ∈ Sym(`,C)

}
⊂ V,

V(n−`)
r =

{[
0 C
0 0

]
| C =

[
0 0
0 c

]
, c ∈ Sym(n− `,C)

}
⊂ V,

g(1,−1; `) =

{[
B 0
0 −Bt

]
| B =

[
0 0
b 0

]
, b ∈M(n− `, `; C)

}
⊂ l.

The change of coordinates( [
0 A
0 0

]
;

[
B 0
0 −Bt

]
;

[
0 C
0 0

])
7−→

 0

[
a abt

ba babt + c

]
0 0

 ,
is a diffeomerphism from O(`)

l × g(1,−1; `) × V(n−`)
r −→ O(`). Here O(`)

l is the set of

elements in V(`)
l such that the matrix a is invertible, and O(`) is the set of elements
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0 V
0 0

]
in V where the principal minor det`(V ) 6= 0. We have a similar change of

coordinates for V.
Finally, we shall write the integral formula (3), where we identify V with Sym(n,C),

V(1)
l with C, V(n−1)

r with Sym(n − 1,C), and g(1,−1; 1) with Cn−1. Thus, for f ∈
L 1

(
Sym(n,C), dX

)
, we have∫

Sym(n,C)

f(X)dX =

∫
Sym(n−1,C)

∫
Cn−1

∫
C
f
( [

a abt

ba babt + c

])
|a|2(n−1)dadbdc.

A similar formula for V holds.
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