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HUYGENS’ PRINCIPLE FOR THE WAVE EQUATION ASSOCIATED
WITH THE TRIGONOMETRIC DUNKL-CHEREDNIK OPERATORS

SALEM BEN SAÏD

Abstract. Let a be an Euclidean vector space of dimension N, and let k = (kα)α∈R

be a multiplicity function related to a root system R. Let ∆(k) be the trigonometric
Dunkl-Cherednik differential-difference Laplacian. For (a, t) ∈ exp(a) × R, denote by
uk(a, t) the solution to the wave equation ∆(k)uk(a, t) = ∂ttuk(a, t), where the initial
data are supported inside a ball of radius R about the origin. We prove that uk has
support in the shell {(a, t) ∈ exp(a)× R | |t| − R ≤ ‖ log a‖ ≤ |t|+ R} if and only if the
root system R is reduced, kα ∈ N for all α ∈ R, and N is odd starting from 3.

1. Introduction

It is a well known fact that propagation of waves is different in the two- and in the three-
dimensional spaces. For instance, suppose we make a “noise” located near a point y at
time t = 0. This noise can be “heard” at a point x at a later time t only if the distance x−y
from y to x is less then t. This is true in all dimensions, but the three-dimensional space
is of a special interest. After the noise is heard, it moves away and leaves no revibration.
This is what is commonly known as Huygens’ principle [19]. Mathematically, a second
order hyperbolic equation satisfies Huygens’ principle if the solution of the corresponding
Cauchy problem at some point x depends not on all the Cauchy data, but only on its part
on the intersection of the characteristic conoid with vertex x with the Cauchy surface.
This means that the fundamental solution of the corresponding Cauchy problem vanishes
outside and inside the characteristic conoid, and thus must be located on it.

The problem of classifying all second order hyperbolic differential operators which sat-
isfy the Huygens principle is known as the Hadamard problem [12]. This problem has
received a good deal of attention and the literature is extensive [30, 20, 8, 10, 21, 31, 29,
22, 14, 2, 27, 3, 6, 1]. (Of course, this list of references is not complete.) Nevertheless, this
problem is still far from being fully solved. In this paper, we will investigate a natural
differential-difference operator of a similar hyperbolic nature, namely one with the same
leading symbol, but with additional reflection terms.

The propagation of waves in RN is governed by the wave equation

(L) ∆xu(x, t) = ∂ttu(x, t), for (x, t) ∈ RN × R.
Here ∆x denotes the usual Laplacian operator in the x-variable, and the subscript t indi-
cates differentiation in the t-variable. It is well known that (L) satisfies Huygens’ principle
only if N is odd starting from 3 (cf. [8]). In the present work, we will investigate the
validity of Huygens’ principle for (L) when the Laplacian ∆ is replaced by the so-called
trigonometric Dunkl-Cherednik Laplacian operator.

To be more precise, let W be a finite reflection group acting on an Euclidean vector
space (a, 〈·, ·〉). Put N := dim(a). Let R be a crystallographic root system, and let k :
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R → R+, α 7→ kα be a multiplicity function satisfying kwα = kα for all w ∈ W. The
Dunkl-Cherednik Laplacian operator is given by

∆(k) = ∆A +
∑

α∈R+

kα coth(α/2)∂α + 〈ρ(k), ρ(k)〉

+
∑

α∈R+

kα

{
〈α, α〉 e−α

1− e−α
− 4〈α, ρ(k)〉

}
4α +

∑
α,β∈R+

kαkβ4α4β ,

where ∆A denotes the Laplace operator on A := exp(a), ρ(k) := 1
2

∑
α∈R+ kαα, and

4α := (1−e−α)−1⊗ (1−rα), where rα is the reflection in the hyperplane 〈α〉⊥ orthogonal
to the root α.

Consider the following Cauchy problem

∆(k)uk(a, t) = ∂ttuk(a, t), uk(a, 0) = f(a), ∂tuk(a, 0) = g(a),

where uk(a, t) is a function of (a, t) ∈ A×R, and the Cauchy data f and g are two smooth
compactly supported functions on A.

For R > 0, let BR ⊂ a be the closed ball of radius R about the origin, and let C∞
R (A) be

the space of smooth functions with support contained in exp(BR). Using Opdam’s Paley-
Wiener theorem for the Cherednik transform [25], we prove that uk(a, t) is supported in
the shell {

(a, t) ∈ A× R | |t| −R ≤ ‖ log a‖ ≤ |t|+R
}

if and only if the root system R is reduced, kα ∈ N for all α ∈ R+, and N is odd starting
from 3.

As a particular case, if we consider the W -invariant situation in the above Cauchy
problem, and if the parameter k corresponds to the root multiplicities of a Riemannian
symmetric space G/K of the noncompact type, then we recover under the same conditions
mentioned above the validity of Huygens’ principle for the wave equation on G/K (cf.
[3, 14, 5]).

Our approach is similar to the one used earlier by Branson, Ólafsson, and Schlichtkrull
[3] for the wave equation on Riemannian symmetric spaces of the noncompact type.

2. Notations and background

Let a be an Euclidean vector space of dimension N which is equipped with an inner
product 〈·, ·〉. For x ∈ a, let ‖x‖ = 〈x, x〉1/2. Let aC be the complexification of a, and we
extend the form 〈·, ·〉 to a bilinear form on aC × aC, again denoted by 〈·, ·〉.

For α ∈ a∗, denote by xα ∈ a the element corresponding to α, and when α is nonzero,
we introduce the covector ᾰ ∈ a of α by the formula ᾰ = 2xα/〈xα, xα〉. Further, for
α ∈ a∗ \ {0}, let rα be the reflection in the hyperplane 〈α〉⊥ orthogonal to α

(2.1) rα(λ) := λ− λ(ᾰ)α for λ ∈ a∗.

A crystallographic root system R, possibly non reduced, is a finite subset in a∗ \ {0},
such that: (i) R spans a∗, (ii) rα(R) = R, and (iii) α(β̆) ∈ Z for all α, β ∈ R.

The Weyl group W associated with R is the finite reflection group generated by the
reflections rα. By duality, W acts on aC and on AC := exp(aC).

Let R+ ⊂ R be a choice of positive roots. A multiplicity function on R is a W -invariant
function k : R → R. Setting kα := k(α), for α ∈ R, we have kwα = kα for all w ∈ W.
Henceforth, K denotes the set of all multiplicity functions on R, and K + denotes the
set of k = (kα)α∈R ∈ K such that kα ≥ 0 for all α ∈ R+.
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Set R̆ := {ᾰ | α ∈ R} ⊂ a. Let Q̆ := ZR̆ be the coroot lattice, and let P := (Q̆)∗

be the dual of Q̆. For α ∈ R, let Aα
C :=

{
a ∈ AC | eα(a) = 1

}
, and define Areg

C to be
the complementary of ∪α∈RA

α
C in AC. Denote by C[Areg

C ] the algebra of regular functions
on Areg

C . For p ∈ S(aC), let ∂(p) be the corresponding translation invariant differential
operator on AC, so ∂(p)eµ = p(µ)eµ, for µ ∈ P.

Denote by D[Areg
C ] the algebra of differential operators on AC with coefficients in C[Areg

C ],
and by D[Areg

C ]⊗ C[W ] the algebra of differential-reflection operators on Areg
C . For ξ ∈ aC

and k ∈ K , the Dunkl-Cherednik operators T (ξ, k) ∈ D[Areg
C ]⊗ C[W ] are defined by

T (ξ, k) := ∂(ξ)− ρ(k)(ξ) +
∑

α∈R+

kαα(ξ)
1

1− e−α
(1− rα),

where

ρ(k) :=
1
2

∑
α∈R+

kαα ∈ a∗C.

In particular, for any ξ, η ∈ aC, we have T (ξ, k)T (η, k) = T (η, k)T (ξ, k). We refer to
[7, 25, 18] for more details on the Dunkl-Cherednik operators.

Let f and g be two elements in the space C∞
c (A) of smooth compactly supported

functions on A, and set

〈f, g〉k :=
∫

A
f(a)g(a)dµ(a),

where

(2.2) dµ(a) :=
∏

α∈R+

|aα/2 − a−α/2|2kαda,

and da is the Lebesgue measure on A normalized by Vol(A/ exp(Q̆)) = 1. By [25, Lemma
7.8]

(2.3) 〈T (ξ, k)f, g〉k = 〈f,−w0T (w0(ξ̄), k)w0g〉k,

where w0 is the longest element in W. Fix an orthonormal basis {ξi}N
i=1 on a, and set

4α := (1− e−α)−1 ⊗ (1− rα). Then

∆(k) :=
N∑

i=1

T (ξi, k)2

=
N∑

i=1

∂(ξi)2 +
∑

α∈R+

kα coth(α/2)∂α + 〈ρ(k), ρ(k)〉

+
∑

α∈R+

kα

{
〈α, α〉 e−α

1− e−α
− 4〈α, ρ(k)〉

}
4α +

∑
α,β∈R+

kαkβ4α4β .

This formula can be obtained by following [18], where a similar statement was proved for
the Heckman-Cherednik operators.

A crucial key in Heckman-Opdam’s theory of hypergeometric functions, is the existence
of eigenfunctions for the Dunkl-Cherednik system of differential equations.

Theorem 1. (cf. [25]) If k ∈ K +, then there exists an open subset U of exp(ia) containing
the identity element e such that there exists a holomorphic function G on a∗C ×K +×AU
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with the following properties

T a(ξ, k)G(λ, k, a) = λ(ξ)G(λ, k, a),
G(λ, k, e) = 1.

Here the superscript denotes the relevant variable. Further, for a ∈ A and λ ∈ a∗C,

(2.4) |G(λ, k, a)| ≤ |W |1/2e‖ log a‖ ‖Re(λ)‖.

Let f ∈ C∞
c (A) and λ ∈ a∗. Following [26], we define the Cherednik transform of f by

Fk(f)(λ) =
∫

A
f(a)G(−iw0λ, k, w0a)dµ(a),

where dµ(a) is given by (2.2). Using (2.3), one can check that

Fk(T (ξ, k)f)(λ) = −iλ(ξ)Fk(f)(λ).

In particular, Fk(∆(k)f)(λ) = −‖λ‖2Fk(f)(λ).
By [25, Theorem 9.13], the inverse transform of Fk is given by

f(a) =
∫
a∗

Fk(f)(λ)G(iλ, k, a)
∏

α∈R0
+

(
1− k0

α

iλ(ᾰ)

)
dν(λ).

Here R0
+ := R0 ∩ R+, where R0 denotes the set of un-multiplicable roots in R, k0

α :=
1
2kα/2 + kα for α ∈ R0

+, and

(2.5) dν(λ) :=
(2π)−N |W |−2c̃(ρ(k), k)2

c̃(iλ, k)c̃(−iλ, k)
dλ,

where c̃ is the meromorphic function on a∗C ⊗K defined by

(2.6) c̃(λ, k) =
∏

α∈R+

Γ(λ(ᾰ) + 1
2kα/2)

Γ(λ(ᾰ) + 1
2kα/2 + kα)

.

In the sequel, Opdam’s Paley-Wiener theorem for Fk is needed. Let BR be the closed
ball in a with radius R > 0 about the origin. Denote by C∞

R (A) the space of smooth
functions on A with support contained in exp(BR). Let HR(a∗C) be the space of entire
functions f on a∗C with the property that for each integer M > 0, there exists a constant
αM such that

|f(λ)| ≤ αM (1 + ‖λ‖)−MeR‖Im(λ)‖, for all λ ∈ a∗C.

The following is a weaker version of [25, Theorem 8.6].

Theorem 2. If k ∈ K +, then the Cherednik transform Fk maps C∞
R (A) bijectively onto

HR(a∗C).

3. The wave equation for the Dunkl-Cherednik operators

For k ∈ K +, consider the following Cauchy problem for the wave equation associated
with the Dunkl-Cherednik Laplacian operators

(3.1)
∆(k)uk(a, t) = ∂ttuk(a, t), (a, t) ∈ A× R

uk(a, 0) = f(a), ∂tuk(a, 0) = g(a).

Here we assume that the functions f and g belong to the space C∞
R (A). By the principle

of finite propagation speed (which holds for almost every wave equation [9]), uk(·, t) is
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compactly supported for every fixed t ∈ R. For the time being, we assume that k ∈ K +

and N ≥ 1.

Set Uk(a, t) :=
[

uk(a, t)
∂tuk(a, t)

]
. Thus, we may rewrite the wave equation in (3.1) as

∂tUk(a, t) =
[

0 1
∆(k) 0

]
Uk(a, t).

Applying the Cherednik transform Fk to both sides above, and using the fact that
Fk(∆(k)f)(λ) = −‖λ‖2Fk(f)(λ), we obtain

∂tFk(Uk(·, t))(λ) =
[

0 1
−‖λ‖2 0

]
Fk(Uk(·, t))(λ) := AFk(Uk(·, t))(λ).

Solving this ordinary differential equation, we get

Fk(Uk(·, t)) = etAFk(Uk(·, 0))(λ),

where

etA =
[

cos(t‖λ‖) sin(t‖λ‖)/‖λ‖
−‖λ‖ sin(t‖λ‖) cos(t‖λ‖)

]
.

That is1

Fk(uk(·, t))(λ) = Fk(f)(λ) cos(t‖λ‖) + Fk(g)(λ)
sin(t‖λ‖)
‖λ‖

.

Begin with a solution uk(a, t) to the Cauchy problem (3.1), with Cauchy data (f, g).
Therefore, uk(a,−t) solves (3.1) with initial data (f,−g). Thus, the time is reversible,
except for a minus sign that may appear when the second Cauchy datum g or its Cherednik
transform are involved. So the past is determined by the present as well as the future. We
shall present arguments valid for t > 0, and formulate the suitably altered statements for
t ∈ R without further proof.

By the inversion formula of Fk, we have

uk(a, t) = (2π)−N |W |−2

∫
a∗

{
Fk(f)(λ) cos(t‖λ‖) + Fk(g)(λ)

sin(t‖λ‖)
‖λ‖

}
×

G(iλ, k, a)
∏

α∈R0
+

(
1− k0

α

iλ(ᾰ)

) dλ

|c(λ, k)|2
,

where

c(λ, k) :=
c̃(iλ, k)
c̃(ρ(k), k)

.

Using the spherical coordinates, we obtain

uk(a, t) = (2π)−N |W |−2

∫ ∞

0

∫
S

{
Fk(f)(rω) cos(tr) + Fk(g)(rω)

sin(tr)
r

}
×

G(irω, k, a)
∏

α∈R0
+

(
1− k0

α

irω(ᾰ)

) dω

|c(rω, k)|2
rN−1 dr,(3.2)

where S 3 ω is the unit sphere in a∗, and dω is the O(a)-invariant measure on S.

1Using the Plancherel formula for the transform Fk [25, Theorem 3.19], we can show that the total
energy of the solution uk is a conserved quantity, i.e. the total energy of uk is independent of the variable
t. As a consequence, we deduce that the solutions to the wave equation are uniquely determined by the
initial Cauchy data.
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On the other hand, by means of Γ(2z) = π−1/222z−1Γ(z)Γ(z+ 1
2), we may rewrite (2.6)

as

c̃(λ, k) =
∏

α∈R0
+

2−kα/2Γ
(
λ(ᾰ)

)
Γ
(
λ(ᾰ) + 1

2

)
Γ
(
λ(ᾰ) + 1

2(kα/2 + 1)
)
Γ
(
λ(ᾰ) + k0

α

)
=

∏
α∈R0

+

λ(ᾰ)−1
∏

α∈R0
+

2−kα/2Γ
(
λ(ᾰ) + 1

)
Γ
(
λ(ᾰ) + 1

2

)
Γ
(
λ(ᾰ) + 1

2(kα/2 + 1)
)
Γ
(
λ(ᾰ) + k0

α

) .
Thus |c(λ, k)|−2 = P(λ, k)η(λ, k), where λ 7→ P(λ, k) is a homogeneous holomorphic
polynomial of degree 2|R0

+|, and λ 7→ η(λ, k) is a meromorphic function with the same
poles as |c(λ, k)|−2, such that η(0, k) 6= 0. Notice that, when the root system R is reduced,
we have

c̃(λ, k) =
∏

α∈R+

Γ
(
λ(ᾰ)

)
Γ
(
λ(ᾰ) + kα

) ,
and if in addition kα ∈ N, then we obtain

c̃(λ, k) =
∏

α∈R+

kα−1∏
m=0

(λ(ᾰ) +m)−1,

and

|c(λ, k)|−2 = c(ρ(k), k)2
∏

α∈R+

λ(ᾰ)2
∏

α∈R+

kα−1∏
m=1

(λ(ᾰ)2 +m2)

= P(λ, k)η(λ, k),

where now η is a holomorphic function. Thus, in general, (3.2) can be written as

(3.3) uk(a, t) = (2π)−N |W |−2

∫ ∞

0

{
Φk(r, a) cos(tr) + Ψk(r, a)

sin(tr)
r

}
dr,

where

Φk(r, a) := rN−1

∫
S

Fk(f)(rω)G(irω, k, a)
∏

α∈R0
+

(
1− k0

α

irω(ᾰ)

)
P(rω, k)η(rω, k)dω,

and

Ψk(r, a) := rN−1

∫
S

Fk(g)(rω)G(irω, k, a)
∏

α∈R0
+

(
1− k0

α

irω(ᾰ)

)
P(rω, k)η(rω, k)dω.

Let S̃ ⊂ a∗C be the singular set of η(·, k), and let S =
{
‖λ‖ | λ ∈ S̃

}
. If c−1(·, k) is entire,

then S = ∅. Otherwise S attains a minimum γ0 6= 0. If ‖λ‖ ∈ S0 :=
{
‖λ‖ ∈ S | ‖λ‖ = γ0

}
,

then

λ = ±i min
(1

2
(kα/2 + 1), k0

α

)α
2
,

for some α ∈ R0
+, and γ0 = min

(
1
2(kα/2 + 1), k0

α

) |α|
2 > 0. (We exclude the case where

kα = kα/2 = 0 for all α ∈ R0
+, since this case corresponds to the classical setting where

c̃ ≡ 1.) Recall that when R is reduced and kα ∈ N, the function λ 7→ η(λ, k) is entire. We
refer to this case by writing γ0 = ∞.
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For (z, ω) ∈ C × S, denote by η(z, ω, k) := η(zω, k) the meromorphic function in the
variable z ∈ C, for fixed ω ∈ S. Here η(zω, k) is the function obtained from η(rω, k) by
replacing r by z.

From the above discussion it follows that, for fixed ω ∈ S, the singularities of η(z, ω, k)
are poles, and

γ0 = min
{
|z|

∣∣ η(·, ω, k) has poles at z for some ω ∈ S
}
∈

]
0,∞

]
,

(recall that γ0 = ∞ if and only if R is reduced and kα ∈ N for all α).
For γ > 0, set

L(γ) := {τ + iσ | − γ < σ < γ}.
Observe that η(·, ω, k) is holomorphic on L(γ0), for each ω ∈ S. As the measure dω on S
is O(a)-invariant, we have:

Lemma 3. If N − 1 is even, then for fixed a ∈ A, the integral formulas for Φk and Ψk

continue analytically to even functions for r ∈ L(γ0).

Henceforth, we will assume that N − 1 is even. So we can rewrite (3.3) as

(3.4) uk(a, t) =
1
2
(2π)−N |W |−2

∫
R

{
Φk(r, a) +

Ψk(r, a)
ir

}
eirtdr.

By [3, Equation (9)], if γ < γ0 6= ∞, there exists a constant ck and M ∈ N, both
independent of γ, such that

(3.5) |η(z, ω, k)| ≤ ck(γ0 − γ)−1(1 + |z|)M , for all z ∈ L(γ) and ω ∈ S.
Clearly, if γ0 = ∞, i.e. R is reduced and kα ∈ N for all α, then

|η(z, ω, k)| ≤ ck(1 + |z|)M , for all z ∈ C and ω ∈ S.

Now let z ∈ L(γ). In view of Lemma 3, and since S is compact, we have

|Φk(z, a)|

≤ |z|N−1

∫
S
|Fk(f)(zω)||G(izω, k, a)|

∏
α∈R0

+

∣∣∣1− k0
α

izω(ᾰ)

∣∣∣|P(zω, k)||η(z, ω, k)|dω

≤ c′k|z|N−1+|R0
+| sup

ω∈S

{
|Fk(f)(zω)||G(izω, k, a)|

∏
α∈R0

+

|izω(ᾰ)− k0
α||η(z, ω, k)|

}
,

and ∣∣∣Ψk(z, a)
z

∣∣∣
≤ c′k|z|N−2+|R0

+| sup
ω∈S

{
|Fk(g)(zω)||G(izω, k, a)|

∏
α∈R0

+

|izω(ᾰ)− k0
α||η(z, ω, k)|

}
.

If z = 0, the last estimate gives a problem if N = 1 and |R0
+| = 0. Henceforth, we add

the assumption N > 1 if |R0
+| = 0. In view of the Paley-Wiener Theorem 2 applied to the

Cauchy data (f, g), and in the light of (2.4) and (3.5), we conclude that for any M ∈ N
there exist two constants αM (k) and βM (k), depending only on (f, g) and k but not on z,
such that

|Φk(z, a)| ≤ αM (k)(γ0 − γ)−1(1 + |z|)−Me|Im(z)|
[
R+‖ log a‖

]
,

and ∣∣∣Ψk(z, a)
z

∣∣∣ ≤ βM (k)(γ0 − γ)−1(1 + |z|)−Me|Im(z)|
[
R+‖ log a‖

]
,
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for z ∈ L(γ) and γ < γ0 6= ∞. If γ0 = ∞, the above two inequalities hold without the
term (γ0 − γ)−1.

Next, we will shift the contour in the integral (3.4) from R to R+ iγ, so that, by means
of the above inequalities, we have

|uk(a, t)| =
1
2
(2π)−N |W |−2

∣∣∣∣∫
R

{
Φk(z, a) +

Ψk(z, a)
iz

}
eiztdz

∣∣∣∣
=

1
2
(2π)−N |W |−2e−γt

∣∣∣∣∫
R

{
Φk(τ + iγ, a) +

Ψk(τ + iγ, a)
i(τ + iγ)

}
eitτdτ

∣∣∣∣
≤


cM (k)(γ0 − γ)−1e−γ(t−R−‖ log a‖)

∫
R
(1 + |τ |)−Mdτ if γ < γ0 6= ∞

cM (k)e−γ(t−R−‖ log a‖)
∫

R
(1 + |τ |)−Mdτ if γ < γ0 = ∞.

The following theorem collects all of the above computations and discussions.

Theorem 4. Assume that N − 1 is even, with the extra condition N > 1 if |R0
+| = 0.

Let uk be a solution to the Cauchy problem (3.1) where the Cauchy data (f, g) belong to
C∞

R (A). Denote by γ0 6= 0 the minimal distance from a singular point of |c(λ, k)|−2 to the
origin in a∗C, and suppose that 0 < γ < γ0.

(i) If γ0 � ∞, then there exists a constant depending only on k and (f, g), such that

|uk(a, t)| ≤ c(k)(γ0 − γ)−1e−γ(|t|−R−‖ log a‖), ∀ (a, t) ∈ A× R.

(ii) If γ0 = ∞, then

|uk(a, t)| ≤ c(k) e−γ(|t|−R−‖ log a‖), ∀ (a, t) ∈ A× R.

Before we state the main result of the paper, let us make the following observation
regarding the support of uk(a, t): recall that

Fk(uk(·, t))(λ) = Fk(f)(λ) cos(t‖λ‖) + Fk(g)(λ)
sin(t‖λ‖)
‖λ‖

,

where f and g belong to C∞
R (A). Observe that cos(t‖λ‖) and sin(t‖λ‖)/‖λ‖ can be ex-

tended to entire functions on a∗C. Indeed, for z ∈ C, the functions cos z and sin z/z are
both even, and thus we may consider the functions cos(

√
z) and sin(

√
z)/

√
z which are

entire analytic functions of z (even though
√
z it is not single-valued). Thus, the analytic

extensions of cos(t‖λ‖) and sin(t‖λ‖)/‖λ‖, respectively, are

cos(t〈λ, λ〉1/2),
sin(t〈λ, λ〉1/2)
〈λ, λ〉1/2

.

Further, if we write 〈λ, λ〉1/2 = u + iv and use the fact that |cos(u+ iv)| and
∣∣∣ sin(u+iv)

u+iv

∣∣∣
are both bounded by e|v|, up to a constant, we obtain

| cos(t〈λ, λ〉1/2)|
∣∣∣sin(t〈λ, λ〉1/2)

〈λ, λ〉1/2

∣∣∣ ≤ ce|t||v|.

We claim that |v| ≤ ‖Im(λ)‖. One can see this as follows: since 〈λ, λ〉 = (u + iv)2,
we have u2 − v2 = ‖Re(λ)‖2 − ‖Im(λ)‖2 and uv = 〈Re(λ), Im(λ)〉. Thus, by Cauchy-
Schwartz-Buniakowsly inequality, we have u2v2 ≤ ‖Re(λ)‖2‖Im(λ)‖2, which is equivalent
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to v2(v2 + ‖Re(λ)‖2 − ‖Im(λ)‖2) ≤ ‖Re(λ)‖2‖Im(λ)‖2. This amounts to(
v2 +

‖Re(λ)‖2 − ‖Im(λ)‖2

2

)2
≤

(‖Re(λ)‖2 + ‖Im(λ)‖2

2

)2
,

which yields v2 ≤ ‖Im(λ)‖2, and the claim above holds. Now, by means of the Paley-
Wiener Theorem 2 one can conclude that for all N ≥ 1 and for every k ∈ K +, uk(a, t) is
supported in the set

{(a, t) ∈ A× R | ‖ log a‖ ≤ R+ |t|}.
As an immediate consequence of Theorem 4 and in the light of the above observation,

we obtain below our main result.

Theorem 5. (Huygens’ Principle) The solution uk is supported in the shell

C =
{
(a, t) ∈ A× R | |t| −R ≤ ‖ log a‖ ≤ |t|+R

}
if and only if the root system R is reduced, kα ∈ N for all α ∈ R, and N is odd starting
from 3. The set C is the union ⋃

‖ log b‖≤R

Cb

where Cb is the light cone

Cb =
{
(a, t) ∈ A× R | ‖ log a− log b‖ = |t|

}
.

For the remainder of this section, we will restrict ourselves to the W -invariant situation.
For λ ∈ a∗C, k ∈ K +, and a ∈ A, denote by F (λ, k, a) the Heckman-Opdam hypergeometric
function, which is, by construction, an eigenfunction for the hypergeometric system of
differential equations. In particular

∆(k)WF (λ, k, a) = 〈λ, λ〉F (λ, k, a),
F (λ, k, e) = 1,

where ∆(k)W is the W -invariant part of the Dunkl-Cherednik Laplacian ∆(k), i.e.

∆(k)W =
N∑

j=1

∂(ξj)2 +
∑

α∈R+

kα coth(α/2)∂α + 〈ρ(k), ρ(k)〉.

Furthermore, in terms of the kernel G(λ, k, a) introduced in Theorem 1, we have

F (λ, k, a) =
1
|W |

∑
w∈W

G(λ, k, wa)

=
1
|W |

∑
w∈W

∏
α∈R0

+

(
1− k0

α

wλ(ᾰ)

)
G(wλ, k, a).

We refer to [16, 17, 23, 24, 18] for further details on Heckman-Opdam’s theory of hyper-
geometric functions. Moreover, if f ∈ C∞

c (A) is a W -invariant function, then we may
rewrite the Cherednik transform of f as

Fk(f)(λ) =
∫

A
f(a)F (−iλ, k, a)dµ(a),

where dµ(a) is given by (2.2). When the parameter k corresponds to the root multiplicities
of a Riemannian symmetric space of the noncompact type, the transform Fk coincides
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with the spherical Harish-Chandra transform [11]. The W -invariance of f implies the
W -invariance of Fk(f). Thus, the inverse transform of Fk(f) is given by

f(a) = |W |
∫
a∗

Fk(f)(λ)F (iλ, k, a)dν(λ),

where dν(λ) is given by (2.5).
In this setting, the Cauchy problem (3.1) becomes

(3.6) ∆(k)WuW
k (a, t) = ∂ttu

W
k (a, t), uW

k (a, 0) = fW (a), ∂tu
W
k (a, 0) = gW (a),

where fW and gW are two W -invariant elements in C∞
R (A). Clearly

uW
k (a, t) =

∑
w∈W

uk(wa, t)

= |W |
∫
a∗

{
Fk(fW )(λ) cos(t‖λ‖) + Fk(gW )(λ)

sin(t‖λ‖)
‖λ‖

}
F (iλ, k, a)dν(λ),

where uk is the solution to the Cauchy problem (3.1). As an immediate consequence of
Theorem 5 we have:

Theorem 6. Let R be a reduced root system with integral-valued multiplicity functions,
and let N be odd starting from 3. Then the support of the solution uW

k to (3.6) is contained
in the shell Γ =

{
(a, t) ∈ A× R | R− |t| ≤ ‖ log a‖ ≤ R+ |t|

}
.

In these circumstances, and if in particular k corresponds to the root multiplicities of
a Riemannian symmetric space G/K of the noncompact type, the above theorem implies
the validity of Huygens’ principle for the wave equation on G/K. The latter is a well
known fact due to Solomatina [32], Helgason [14], Branson, Ólafsson, and Schlichtkrull
[3], and to Chalykh and Veselov [5]. More precisely, let G be a connected noncompact
semisimple Lie group with finite center, and let K be a maximal compact subgroup of G.
The quotient manifoldG/K can be endowed with the structure of a Riemannian symmetric
space of the noncompact type. Let θ be a Cartan involution on G corresponding to K,
i.e. K =

{
k ∈ G | θ(k) = k

}
. Denote by the same letter the derived involution θ on

g := Lie(G). Let g = k ⊕ p be the Cartan decomposition of g with respect to θ. Assume
that a is a maximal abelian subspace of p, and let Σ = Σ(g, a) be the restricted root
system of a in g. For α ∈ Σ, set gα :=

{
X ∈ g | [H,X] = α(H)X for all H ∈ a

}
to be

the corresponding root space, and let mα := dim(gα). Now if we put R :=
{
2α | α ∈ Σ

}
and k2α := mα/2, for α ∈ Σ, then ∆(k)W coincides with the radial part of the Laplace-
Beltrami operator on the symmetric space G/K, up to the term 〈ρ(k), ρ(k)〉 (cf. [13]). In
this setting, the condition R is reduced with k2α ∈ N amounts to the property that all
Cartan subalgebras in g are conjugate under the adjoint group of g. For completeness, we
present the list of all Riemannian symmetric pairs (g, k) which satisfy the latter property.
We refer to [13] for more details on Riemannian symmetric spaces.
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Riemannian symmetric pairs with even multiplicity

g k Σ mα Comments

sl(n,C) su(n) An−1 2 n ≥ 2

so(2n+ 1,C) so(2n+ 1) Bn 2 n ≥ 2

sp(n,C) sp(n) Cn 2 n ≥ 3

so(2n,C) so(2n) Dn 2 n ≥ 4

so(2n+ 1, 1) so(2n+ 1) A1 2n n ≥ 3

su∗(2n) sp(n) An−1 4 n ≥ 2

(e6)C e6 E6 2 –

(e7)C e7 E7 2 –

(e8)C e8 E8 2 –

(f4)C f4 F4 2 –

(g2)C g2 G2 2 –

e6(−26) f4(−20) A2 8 –

Special isomorphisms of Riemannian
symmetric pairs with even multiplicity

g k

sp(1,C) ≈ sl(2,C) sp(1) ≈ su(2)

so(3,C) ≈ sl(2,C) so(3) ≈ su(2)

sp(2,C) ≈ so(5,C) sp(2) ≈ so(5)

so(6,C) ≈ sl(4,C) so(6) ≈ su(4)

so(3, 1) ≈ sl(2,C) so(3) ≈ su(2)

so(5, 1) ≈ su∗(4) so(5) ≈ sp(2)
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Finally, we will give explicit expressions for the solution uW
k to (3.6). These formulas are

obtained by means of the well known expressions of the solution to the classical Euclidean
wave equation. This approach was used earlier in [4] for the solution to the wave equation
associated with compact Riemannian symmetric spaces.

In [28, Theorem 5.1], the authors were able to give an explicit formula for the Heckman-
Opdam hypergeometric functions, when R is reduced and kα ∈ N for all α ∈ R. More
precisely, if

∆(k, a) :=
∏

α∈R+

(eα(log a) − e−α(log a))kα , a ∈ A,

then, for a reduced root system R with kα ∈ N for all α ∈ R, there exists a W -invariant
differential operator D(k) ∈ C[AC]⊗ S(aC) such that

F (λ, k, a) = ∆(−k, a)
∏

α∈R+

kα−1∏
m=0

(m2 − λ(ᾰ)2)−1D(k)
( ∑

w∈W

ewλ(X)
)
,

where a = exp(X) ∈ A. In [28, Theorem 4.10] the operator D(k) is expressed in terms of
the Opdam shift operators. Using the W -invariance of the functions

λ 7→ Fk(fW )(λ), λ 7→ Fk(gW )(λ), λ 7→ cos(t‖λ‖), λ 7→ sin(t‖λ‖)/‖λ‖,
we obtain

uW
k (a, t) = (2π)−N |W |c̃(ρ(k), k)2∆(−k, a)×(3.7)

D(k)
[ ∫

a∗

{
Fk(fW )(λ) cos(t‖λ‖) + Fk(gW )(λ)

sin(t‖λ‖)
‖λ‖

}
eiλ(X)dλ

]
,

where a = exp(X) ∈ A.
On the other hand, if ∆a denotes the usual Laplacian operator on a ∼= RN , and if we

denote the Euclidean Fourier transform of a function ψ on a by ψ̂, then, for X ∈ a ∼= RN ,
the function

v(X, t) :=
∫
a∗

{
Fk(fW )(λ) cos(t‖λ‖) + Fk(gW )(λ)

sin(t‖λ‖)
‖λ‖

}
eiλ(X)dλ

satisfies

(3.8) ∆av(X, t) = ∂ttv(X, t), v(X, 0) = ψ(X), ∂tv(X, 0) = φ(X),

where ψ, φ ∈ C∞(a)W such that ψ̂ = Fk(fW ) and φ̂ = Fk(gW ).
For r > 0, let Sr(X) ⊂ a be the Euclidean sphere of radius r and center X, and let

ΩN (r) be the surface area of Sr(X). For a complex-valued function f on a, set

M r(f)(X) =
1

ΩN (r)

∫
Sr(X)

f(Y )dσ(Y )

to be the mean value of f on Sr(X), where dσ is the O(N)-invariant measure on Sr(X).
The following two facts can be found in [15, p. 481]:

(i) Put

Ir(f)(X) =
( ∂

∂(r2)

)(N−3)/2 (
rN−2M r(f)(X)

)
.

If N ≥ 2 is odd, then the solution to (3.8) is given by

v(X, t) =
ΩN (1)

(N − 3)!ΩN−1(1)

[ ∂
∂t

(
It(ψ)(X)

)
+ It(φ)(X)

]
, (t > 0),
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where ΩN (1) = 2πN/2Γ
(

N
2

)−1
.

(ii) Put

Jr(f)(X) =
( ∂

∂(r2)

)(N−2)/2 (
rN−2M r(f)(X)

)
.

If N ≥ 2 is even, then, for t > 0, the solution to (3.8) is given by

v(X, t) =
1

(N − 2)!

[ ∂
∂t

∫ t

0
r(t2 − r2)−1/2Jr(ψ)(X)dr +

∫ t

0
r(t2 − r2)−1/2Jr(φ)(X)dr

]
.

As an immediate consequence of (3.7) and the above two facts, we obtain the following
explicit expressions for the solution uW

k (a, t).

Corollary 7. Let R be a reduced root system such that kα ∈ N for all α ∈ R, and assume
that N ≥ 2. There exists a differential operator D(k) ∈ C[AC] ⊗ S(aC) such that, for all
t > 0, the solution uW

k (a, t) to the Cauchy problem (3.6) is given by:
(i) If N is odd

uW
k (a, t) =

(2π)−N |W |ΩN (1)
(N − 3)!ΩN−1(1)

c̃(ρ(k), k)2∆(−k, a)×

D(k)
[ ∂
∂t

(
It(Fk(fW )∨)(X)

)
+ It(Fk(gW )∨)(X)

]
,

where a = exp(X) ∈ A. Here ∨ denotes the inverse of the Euclidean Fourier transform.
(ii) If N is even

uW
k (a, t) =

(2π)−N |W |
(N − 2)!

c̃(ρ(k), k)2∆(−k, a)×

D(k)
[ ∂
∂t

∫ t

0
r(t2 − r2)−1/2Jr(Fk(fW )∨)(X)dr

+
∫ t

0
r(t2 − r2)−1/2Jr(Fk(gW )∨)(X)dr

]
,

where a = exp(X) ∈ A.
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