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SEGAL-BARGMANN TRANSFORMS ASSOCIATED WITH COXETER GROUPS

SALEM BEN SAÏD AND BENT ØRSTED

ABSTRACT. In this paper we present a generalization of the Segal-Bargmann transform as-

sociated with finite reflection groups on RN. We give the integral kernel appearing in the

generalized Segal-Bargmann transform and we prove the unitarity of this transform. To de-

fine the above mentioned transform, we introduce a generalized Fock space Fk(CN) on CN

with reproducing kernel the Dunkl-kernel. The definition and properties of Fk(CN) extend

naturally those of its classical counterpart F0(CN). The Segal-Bargmann transform gives the

analogue of the Dunkl theory in the Fock model.

2000 Mathematics Subject Classification. 33C52, 43A85, 44A15.

Keywords. The Dunkl kernels and operators, Generalized Fock spaces, Segal-Bargmann transforms.
1
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1. INTRODUCTION

The study of several generalizations of the classical Segal-Bargmann transform has a long

and rich history in many different settings [1, 32, 23, 17, 7, 8, 34]. It is well-known that the

classical Segal-Bargmann transform maps unitarily from the Schödinger model to the Fock

model intertwining the action of the Heisenberg groups. There are many ways of computing

the integral kernel appearing in the Segal-Bargmann transform and showing the unitarity

of this transform. One unifying tool is the restriction principle, i.e. polarization of a suitable

restriction map [22, 23]. This idea uses the heat-kernel analysis.

While the theory of Segal-Bargmann transform has been pursued for a long time, the

growing interest in Dunkl theory and special functions related to Coxeter groups is compa-

rably recent. However, there has been a rapid development in this area in the last few years.

Among the broad literature in this area, we refer to [10, 26, 18, 21, 29, 3], and references

therein.

In the present paper, we employ the restriction principle to construct the Segal-Bargmann

transform associated with finite Coxeter groups. This suggests to introduce and study new

Fock-type spaces which generalize the classical Bargmann-Fock model [1]. To realize the in-

tegral representation of the Segal-Bargmann transform, we use Rösler’s results on the heat-

kernel associated with reflection groups [30].

The motivation for studying the Segal-Bargmann transform is to exhibit some relation-

ships between Dunkl’s theory and its applications in the Schrödinger model and in the Fock

model, for instance, the study of the Dunkl operators, the Calogero-Moser systems, and the

Dunkl transform. It turns out that the Dunkl transform in the Fock model, is the dilata-

tion operator on functions by the complex number −i. This assertion gives an alternative

and simple proof of the unitarity of the Dunkl transform, which was investigated earlier

independently in [12, 21].

To be more specific about our results, let G be a finite Coxeter group on RN with root

system R, and let k : R → R+ be a non-negative multiplicity function. The Dunkl operators

are defined by

Tξ(k)f(x) = ∂ξf(x) +
∑

α∈R+

kα
〈α, ξ〉
〈α, x〉

(f(x) − f(rαx)), x, ξ ∈ RN,

where R+ is a positive subsystem of R, 〈·, ·〉 is the standard Euclidean scalar product in

RN, and rα is the reflection on the hyperplane orthogonal to α. If the multiplicity function

k ≡ 0, then Tξ(k) coincides with the partial derivative ∂ξ. An important ingredient in the

theory of Dunkl operators is the generalized exponential kernel Ek(·, ·) on RN × RN, which

can be characterized as the unique solution of a joint eigenfunction problem for the Dunkl
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operators {Tξ(k) | ξ ∈ RN} with the initial condition Ek(·, 0) = 1 (cf. [11, 26]). In particular,

E0(x, y) = e〈x,y〉.

In the first part of the present paper, we prove that there exists a Hilbert space Fk(CN) of

holomorphic functions on CN with reproducing kernel Ek(z, w̄), for z,w ∈ CN, holomorphic

in z and anti-holomorphic in w. Further, we show that P(CN), the algebra of polynomial

functions on CN, is contained in Fk(CN) as a dense subspace. Further, if we denote by

〈〈·, ·〉〉k the inner product in Fk(CN),we obtain the following Fischer-type formula

〈〈p, q〉〉k = p(T)q(z̄)∣∣z=0
, p, q ∈ P(CN).

We conclude the first part of the paper by proving that the operators Tξ(k) and Mξ, where

Mξ is the multiplication operator Mξf(z) = 〈z, ξ〉f(z) for z, ξ ∈ CN and f ∈ Fk(CN), are

closed densely defined on Fk(CN), such that

〈〈Tξ(k)f, g〉〉k = 〈〈f,Mξg〉〉k, f, g ∈ Fk(CN),

whenever the both sides of the equation make sense.

The classical Bargmann-Fock space corresponds to F0(CN) (cf. [1]).

The second part of the present paper deals with the generalized Segal-Bargmann trans-

form associated with G, and its applications.

Let L 2(RN, wk) be the space of L 2-functions on RN with respect to the weighted mea-

sure wk(x)dx =
∏

α∈R+ |〈α, x〉|2kαdx. This L 2-space plays an important role in the Dunkl

theory. By taking a Gaussian multiplier into account, we get a bounded injective map

Rk : Fk(CN) → L 2(RN, wk) with dense image. Let R∗
k =

√
RkR∗

kBk be the polar decom-

position of R∗
k. The map Bk is the so-called generalized Segal-Bargmann transform. Using

the heat-kernel analysis associated with reflection groups [30], we prove that the integral

representation of Bk is given by

Bkf(z) = c(k)e−〈z,z〉/2

∫
RN

f(x)Ek(
√
2x,

√
2z)e−〈x,x〉wk(x)dx, z ∈ CN,

for some explicit constant c(k). The transform Bk is a unitary isomorphism from L 2(RN, wk)

to Fk(CN).Moreover, the following diagram commutes

L 2(RN, wk)
Bk−−−−→ Fk(CN)

Dk

y y(−i)∗

L 2(RN, wk)
Bk−−−−→ Fk(CN)

where Dk is the Dunkl transform (or the generalized Fourier transform), and (−i)∗F(z) =

F(−iz) for F ∈ Fk(CN). The above statement gives an alternative and simple proof for the

unitarity of Dk, studied earlier by Dunkl [12] and de Jeu [21].
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Finally, we exhibit the relationship between operators on L 2(RN, wk) and on Fk(CN) by

means of the Segal-Bargmann transform Bk. For instance, on Fk(CN), the gauge equivalent

version of the Hamiltonian of the Calogero-Moser system with harmonic confinement has

the form

Ȟk = γ+N/2+

N∑
i=1

ξi∂ξi
.

Here γ :=
∑

α∈R+ kα, and {ξ1, . . . , ξN} is any orthonormal basis of CN. Now, the spectral

properties of Ȟk are rather easy to describe and it is possible to obtain complete bases of

eigenfunctions.

Our setting includes the case of Segal-Bargmann transform associated with flat symmetric

spaces, where the Coxeter group G becomes the Weyl group related to the symmetric space.

In [34], the author considers such a transformation, associated with the flat symmetric spaces

of type CN and DN (N ≥ 3), for an invariant subspace of F0(CN).

For the rank one case, i.e. N = 1, Cholewinski [5] has investigated the Segal-Bargmann

transform only on the Hilbert space of even entire functions in Fk(C), by employing another

approach.

This paper is organized as follows. In Section 2 we give an abbreviated background on the

Dunkl theory. Section 3 is devoted to the study of the Fock space Fk(CN). In Section 4 we

turn our attention to the Segal-Bargmann transform and its applications. Section 5 deals

with the Weyl quantization map and the Berezin transform associated with the Coxeter

group G. We establish the integral representation of the Berezin transform and we prove,

abstractly, that the Weyl quantization map is a unitary isomorphism from L 2(RN, wk) ⊗
L 2(RN, wk) to Fk(CN) ⊗Fk(CN). It should be interesting to pursue this quantization fur-

ther, as well as the possibility of studying the “field theory” case of N → ∞.
2. BACKGROUND

For α ∈ RN \ {0}, denote by rα the reflection on the hyperplane 〈α〉⊥ orthogonal to α

rα(x) = x− 2
〈α, x〉
|α|2

α, x ∈ RN,

where 〈x, y〉 =
∑N

i=1 xiyi and |x| =
√
〈x, x〉. The reflection rα belongs to the orthogonal

group O(N). We will use the same notation 〈·, ·〉 for the bilinear extension of the Euclidean

scalar product to CN × CN.

A finite set R ⊂ RN \ {0} is called a root system if

R ∩ Rα = {±α}, ∀α ∈ R,

rα(R) = R, ∀α ∈ R.



6 SALEM BEN SAÏD AND BENT ØRSTED

Henceforth, we will assume that the root system R is normalized in the sense that |α|2 = 2

for all α ∈ R. This simplifies formulas, with no loss of generality for our purposes.

A Coxeter group G is a finite subgroup ofO(N) generated by the reflections { rα | α ∈ R }.

A multiplicity function on R is a G-invariant function k : R → C. Setting kα := k(α) for

α ∈ R, we have kgα = kα for all g ∈ G. The C-vector space of multiplicity functions on R is

denoted by K . Ifm = ]{G-orbits in R}, then K ∼= Cm.

Let R+ be a choice of positive roots in R. For ξ ∈ RN and k = (kα)α∈R ∈ K , the Dunkl

operator Tξ(k) is defined by

Tξ(k)f(x) = ∂ξf(x) +
∑

α∈R+

kα〈α, ξ〉
f(x) − f(rαx)

〈α, x〉
, f ∈ C 1(RN).

Here ∂ξ denotes the directional derivative corresponding to ξ. The definition of Tξ(k) is

independent of the choice of R+, and it is a homogeneous differential operator of degree −1.

Moreover, by the G-invariance of the multiplicity function k, Tξ(k) satisfies

g0 ◦ Tξ(k) ◦ g−1
0 = Tg0ξ(k), ∀g0 ∈ G.

Further, if f and g in C 1(RN), and at least one of them is G-invariant, then

(2.1) Tξ(k)(fg) = Tξ(k)(f)g+ fTξ(k)(g).

The remarkable property of the Dunkl operators is that the family {Tξ(k), ξ ∈ RN} gener-

ates a commutative algebra of linear operators on the C-algebra of polynomial functions on

RN. For more details on the Dunkl operators we refer to [10, 11, 12], and references therein.

For any orthonormal basis {ξ1, . . . , ξN} of RN, set

∆k =

N∑
i=1

Tξi
(k)2.

The generalized Laplacian ∆k is homogeneous of degree −2. By the normalization 〈α,α〉 =

2,we can rewrite ∆k as

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

−
f(x) − f(rαx)

〈α, x〉2

}
,

where ∆ and ∇ denote the usual Laplacian and gradient, respectively. For all i-th basis

vector ξi,we will use the abbreviation Tξi
(k) = Ti(k).

Denote by P(RN) = C[RN] the C-algebra of polynomial functions on RN, and by Pn,

for n ∈ Z+, the subspace of homogeneous polynomials of degree n. Next we will use the

following notations: for m = (m1, . . . ,mN) ∈ ZN
+ ,write

m! = m1! · · ·mN!, |m| = m1 + · · ·+mN, zm = z
m1
1 · · · zmN

N , Tm = T1(k)
m1 · · · TN(k)mN ,

where z ∈ CN and T = (T1(k), . . . , TN(k)) is our family of commuting Dunkl operators on

P(RN).
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In [11], Dunkl proved that for k ≥ 0, there exists an intertwining operator relating Tξ(k)

to the usual partial differential operators. This result was generalized later by Dunkl, de Jeu,

and Opdam in [14] to a more general setting.

Theorem 2.1. (cf. [14]) Let K reg = { k ∈ K | ∩ξ∈RN Ker(Tξ(k)) = C · 1}. The following
assertions are equivalent:

(i) k ∈ K reg,

(ii) there exists a unique intertwining operator Vk on P(RN) such that

Vk(Pn) ⊂ Pn, Vk
∣∣P0

= id, Tξ(k)Vk = Vk∂ξ (ξ ∈ RN).

An explicit formula for Vk is still an open problem; it is only for G = (Z/2Z)N and S3

where the explicit form of Vk is known (cf. [13, 33]).

Notice that {k ∈ K | k ≥ 0} ⊂ K reg. In most parts of the paper we will restrict our

attention to non-negative multiplicity functions.

From Theorem 2.1, it follows that for k ∈ K reg, there exists a unique bijective linear map

Ṽk : P(RN) → P(RN) such that

ṼkVk = VkṼk = id, Ṽk(Pn) ⊂ Pn, Ṽk
∣∣P0

= id, ∂ξṼk = ṼkTξ(k) (ξ ∈ RN).

In particular, for p ∈ P(RN) and k ∈ K reg, one can show that

Ṽkp(x) =

∞∑
n=0

∑
|m|=n

xm

m!
T(k)mp(0).

Therefore, for all analytic functions f in a neighborhood of 0 and for k ∈ K reg

(2.2) f(z) =

∞∑
n=0

∑
|m|=n

Vk(zm)

m!
T(k)mf(0).

For k ∈ K reg, there exists a generalization of the usual exponential kernel e〈·,·〉 by means

of the Dunkl system of differential equations.

Theorem 2.2. (cf. [26]) There exists a unique meromorphic function Ek on CN ×K ×CN charac-
terized by:

(i) Tξ(k)Ek(z,w) = 〈ξ,w〉Ek(z,w); and
(ii) Ek(z, 0) = 1.

Moreover, this function satisfies
(iii) Ek is holomorphic on CN × (K \ K reg)× CN; and
(iv) Ek(g0 · z, g0 ·w) = Ek(z,w) for all g0 ∈ G.

The function Ek is the so-called Dunkl-kernel, or the k-exponential function. For k ≡ 0,

we have E0(z,w) = e〈z,w〉 for z,w ∈ CN.
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As Ek is a holomorphic function on CN × CN, by (2.2) one can obtain its Taylor series as

Ek(z,w) =

∞∑
n=0

∑
|m|=n

Vk(zm)

m!

[
Tm(k)Ek(z,w)

]∣∣z=0
, z,w ∈ CN

with Tm
ξ (k)Ek(z,w) = 〈ξ,w〉mEk(z,w). Therefore

(2.3) Ek(z,w) =

∞∑
n=0

E
(n)
k (z,w), with E

(n)
k (z,w) =

∑
|m|=n

Vk(zm)

m!
wm.

We close this section by two Macdonald-type identities for the Dunkl-kernel Ek.

For k ≥ 0, let wk be the weight function on RN defined by

wk(x) =
∏

α∈R+

|〈α, x〉|2kα .

For all g0 ∈ G and all λ ∈ C, we have wk(g0x) = wk(x) and wk(λx) = λ2γwk(x), with

γ :=
∑

α∈R+ kα. Further, let

ck :=

∫
RN

e−|x|2/2wk(x)dx,

which is called the Macdonald-Metha-Selberg integral. In [26] Opdam gives a closed form

for ck for finite Coxeter groups.

The following proposition is crucial in Dunkl’s theory and its applications.

Proposition 2.3. (cf. [12]) For non-negative multiplicity function k, and for p ∈ P(RN)∫
RN

e−∆k/2p(x)Ek(x,w)e−|x|2/2wk(x)dx = cke
〈w,w〉/2p(w), w ∈ CN,(2.4) ∫

RN

Ek(x, z)Ek(x,w)e−|x|2/2wk(x)dx = cke
(〈z,z〉+〈w,w〉)/2Ek(z,w), z,w ∈ CN.(2.5)

3. FOCK SPACES ASSOCIATED WITH COXETER GROUPS

For the reader’s convenience, let us recall the definition of a reproducing kernel. Let H

be a Hilbert space whose elements are complex-valued functions on a set S. A reproducing

kernel for H is a complex-valued function K on S× S such that, denoting Kw(z) = K(z,w),

Kw belongs to H for all w, and f(w) = 〈〈f,Kw〉〉 for all functions f in H and all w in S.

For z,w ∈ CN, define

Kk,w(z) = Kk(z,w) := Ek(z, w̄).

As kwill be fixed, we will write K for Kk.

Theorem 3.1. (i) The kernel K(z,w) is a positive definite kernel, i.e. for all z(1), . . . , z(`) ∈ CN and
α1, . . . α` ∈ C

(3.1)
∑̀
i,j=1

αiαjK(z(i), z(j)) ≥ 0.
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(ii) The kernel K is continuous, and Kw is holomorphic for all w ∈ CN.

(iii) For all z,w ∈ CN, K(z,w) = K(w, z).

Proof. (i) By the integral formula (2.5), we have∑̀
i,j=1

αiαjK(z(i), z(j))

= c−1
k

∑̀
i,j=1

αiαje
−〈z(i),z(i)〉/2e−〈z(j),z(j)〉/2

∫
RN

Ek(x, z(i))Ek(x, z(j))e−|x|2/2wk(x)dx

= c−1
k

∫
RN

{ ∑̀
i=1

αiEk(x, z(i))e−〈z(i),z(i)〉/2
}{ ∑̀

j=1

αjEk(x, z(j))e−〈z(j),z(j)〉/2
}
e−|x|2/2wk(x)dx

= c−1
k

∫
RN

∣∣∣∑̀
i=1

αiEk(x, z(i))e−〈z(i),z(i)〉/2
∣∣∣2 e−|x|2/2wk(x)dx ≥ 0.

(ii) The second statement follows from the fact that Ek has a holomorphic extension to CN×
CN.

(iii) For w ∈ CN, the function Kw̄ satisfies Tx
ξ (k)Kw̄(x) = 〈ξ, w̄〉Kw̄(x), for ξ ∈ RN, and

Kw̄(0) = 1. Here the superscript x denotes that the operator acts with respect to the x-

variable. By the uniqueness of the solution of the Dunkl system of differential equations, it

follows that Kw̄(x) = Ek(x, w̄), i.e. Kw̄(x) = Kw(x) for all x ∈ RN. Since x 7→ Kw̄(x̄) and

x 7→ Kw(x) are holomorphic on CN and agree on RN, K(z,w) = K(z̄, w̄). On the other hand,

since the Dunkl kernel Ek is symmetric [12], then K(z,w) = K(z̄, w̄) = Ek(z̄, w) = Ek(w, z̄) =

K(w, z). �

One may interpret the condition (3.1) as following: The kernel K : CN×CN → C is positive

definite if and only if for all ` ∈ N and z(1), . . . , z(`) ∈ CN, the matrices
(
K(z(i), z(j))

)
1≤i,j≤`

are positive elements ofM(`,C).

The following theorem gives a concrete meaning of the abstract concept of a positive

definite kernel.

Theorem 3.2. There exists a Hilbert space Fk(CN) of holomorphic functions, such that K is its
reproducing kernel.

Proof. Let Sk(CN) be the set of all finite complex linear combinations

f =

n∑
i=1

αiKz(i) , αi ∈ C, z(i) ∈ CN.

On Sk(CN), a Hermitian bilinear form can be defined by

〈〈f, g〉〉k =

n∑
i=1

∑̀
j=1

αiβjK(w(j), z(i)),
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with g =
∑`

j=1 βjKw(j) . Therefore 〈〈f, f〉〉k ≥ 0 for all f ∈ Sk(CN). Moreover, 〈〈f,Kw〉〉k =

f(w), and therefore

|f(w)|2 ≤ 〈〈f, f〉〉k〈〈Kw,Kw〉〉k = ‖f‖2
kK(w,w).

Hence, if ‖f‖k = 0 then f ≡ 0, and the form 〈〈·, ·〉〉k is positive definite. Let Fk(CN) be the

completion of Sk(CN) with respect to the norm ‖f‖2
k = 〈〈f, f〉〉k.

Let (fm) be a Cauchy sequence for this norm. Then

|fp(z) − fq(z)|2 ≤ ‖fp − fq‖2K(z, z) ∀ z ∈ CN.

Therefore, the sequence is pointwise convergent. Moreover, since w 7→ K(·, w) is continu-

ous, the equality

〈〈f,Kw〉〉k = f(w)

holds for all f ∈ Fk(CN), and therefore K is the reproducing kernel of the Hilbert space of

functions Fk(CN).

The fact that Fk(CN) is contained in the set of holomorphic functions follows from the fol-

lowing: By Theorem 3.1(ii), Kw is holomorphic for all w ∈ CN. Hence, in the construction

above, each f is holomorphic. Moreover, by Hartogs’s theorem, it follows that K is contin-

uous on CN × CN since Kw is holomorphic and therefore K is a holomorphic function of

(z, w̄) on CN × CN. Thus, if (fm) converges to f in the norm of Fk(CN), then it converges

uniformly on compact subsets of CN by

|fm(z) − f(z)| ≤ ‖fm − f‖
√

K(z, z).

�

From the above proposition, Fk(CN) is defined by

Fk(CN) = 〈Kz | z ∈ CN〉.

Here the bar means the completion with respect to the norm ‖·‖k. The Hilbert space Fk(CN)

is uniquely determined by its reproducing kernel K.Notice that, for k ≡ 0, the space F0(CN)

reduces to the classical Fock space of holomorphic functions f on CN such that

‖f‖2
0 := π−N

∫
CN

|f(z)|2e−‖z‖2
dz < ∞,

where ‖z‖2 =
∑N

i=1 |zi|
2 (cf. [1]).

Lemma 3.3. For non-negative multiplicity function k
(i) 〈〈f, g〉〉k = 〈〈g, f〉〉k for all f, g ∈ Fk(CN),

(ii) 〈〈g0 · f, g0 · g〉〉k = 〈〈f, g〉〉k for all g0 ∈ G and all f, g ∈ Fk(CN).
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Proof. (i) Let f, g ∈ Sk(CN) such that 〈〈f, g〉〉k =
∑`

i=1

∑n
j=1 αiβjK(w(j), z(i)). Using the fact

that K(z,w) = K(w, z),we get

〈〈f, g〉〉k =
∑̀
i=1

n∑
j=1

βjαiK(z(i), w(j)) = 〈〈g, f〉〉k.

Now the statement holds by density.

(ii) The assertion follows from the fact that K(g0z, g0w) = K(z,w) by employing the same

argument used in (i). �

The following (standard) lemma will be useful later in several places.

Lemma 3.4. In a normed space X, a sequence (xn)n converges weakly to x ∈ X if and only if:
(i) the sequence (‖xn‖)n is bounded, and
(ii) for every element f of a total subset M in the dual X∗ of X, we have (f(xn))n converges to

f(x).

Proof. We sketch the proof. Suppose (i) and (ii) hold. Consider any f ∈ X∗ and show that

f(xn) converges to f(x), which means weak convergence. By (i) we have ‖xn‖ ≤ c for all n

and ‖x‖ ≤ c, where c is sufficiently large. Since M is total in X∗, for every f ∈ X∗ there is

a sequence (fj)j in 〈M〉 such that fj → f. Hence for any given ε > 0 we can find a j such

that ‖f − fj‖ < ε
3c . Moreover, since fj ∈ 〈M〉, by (ii) there is a n0 such that, for all n > n0,

|fj(xn) − fj(x)| <
ε
3 . Using these two inequalities, we obtain for n > n0

|f(xn) − f(x)| ≤ |f(xn) − fj(xn)| + |fj(xn) − fj(x)| + |fj(x) − f(x)|

< ‖f− fj‖‖xn‖+
ε

3
+ ‖fj − f‖‖x‖ < ε.

Therefore, the sequence (xn)n converges weakly to x. The converse direction of the lemma

is rather clear and will be omitted. �

Corollary 3.5. If the above hypotheses (i), (ii) hold, and if in addition limn→∞ ‖xn‖ = ‖x‖, then
the sequence (xn)n converges strongly to x in X.

It is worthwhile to mention that if H is a Hilbert space, every f ∈ H ∗ has a Riesz repre-

sentation f(x) = 〈〈x, h〉〉 with h ∈ H .

Proposition 3.6. For k ≥ 0, the Hilbert space Fk(CN) contains the C-algebra P(CN) of polyno-
mial functions on CN as a dense subspace.

Proof. Recall that Ek(z, w̄) ∈ Fk(CN), since it is its reproducing kernel. In particular 1 =

E(z, 0) ∈ Fk(CN), and therefore the constants belong to Fk(CN). Let us now prove that for

all m ∈ ZN
+ and z ∈ CN, zm ∈ Fk(CN).
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Notice that for x, ξ ∈ RN and z ∈ CN

〈ξ, z〉Ek(z, x) = ∂ξEk(z, x) +
∑

α∈R+

kα
〈α, ξ〉
〈α, x〉

(Ek(z, x) − Ek(z, rαx)).

We may assume |ξ| = 1. Since the function

z 7→ ψ(t, z, x) :=
Ek(z, x+ tξ) − Ek(z, x)

t
+

∑
α∈R+

kα
〈α, ξ〉
〈α, x〉

(Ek(z, x) − Ek(z, rαx))

is given in terms of the Dunkl kernels, it belongs to Fk(CN). Clearly limt↓0ψ(t, z, x) =

〈ξ, z〉Ek(z, x). On the other hand

‖ψ(t, z, x) −ψ(t ′, z, x)‖2
k

=

∥∥∥∥Ek(z, x+ tξ) − Ek(z, x)

t

∥∥∥∥2

k

+

∥∥∥∥Ek(z, x+ t ′ξ) − Ek(z, x)

t ′

∥∥∥∥2

k

−2Rel
〈〈
Ek(z, x+ tξ) − Ek(z, x)

t
,
Ek(z, x+ t ′ξ) − Ek(z, x)

t ′

〉〉
k

=

[
Ek(x, x) + Ek(x+ tξ, x+ tξ) − 2Ek(x, x+ tξ)

t2

]
+

[
Ek(x, x) + Ek(x+ t ′ξ, x+ t ′ξ)

t ′2

−2
Ek(x, x+ t ′ξ)

t ′2

]
− 2

[
Ek(x, x) + Ek(x+ tξ, x+ t ′ξ) − Ek(x, x+ tξ) − Ek(x+ t ′ξ)

tt ′

]
.

By the Taylor series (2.3) of Ek(x, y), the asymptotic expansions of the above three terms

between the brackets are

〈ξ, x〉2Ek(x, x) +O(t), 〈ξ, x〉2Ek(x, x) +O(t ′), 〈ξ, x〉2Ek(x, x) +O(tt ′) as t, t ′ → 0,

respectively. Therefore

lim
t,t ′↓0

‖ψ(t, z, x) −ψ(t ′, z, x)‖k = 0.

Hence ψ(t, z, x) converges in norm and in pointwise topology to 〈ξ, z〉Ek(z, x),with 〈α, x〉 6=
0 for all α ∈ R. In particular, 〈ξ, z〉Ek(z, x) belongs to Fk(CN).

Fix z0 ∈ CN such that 〈α, z0〉 6= 0 for all α ∈ R, and write fn(z) = 〈z, ξ〉Ek(z, z0
n ). Next we

will prove that fn(z) converges to 〈z, ξ〉 in Fk(CN) as n → ∞. From the above discussion,

it follows that {fn}n ∈ Fk(CN). Further {fn(z)}n is convergent for all z ∈ CN. We claim that

‖fn‖k ≤M for some constantM and for all n. Therefore, by Lemma 3.4, we can deduce that

fn(z) converges weakly to 〈z, ξ〉 ∈ Fk(CN). To prove the claim, notice that

‖fn‖k ≤ ‖∂ξEk(·, z0/n)‖k + ‖
∑

α∈R+

kα
〈α, ξ〉

〈α, z0/n〉
(Ek(·, z0/n) − Ek(·, rαz0/n))‖k

≤ ‖∂ξEk(·, z0/n)‖k +

(
2

∑
α∈R+

k2
α

〈α, ξ〉2

〈α, z0/n〉2
(Ek(z0/n, z0/n) − Ek(z0/n, rαz0/n))

)1/2

.
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Using the fact that

Ek(x, x) − Ek(x, rαx)

〈α, x〉
=

∫1

0
∂αEk(x, x− y〈α, x〉α)dy,

and [29] for a suitable growth estimate for ∂αEk,we can deduce that ‖fn‖k ≤M.
For higher powers of z, one can reproduce the same argument.

To prove the density of P(CN),we need to introduce some notations. Let PR(RN) be the

space of real-coefficients polynomials on RN, and, for p, q ∈ P(RN), set [p, q]k = p(T)q(0).

Here p(T) is the operator derived from p(x) by replacing xi by Ti(k). Let {ϕm|m ∈ ZN
+ } be an

orthonormal basis for PR(RN) with respect to [·, ·]k. By [31], the reproducing kernel K can

be written as

K(z,w) =
∑

m∈ZN
+

ϕm(z)ϕm(w), z,w ∈ CN,

where we extendϕm to be in PR(CN). By Proposition 3.8 below, the inner product 〈〈·, ·〉〉k on

PR(CN) coincides with the brackets [·, ·]k.Namely, {ϕm|m ∈ ZN
+ } now forms an orthonormal

system in P(CN) ⊂ Fk(CN) with respect to 〈〈·, ·〉〉k. Thus, for fixed w ∈ CN, the sum∑
m∈ZN

+

ϕm(·)ϕm(w)

is convergent in Fk(CN), since
∑

m∈ZN
+

|ϕm(w)|2 = K(w,w) < ∞. Its limit will be Kw(·),
since ‖·‖k-convergence implies pointwise convergence. Hence, Kw ∈ P(CN) and Fk(CN) =

P(CN). �

Note that the argument used in the proof above establishes also that {ϕm|m ∈ ZN
+ } forms

an orthonormal basis for Fk(CN).

For ξ ∈ CN, denote by Mξ the operator defined for f ∈ Fk(CN) by Mξ(f)(z) = 〈z, ξ〉f(z).
Further, we set

D(Mξ) =
{
f ∈ Fk(CN) | Mξ(f) ∈ Fk(CN)

}
,

D(Tξ(k)) =
{
f ∈ Fk(CN) | Tξ(k)(f) ∈ Fk(CN)

}
.

Theorem 3.7. The operators Mξ and Tξ(k) are closed, densely defined operators on Fk(CN) such
that Tξ(k) is the adjoint operator ofMξ, and D(Tξ(k)) = D(Mξ).

Proof. Clearly the operators Tξ(k) and Mξ are densely defined (the set of polynomials is

contained in each of their domains). Let (fn, Tξ(k)fn) be a sequence in the graph of Tξ(k),

and assume that (fn, Tξ(k)fn) → (f, g) ∈ Fk(CN)×Fk(CN).Now limn→∞ ‖fn‖k = ‖f‖k and

limn→∞ ‖Tξ(k)fn‖k = ‖g‖k. Since strong convergence implies pointwise convergence, there-

fore, for all z ∈ CN, f(z) = limn→∞ fn(z) and g(z) = limn→∞ Tξ(k)fn(z). Notice that {fn(z)}

converges locally uniformly to f(z), and therefore g(z) = limn→∞ Tξ(k)fn(z) = Tξ(k)f(z).
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Using Corollary 3.5, we can deduce that Tξ(k) is closed. The same argument can be used for

the operatorMξ.

Recall that Sk(CN) = 〈Kz | z ∈ CN〉 is dense in Fk(CN) = Sk(CN). By the definition and

properties of K, it follows that

〈〈Tξ(k)Kz,Kw〉〉k = Tξ(k)K(w, z) = 〈z, ξ〉K(w, z)

= 〈z, ξ〉K(z,w) = 〈〈MξKw,Kz〉〉k = 〈〈Kz,MξKw〉〉k.

Therefore, 〈〈Tξ(k)f, g〉〉k = 〈〈f,Mξg〉〉k for all f, g ∈ Sk(CN). Denote by T∗ξ(k) and M∗
ξ the

adjoint operators of Tξ(k) and Mξ, respectively. Hence, 〈f, T∗ξ(k)g〉 = 〈f,Mξg〉 for f, g ∈
Sk(CN). Since Sk(CN) is total in Fk(CN), then one can extend the equality for f ∈ Fk(CN).

We can use the same argument for g ∈ Sk(CN) with 〈T∗∗ξ (k)f, g〉 = 〈M∗
ξf, g〉.Hence 〈T∗∗ξ (k)f, g〉 =

〈M∗
ξf, g〉 for f, g ∈ Fk(CN), whenever the both sides make sense. As Tξ(k) is closed, it fol-

lows that Tξ(k) = T∗∗ξ (k) = M∗
ξ.

For the last assertion, let f ∈ Fk(CN). Using the fact that

(1− rα) {〈η, z〉f(z)} = 〈η, z〉 (f(z) − f(rαz)) + (〈η, z〉− 〈η, rαz〉) f(rαz),

and

〈η, z〉− 〈η, rαz〉 = 〈α, z〉〈α, η〉,

(recall our normalization |α|2 = 2), we obtain

Tξ(k) {〈η, z〉f(z)}

= 〈η, ξ〉f(z) + 〈η, z〉

{
∂ξf(z) +

∑
α∈R+

kα
〈α, ξ〉
〈α, z〉

(f(z) − f(rαz))

}
+

∑
α∈R+

kα〈α, ξ〉〈α, η〉f(rαz)

= 〈η, ξ〉f(z) + 〈η, z〉Tξ(k)f(z) +
∑

α∈R+

kα〈α, ξ〉〈α, η〉f(rαz).(3.2)

Thus, for instance if p ∈ P(CN) (or in the respective domains), and ξ ∈ CN with |ξ| = 1,we

have

(3.3) ‖Mξp‖2
k = ‖p‖2

k + ‖Tξ(k)p‖2
k +

∑
α∈R+

kα〈α, ξ〉2〈〈rα · p, p〉〉k.

Now, let f ∈ D(Tξ(k)), i.e. f ∈ Fk(CN) such that Tξ(k)f ∈ Fk(CN). Since P(CN)(⊂
D(Tξ(k))) is dense in Fk(CN), and the graph of Tξ(k) is closed, assume (pn, Tξ(k)pn)n,with

(pn)n ∈ P(CN), converges to (f, Tξ(k)f) as n → ∞ [27, Proposition VIII.1.1]. By (3.3) it fol-

lows that (Mξpn)n is a Cauchy sequence. Therefore (Mξpn)n converges in Fk(CN), and, by

the closedness of Mξ, to Mξf. The same argument can be employed to prove the converse

direction. Hence D(Tξ(k)) = D(Mξ). �
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Due to the commutativity of the Dunkl operators Tξ(k), the linear map ξ 7→ Tξ(k) can be

extended in a unique way to an algebra homomorphism from the symmetric algebra S(CN)

to End(CN). The image of p ∈ S(CN) will be denoted by p(T), where p(T) is the operator

formed by replacing zi by Ti(k) for 1 ≤ i ≤ N.

Proposition 3.8. For p, q ∈ P(CN), the inner product 〈〈·, ·〉〉k satisfies

〈〈p, q〉〉k = p(T)q(z)∣∣z=0
,

where q̄ is the polynomial defined by q̄(z) = q(z̄).

Proof. Recall that, for ξ ∈ CN, the two operators Mξ and Tξ(k) are densely defined, and the

set of polynomials is contained in their domains. For p, q ∈ P(CN), set

≪ p, q ≫k:= p(T)q̄(z)|z=0.

By the commutativity of the Dunkl operators, clearly

≪ Mξp, q ≫k=≪ p, Tξ(k)q ≫k .

Denote by P(n)(CN) the set of polynomials of total degree less than or equal to n. First,

notice that

〈〈1, 1〉〉k = 〈〈K0,K0〉〉k = K(0, 0) = 1 =≪ 1, 1 ≫k .

Therefore the statement holds for constant polynomials. Moreover

〈〈1, 〈z, ξ〉 〉〉k = 〈〈Tξ(k)1, 1〉〉k = 0,

where, on the other hand, we have

≪ 1, 〈z, ξ〉 ≫k= 〈z̄, ξ〉|z=0 = 0.

It is now easy to check that the statement holds if p or q is constant. To prove the statement

in general, we will use the induction on max(total deg(p), total deg(q)) for p, q ∈ P(n)(CN).

Assume the statement holds for n− 1 in place of n. For p ∈ P(n−1)(CN) and q ∈ P(n)(CN),

we have

〈〈Mξp, q〉〉k = 〈〈p, Tξ(k)q〉〉k.

Since Tξ(k) is homogeneous of degree −1 on P(CN), it follows, by the inductive hypothesis,

that

〈〈p, Tξ(k)q〉〉k =≪ p, Tξ(k)q ≫k=≪ Mξp, q ≫k,

which leads to

〈〈Mξp, q〉〉k =≪ Mξp, q ≫k .

This finishes the proof. �
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Below, we collect some fundamental properties of the inner product 〈〈·, ·〉〉k on P(CN).

For n ∈ Z+, let Pn be the space of homogeneous polynomials in P(CN) of degree n.

Lemma 3.9. For non-negative multiplicity functions k
(i) 〈〈Pn,Pm〉〉k = 0 if n 6= m; and
(ii) 〈〈Vkp, q〉〉k = 〈〈p, q〉〉0 for p, q ∈ P(CN).

Proof. (i) The assertion follows from Proposition 3.8.

(ii) By statement (i), it is enough to consider p, q ∈ Pn.Using the fact that Tξ(k)◦Vk = Vk◦∂ξ,

and the fact that Vk
∣∣P0

= id,we obtain

〈〈Vkp, q〉〉k = 〈〈q, Vkp〉〉k = q(Tξ)(Vkp)(0)

= Vk(q(∂ξ)(p)(0)) = q(∂ξ)(p)(0) = 〈〈q, p〉〉0 = 〈〈p, q〉〉0.

�

We conclude this section by studying the possibility of seeing the norm in the subspace

Fk(CN)G of G-invariant functions in Fk(CN), as an L 2-norm.

Let Fk(CN)G be the Hilbert space of G-invariant functions in Fk(CN), and fix an or-

thonormal basis {ξ1, . . . , ξN} of CN. The G-equivariance of the Dunkl operators implies that

∆k =
∑N

i=1 Tξi
(k)2 isG-equivariant, i.e. g◦∆◦g−1 = ∆k. SetM2 :=

∑N
i=1M

2
ξi
, and define the

weight function w̃k(z) := wk(z)wk(z). Let ρk(x, y), for x, y ∈ RN, be a positive real function

which assumed to define the inner product in Fk(CN)G by

〈〈f, g〉〉k =

∫
CN

f(z)g(z)ρk(x, y)w̃k(z)dz, f, g ∈ Fk(CN)G,

such that

(3.4) 〈〈∆kf, g〉〉k = 〈〈f,M2g〉〉k, f, g ∈ Fk(CN)G.

Here dz is the 2N-dimensional volume element
∏
dxi

∏
dyi. Notice that condition (3.4)

holds for all elements in Fk(CN),whenever both sides of the equation make sense. The func-

tion ρk should also satisfy an exponential decay at infinity (recall that P(CN)G ⊂ Fk(CN)G).

A short calculation shows that∫
CN

[
Tξ(k)f(z)

]
g(z)w̃k(z)dz = −

∫
CN

f(z)
[
Tξ(k)g(z)

]
w̃k(z)dz,

for all suitably decaying functions f and g. Therefore∫
CN

[
∆kf(z)

]
g(z)w̃k(z)dz =

∫
CN

f(z)
[
∆kg(z)

]
w̃k(z)dz.

Thus (3.4) becomes a condition on ρk, namely

(3.5)
∫

CN

f(z)∆k

[
g(z)ρk(z)

]
w̃k(z)dz =

∫
CN

f(z)|z|2g(z)ρk(z)w̃k(z)dz,
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with |z̄|2 =
∑N

i=1 z̄
2
i for z ∈ CN. Since g is a G-invariant holomorphic function, then we may

rewrite (3.5) as∫
CN

f(z)g(z)
[
∆kρk(z)

]
w̃k(z)dz =

∫
CN

f(z)g(z)|z|2ρk(z)w̃k(z)dz, f, g ∈ Fk(CN)G.

Therefore, the function ρk satisfies

(3.6) p(T(k))ρk(z) = p(−z̄)ρk(z), ∀p ∈ S(CN)G.

Unfortunately, the natural solution of the differential system (3.6) which is Ek(z,−z̄), or even

the Bessel function JG(z,−z̄) =
∑

g∈G Ek(gz,−z̄), cannot be a candidate for the function ρk as

the rank one case shows by looking at the asymptotic growth of Ek(z,−z̄) = e−‖z‖2

1F1(k; 2k+

1; 2‖z‖2) as ‖z‖ → ∞ (here ‖z‖2 = zz̄). In [5] Cholewinski studied the case of even functions

in Fk(C), where he used ρk(z) = ‖z‖1−2kKk−1/2(‖z‖2), with z ∈ C and Kν is the Bessel

function of the third kind. See Example 4.14 below, for a complete investigation on the

measure associated with Fk(C) by using Cholewinski’s result.

We conjecture that there exists a Bessel function K(k, ·, ·) on CN × CN, with exponential

decay at infinity, such that

(3.7) p(Tz
ξ(k))Kk(z,w) = p(−w)Kk(z,w), ∀p ∈ S(CN)G.

Here the superscript z denotes that the operators act with respect to the z-variable. The defi-

nition and properties of K(k, ·, ·) extend naturally those of its classical counterpart K(k, z,w) =

(zw)1/2−kKk−1/2(zw) for z,w ∈ C. In the general setting, K(k, ·, ·) deserves the name of

Bessel function of type three. A closer investigation of such generalized Bessel functions of

type three will appear in a forthcoming paper.

4. THE SEGAL-BARGMANN TRANSFORM ASSOCIATED WITH COXETER GROUPS

In this section we give a generalized Segal-Bargmann transform between L 2(RN, wk)

and the Fock space Fk(CN) via a restriction principle, i.e. polarization of suitable restric-

tion map. This idea of restriction was first applied to the Weyl transform in [22], and later

to the Segal-Bargmann transform associated with weighted Bergman spaces on bounded

symmetric domains (cf. [23, 7, 34]).

For t > 0 and z,w ∈ CN, set

Γk(t, z,w) =
1

(2t)γ+N/2ck
e−(|z|2+|w|2)/4tEk(

z√
2t
,
w√
2t

).

The kernel Γk(t, z,w) was introduced in [29] as a generalized heat kernel. Recall that |z|2 =∑N
i=1 z

2
i for z ∈ CN.

Let L 2(RN, wk) be the space of L 2-functions on RN with respect to the weight function

wk. The notation ‖ · ‖ will be set for the norm in L 2(RN, wk).
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Let Rk be the restriction map Rk : Fk(CN) → L 2(RN, wk), given by

Rkf(x) = e−|x|2/2f(x), x ∈ RN.

The map Rk is a closed, densely defined operator from Fk(CN) into L 2(RN, wk) with dense

image (see for instance [29, Theorem 3.2]). We should notice here that our normalization of

L 2(RN, wk) is slightly different from the one in [29].

Now consider the adjoint R∗
k : L 2(RN, wk) → Fk(CN) as a densely defined operator.

Proposition 4.1. For f ∈ L 2(RN, wk), the integral

RkR∗
kf(y) = ck

∫
RN

f(x)Γk(
1

2
, x, y)wk(x)dx

converges absolutely for a.e. y ∈ RN. The function RkR∗
kf thus defined is in L 2(RN, wk) and

‖RkR∗
k‖ ≤ ck.

Proof. Since K is the reproducing kernel of Fk(CN), then for f ∈ L 2(RN, wk) and z ∈ CN

R∗
kf(z) = 〈〈R∗

kf,Kz〉〉k

= (f,RkKz)L 2

=

∫
RN

f(x)RkEk(z, x)wk(x)dx

=

∫
RN

f(x)Ek(z, x)e−|x|2/2wk(x)dx.

Therefore, for y ∈ RN

RkR∗
kf(y) = e−|y|2/2R∗

kf(y)

=

∫
RN

f(x)e−(|x|2+|y|2)/2Ek(x, y)wk(x)dx

= ck

∫
RN

f(x)Γk(
1

2
, x, y)wk(x)dx.

By Hölder’s inequality we have

∫
RN

|f(x)Γ(
1

2
, x, y)|wk(x)dx ≤

[∫
RN

Γ(
1

2
, x, y)wk(x)dx

]1
2
[∫

RN

Γ(
1

2
, x, y)|f(x)|2wk(x)dx

]1
2

=

[∫
RN

Γ(
1

2
, x, y)|f(x)|2wk(x)dx

]1
2
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for a.e. y ∈ RN. Above we used the fact that Γk(t, x, y) > 0 and
∫

RN Γk(t, x, y)wk(x)dx = 1

for all t > 0 (cf. [30]). Hence, by Tonelli’s theorem

‖RkR∗
kf‖2 ≤ c2k

∫
RN

[∫
RN

|f(x)Γ(
1

2
, x, y)|wk(x)dx

]2

wk(y)dy

≤ c2k

∫
RN

∫
RN

Γ(
1

2
, x, y)|f(x)|2wk(x)wk(y)dxdy

= c2k

∫
RN

|f(x)|2wk(x)dx

= c2k‖f‖2.

Since f ∈ L 2(RN, wk),RkR∗
kf is well defined a.e., and ‖RkR∗

kf‖ ≤ ck‖f‖. �

Using the integral formula (2.5), the following observation holds. For the case of flat

symmetric space of type CN orDN (N ≥ 3) and slightly different transformation, this obser-

vation was made in [34].

Theorem 4.2. For x ∈ RN and z ∈ CN, the transform RkR∗
k has Ek(x, z) as an eigenfunction.

More precisely

RkR∗
kEk(x, z) = cke

|z|2/2Ek(x, z).

By Proposition 4.1, the operator RkR∗
k is well defined and by definition is positive. We

can therefore define
√

RkR∗
k. Thus there exists an isometry Bk so that R∗

k = Bk

√
RkR∗

k.

Since Rk =
√

RkR∗
kB∗

k and Image(Rk) is dense, it follows that Bk is a unitary isomorphism.

In considering Bkf(a+ ib), one may interpret a as a position variable and b as a frequency

variable. In the context of quantum mechanics, the frequency variable has the interpretation

of momentum.

Theorem 4.3. The unitary isomorphism Bk : L 2(RN, wk) → Fk(CN) is given by

Bkf(z) = 2γ+N/2c
−1/2
k e−|z|2/2

∫
RN

f(x)Ek(
√
2x,

√
2z)e−|x|2wk(x)dx.

The transformation Bk is called the generalized Segal-Bargmann transform associated with G.

Proof. Let f ∈ L 2(RN, wk). Since

RkR∗
kf(y) = ck

∫
RN

f(x)Γk(
1

2
, x, y)wk(x)dx,

it follows, using again [30] and mainely the positivity of the heat kernel as an operator, that

|Rk|f(y) :=
√

RkR∗
kf(y) =

√
ck

∫
RN

f(x)Γk(
1

4
, x, y)wk(x)dx.
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Using the integral representation of R∗
k, given in the proof of Proposition 4.1, we obtain

R∗
kf(z) =

∫
RN

f(x)Ek(x, z)e−|x|2/2wk(x)dx

= cke
|z|2/2

∫
RN

f(x)Γk(
1

2
, x, z)wk(x)dx

= cke
|z|2/2

∫
RN

f(x)

[∫
RN

Γk(
1

4
, x, y)Γk(

1

4
, z, y)wk(y)dy

]
wk(x)dx

= cke
|z|2/2

∫
RN

[∫
RN

f(x)Γk(
1

4
, x, y)wk(x)dx

]
Γk(
1

4
, y, z)wk(y)dy

=
√
cke

|z|2/2

∫
RN

|Rk|f(y)Γk(
1

4
, y, z)wk(y)dy

= Bk(|Rk|f)(z).

To obtain the above third equality, we used the fact that∫
RN

Γk(
1

4
, x, y)Γk(

1

4
, z, y)wk(y)dy =

22γ+N

c2k
e−|x|2−|z|2

∫
RN

Ek(x, 2y)Ek(z, 2y)e−2|y|2wk(y)dy

= c−1
k e−(|x|2+|z|2)/2Ek(x, z)

= Γk(
1

2
, x, z).

�

Remark 4.4. For the special case k ≡ 0

B0f(z) = (2/π)N/4

∫
RN

e−|x|2+2〈x,z〉−|z|2/2f(x)dx.

This compares well with the classical Segal-Bargmann transform (cf. [16, pp. 40]).

For p, q ∈ P(RN), set [p, q]k = p(T)q(0). Here p(T) is the operator derived from p(x) by

replacing xi by Ti(k). Due to Dunkl [11], the pairing [·, ·]k is in fact a scalar product on the

R-vector space PR(RN) of real valued polynomials on RN.

Recall that {ϕm | m ∈ ZN
+ } forms an orthonormal basis for PR(RN) with respect to [·, ·]k,

such that ϕm ∈ P|m|.Here |m| = m1 + · · ·+mN. For instance, if k ≡ 0, the natural choice of

the basis {ϕm} is ϕm(x) = xm/
√

m!.

In [30], Rösler defined generalized Hermite polynomials { Hm | m ∈ ZN
+ } and Hermite

functions { hm | m ∈ ZN
+ }, associated with the basis {ϕm}, by

Hm(x) = e−∆k/2ϕm(x), hm(x) = e−|x|2/4Hm(x), x ∈ RN.

For m ∈ ZN
+ , set Ψm := 2γ+N/2c

−1/2
k d2 ◦ hm, where d2 denotes the dilation operator on

functions by 2, i.e. d2f(x) = f(2x).
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Proposition 4.5. For z ∈ CN

Bk(Ψm)(z) = ϕm(z).

Since the set {ϕm|m ∈ ZN
+ } forms an orthonormal basis for Fk(CN) (see Section 3), it follows from

Theorem 4.3 that the set {Ψm|m ∈ ZN
+ } forms an orthonormal basis for L 2(RN, wk).

Proof. It is a well known fact that Ek(λz,w) = Ek(z, λw) for all λ ∈ C. Using the fact that

hm(x) = e−|x|2/4e−∆k/2ϕm(x), and the integral formula (2.4), we obtain

BkΨm(z) =
√
cke

|z|2/2

∫
RN

Ψm(x)Γk(
1

4
, x, z)wk(x)dx

= ck
−1/22γ+N/2e−|z|2/2

∫
RN

Ψm(x)e−|x|2Ek(
√
2x,

√
2z)wk(x)dx

= 22γ+Nc−1
k e−|z|2/2

∫
RN

hm(2x)Ek(
√
2x,

√
2z)e−|x|2wk(x)dx

= c−1
k e−|z|2/2

∫
RN

hm(x)e−|x|2/4Ek(x, z)wk(x)dx

= c−1
k e−|z|2/2

∫
RN

e−∆k/2ϕm(x)Ek(x, z)e−|x|2/2wk(x)dx

= ϕm(z).

Since the Segal-Bargmann transform Bk is a unitary isomorphism from L 2(RN, wk) to

Fk(CN), therefore the proposition holds. �

Remark 4.6.
(i) From the above proposition, it follows that

B−1
k = 2γ+N/2c

−1/2
k e−|x|2d2 ◦ e−∆k/2.

(ii) Recall that the integral kernel Bk is a unitary isomorphism from L 2(RN, wk) to

Fk(CN) with kernel 2γ+N/2c
−1/2
k e−|z|2/2e−|x|2Ek(

√
2z,

√
2x). As an immediate conse-

quence of the above proposition, together with the unitarity of Bk, the following

generating relation holds

2γ+N/2c
−1/2
k e−|z|2/2e−|x|2Ek(

√
2z,

√
2x) =

∑
m∈ZN

+

ϕm(z)2γ+N/2c
−1/2
k hm(2x),

i.e.

(4.1) e−|z|2/2Ek(z, x) =
∑

m∈ZN
+

ϕm(z)Hm(x).

This relation was also proved earlier in [30] by using a different approach.
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The Dunkl transform, which shares many properties with the classical Fourier transform,

was introduced in [12] and further studied in [21]. For our convenience, we will write the

Dunkl transform as

Dkf(ξ) = c−1
k 2−γ−N/2

∫
RN

f(x/2)Ek(−iξ, x)wk(x)dx, ξ ∈ RN.

Theorem 4.7. The following diagram commutes

L 2(RN, wk)
Bk−−−−→ Fk(CN)

Dk

y y(−i)∗

L 2(RN, wk)
Bk−−−−→ Fk(CN)

where (−i)∗f(z) := f(−iz) for f ∈ Fk(CN).

Proof. For abbreviation write c̃ = c−1
k 2−γ−N/2 and ˜̃c = c

−1/2
k 2γ+N/2. For f ∈ L 2(RN, wk),we

have

BkDkf(z) = ˜̃ce−|z|2/2

∫
RN

Dkf(ξ)e
−|ξ|2Ek(

√
2z,

√
2ξ)wk(ξ)dξ

= c̃ ˜̃ce−|z|2/2

∫
RN

[∫
RN

f(x/2)Ek(−iξ, x)wk(x)dx

]
e−|ξ|2Ek(

√
2z,

√
2ξ)wk(ξ)dξ

= c̃ ˜̃ce−|z|2/2

∫
RN

[∫
RN

Ek(−iξ, x)Ek(
√
2z,

√
2ξ)e−|ξ|2wk(ξ)dξ

]
f(x/2)wk(x)dx

= c̃ ˜̃ccke−|z|2/22−γ−N/2

∫
RN

f(x/2)Ek(−
i√
2
x,
√
2z)e−|x|2/4e|z|2wk(x)dx

= c̃ ˜̃cck2γ+N/2e−|z|2/2

∫
RN

f(y)Ek(
√
2y,

√
2(−iz))e−(|y|2+|−iz|2)wk(y)dy

= c̃ck2
γ+N/2Bkf(−iz) = Bkf(−iz).

�

Remark 4.8. The above theorem gives a simple alternative proof for the unitarity of the trans-

form Dk,which was proved earlier by Dunkl [12] using a different approach. See also [21].

For f ∈ L 2(RN, wk), define the Fourier transform of f by

Fk(f)(ξ) =

∫
RN

f(x)Ek(iξ, x)wk(x)dx.

The integral transform Fk is also know as the inverse of the Dunkl transform, up to a con-

stant. The following theorem is similar to the main result in [34, Section 9], where the state-

ment was proved1 only in a special setting associated with the flat symmetric spaces of type

CN and DN (N ≥ 3).
1In [34, Proposition 9.4] the centered formula should not contains the term (−1)−|n|, and therefore the expan-

sion in [34, Corollary 9.5 bis] does not contain (−1)−|n|.
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Theorem 4.9. For x, y ∈ RN

e−|x|2/4e|y|2/2Ek(x, iy) = c
−1/2
k

∑
m∈ZN

+

ϕm(y)Fk(B−1
k ϕm)(x).

Proof. On one hand, by the generating relation (4.1), we know that

e−|z|2/2Ek(x, z) =
∑

m∈ZN
+

ϕm(z)Hm(x).

Hence

e−|x|2/4e|y|2/2Ek(x, iy) =
∑

m∈ZN
+

i|m|ϕm(y)hm(x)

= 2−γ−N/2c
1/2
k

∑
m∈ZN

+

i|m|ϕm(y)Ψm(
x

2
).(4.2)

On the other hand, we claim that

Ψm(
x

2
) = i−|m|2γ+N/2c−1

k Fk(Ψm)(x).

Therefore, we may rewrite (4.2) as

e−|x|2/4e|y|2/2Ek(x, iy) = c
−1/2
k

∑
m∈ZN

+

ϕm(y)Fk(Ψm)(x)

= c
−1/2
k

∑
m∈ZN

+

ϕm(y)Fk(B−1
k ϕm)(x).

To prove the claim, recall that Bk ◦Dk ◦B−1
k = (−i)∗ (see Theorem 4.7). Therefore

Dk(Ψm)(−
x

2
) = Dk(B−1

k ϕm)(−
x

2
)

= i|m|B−1
k (ϕm)(

x

2
) = i|m|Ψm(

x

2
).

Further, one can check that Dk(f)(−x
2 ) = 2γ+N/2c−1

k Fk(f)(x). Thus, the claim holds. �

Recall thatMξ denotes the operatorMξ(f)(z) = 〈z, ξ〉f(z), for ξ ∈ CN.Define the lowering

and the raising operators on L 2(RN, wk) by

A−
ξ =

1√
2
(M2ξ + Tξ(k)), A+

ξ =
1√
2
(M2ξ − Tξ(k)).

These two operators were introduced by Rösler [31] in connection with Rodrigues-type for-

mulas for the eigenfunctions of the Calogero-Moser systems. Next we will see that these

two operators are also the lowering and raising operators on Fk(CN) but in a more natural

way.

Below, we will exhibit the relationship between operators on L 2(RN, wk) and on Fk(CN).

For an operator O on L 2(RN, wk),we define the operator Ǒ on Fk(CN) by

Ǒ = Bk ◦O ◦B−1
k .
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Further, as usual, [A,B] = AB− BA for A,B ∈ End(P(CN)).

Theorem 4.10. The following properties hold:
(i) Ťξ(k) = Tξ(k) −Mξ for ξ ∈ CN;

(ii) [Ťξ(k), Ťη(k)] = 0 for ξ, η ∈ CN;

(iii) M̌2ξ = Tξ(k) +Mξ for ξ ∈ CN;

(iv) [M̌2ξ, M̌2η] = 0 for ξ, η ∈ CN;

(v) [Ťξ(k), M̌2η] = 2〈ξ, η〉+ 2
∑

α∈R+ kα〈α, ξ〉〈α, η〉rα;

(vi) Ǎ−
ξ =

√
2Tξ(k), and Ǎ+

ξ =
√
2Mξ.

Notice that, as the Dunkl operators are homogeneous of degree −1 on polynomials, and since Mξ

are the multiplication operators, Ǎ−
ξ and Ǎ+

ξ are obviously the lowering and raising operators on
P(CN).

Proof. (i) Write ˜̃c = c
−1/2
k 2γ+N/2. Using (2.1), we obtain

Tz
ξ(k)Bkf(z) = Tz

ξ(k)

[
˜̃ce−|z|2/2

∫
RN

f(x)e−|x|2/2Ek(2x, z)wk(x)dx

]
= − ˜̃c〈z, ξ〉e−|z|2/2

∫
RN

f(x)e−|x|2/2Ek(2x, z)wk(x)dx

+2 ˜̃ce−|z|2/2

∫
RN

f(x)〈x, ξ〉e−|x|2/2Ek(2x, z)wk(x)dx

= −〈z, ξ〉Bk(f)(z) + 2 ˜̃ce−|z|2/2

∫
RN

f(x)〈x, ξ〉e−|x|2/2Ek(2x, z)wk(x)dx.

Further, using again (2.1), we prove that

Bk(Tξ(k)f)(z) = −2〈z, ξ〉Bk(f)(z) + 2 ˜̃ce−|z|2/2

∫
RN

f(x)〈x, ξ〉e−|x|2/2Ek(2x, z)wk(x)dx.

Hence

Tz
ξ(k)Bk(f)(z) = Bk(Tξ(k)f)(z) + 〈z, ξ〉Bk(f)(z),

and statement (i) holds.

(ii) Since the Dunkl operators commute, one can derive directly the statement from the

definition of Ťξ(k) = Bk ◦ Tξ(k) ◦B−1
k .

(iii) From the proof of (i), it follows that

Tz
ξ(k)Bkf(z) = −〈z, ξ〉Bk(f)(z) + 2 ˜̃ce−|z|2/2

∫
RN

f(x)〈x, ξ〉e−|x|2/2Ek(2x, z)wk(x)dx,

and therefore

Bk(2〈ξ, ·〉f)(z) = Tz
ξ(k)Bkf(z) + 〈z, ξ〉Bk(f)(z).

(iv) The statement follows by employing the same argument used in (ii)

(v) Using again the commutativity of Tξ(k),we obtain

[Ťξ(k), M̌2η] = Tξ(k) ◦ 〈η, ·〉− 〈η, ·〉Tξ(k) + Tη(k) ◦ 〈ξ, ·〉− 〈ξ, ·〉Tη(k).
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Now the statement follows from the following (see (3.2))

Tξ(k) {〈η, z〉f(z)} = 〈η, ξ〉f(z) + 〈η, z〉Tξ(k)f(z) +
∑

α∈R+

kα〈α, ξ〉〈α, η〉f(rαz),

by symmetry in ξ and η.

(vi) Follows from the assertions (i) and (iii). �

The quantum Calogero-Moser (CM) rational model describes quantum mechanical sys-

tems ofN particles in one dimension identified by their coordinates and interacting pairwise

through potentials of type 1/A2.

The generalized CM operator related to a Coxeter group G and a multiplicity function k

was introduced by Olshanetsky and Perelomov [24]. The gauge equivalent version of the

Hamiltonian of such a system with harmonic confinement has the form

H̃k := w
−1/2
k (−L̃k +ω2|x|2)w

1/2
k = −∆+ 2

∑
α∈R+

kα

〈α, x〉
∂α +ω2|x|2, ω > 0,

where

L̃k = ∆− 2
∑

α∈R+

1

〈α, x〉2
kα(kα − 1).

If R is of type AN−1, the study of H̃k goes back to Calogero [4]. In the original formulation

of the CM model, the interaction among the particles was simply pairwise. It was realized

later that the complete integrability of the model was tied to the root lattice of the Lie algebra

of type AN−1. For an arbitrary root system on RN, partial results on the integrability of the

generalized CM system are due to Olshanetsky and Perelomov [24]. See also [25]. A new

approach in the understanding of the algebraic structure and the quantum integrability of

CM models was later discovered by Heckman using the Dunkl operators [18]. We recall

briefly this approach. Let

Lk = ∆− 2
∑

α∈R+

1

〈α, x〉2
kα(kα − rα).

Its gauge equivalent version is given byw−1/2
k Lkw

1/2
k = ∆k (cf. [29]). Let P(RN)G be the set

of G-invariant polynomials on RN. For p ∈ P(RN)G we denote by Res(p(T)) the restriction

of the Dunkl operator p(T) to Pk(RN)G. By [18, Theorem 1.7], the set S = {Res(p(T)) | p ∈
P(RN)G} is a commuting family of differential operators on P(RN)G containing the op-

erator Res(∆k) = w
−1/2
k L̃kw

1/2
k , and S has N algebraically independent generators. This

implies the integrability of the CM operators H̃k.

Consider the following gauge equivalent version

Hk :=
1

4
w

−1/2
k (−Lk + 4|x|2)w

1/2
k =

1

4
(−∆k + 4|x|2)
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of the CM Hamiltonian with harmonic confinement and reflection terms. We choose the

constants 1/4 and 4 in the definition above to simplify formulas. The operator Hk is densely

defined in L 2(Rn, wk). For instance, d2 ◦ hm (here d2 denotes the delation operator) is an

eigenfunction for Hk, for the eigenvalue |m| + γ+N/2 (cf. [30]).

Theorem 4.11. Let {ξ1, . . . , ξN} be any orthonormal basis of CN. On Fk(CN), the corresponding
operator to the Hamiltonian Hk is given by

Ȟk = (γ+N/2) +

N∑
i=1

ξi∂ξi
.

Proof. By Theorem 4.10 we have

Ťξ(k)2 = Tξ(k)2 + 〈ξ, ·〉2 − 〈ξ, ·〉Tξ(k) − Tξ(k) ◦ 〈ξ, ·〉,

and

M̌2
2ξ = Tξ(k)2 + 〈ξ, ·〉2 + 〈ξ, ·〉Tξ(k) + Tξ(k) ◦ 〈ξ, ·〉.

Therefore

−Ťξ(k)2 + M̌2
2ξ = 2〈ξ, ·〉Tξ(k) + 2Tξ(k) ◦ 〈ξ, ·〉.

On the other hand, for ξ ∈ CN such that |ξ| = 1,we have

Tξ(k)(〈ξ, z〉f(z))

= ∂ξ(〈ξ, z〉f(z)) +
∑

α∈R+

kα
〈α, ξ〉
〈α, z〉

(〈ξ, z〉f(z) − 〈ξ, rαz〉f(rαz))

= f(z) + 〈ξ, z〉∂ξf(z) +
∑

α∈R+

kα
〈α, ξ〉〈z, ξ〉
〈α, z〉

f(z) −
∑

α∈R+

kα
〈α, ξ〉〈rαz, ξ〉

〈α, z〉
f(rαz).

Hence

−Ťξ(k)2f(z) + M̌2
2ξf(z) = 2f(z) + 4〈z, ξ〉∂ξf(z) + 4

∑
α∈R+

kα
〈α, ξ〉〈z, ξ〉
〈α, z〉

f(z)

−2
∑

α∈R+

kα
〈α, ξ〉〈rαz, ξ〉

〈α, z〉
f(rαz) − 2

∑
α∈R+

kα
〈α, ξ〉〈z, ξ〉
〈α, z〉

f(rαz).

Using the following Parseval identity

N∑
i=1

〈ξi, z〉〈ξi, w〉 = 〈z,w〉,

and the fact that 〈rαz, α〉 = −〈z, α〉,we obtain

N∑
i=1

−Ťξi
(k)2f(z) + M̌2

2ξi
f(z) = 4

{
N∑

i=1

〈z, ξi〉∂ξi
f(z) + (γ+N/2)f(z)

}
.

�
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Remark 4.12.
(i) An operator O is called essentially self-adjoint, if it is symmetric and its closure

is self-adjoint. Let O be a symmetric operator on a Hilbert space H with domain

D(O), and let {fn}n be a complete orthonormal set in H . If each fn ∈ D(O) and

there exists λn ∈ R such that Ofn = λnfn, for every n, then O is essentially self-

adjoint and the spectrum of its closure O,which is a self-adjoint operator, is given by

Spec(O) = {λn | n ∈ Z+}. We refer to [6, Chapter 1] for more details on this matter.

Now, using Theorem 3.7, one can see that Ȟk is densely defined and symmetric in

Fk(CN) while the set {ϕm | m ∈ ZN
+ } forms an orthonormal basis for Fk(CN) with

Ȟkϕm = (γ+N/2+ |m|)ϕm. Therefore, from the above discussion, the operator Ȟk

is essentially self-adjoint and

Spec(Ȟ k) =
{
`+ γ+N/2 | ` ∈ Z+

}
.

Clearly, the study of the Hamiltonian Hk in the Fock model is rather easy.

(ii) Since Ȟkϕm(x) = (γ+N/2+ |m|)ϕm(x), then

(−i)∗ϕm(x) = (−i)|m|ϕm(x) = e−i π
2

(Ȟk−(γ+N/2))ϕm(x).

Using the fact that (−i)∗ = Bk ◦ Dk ◦B−1
k and Ȟk = Bk ◦

[
1
4(−∆k + 4|x|2)

]
◦B−1

k ,

one may write the Dunkl transform Dk as

Dk = ei π
2

(γ+N/2)e−i π
8

(−∆k+4|x|2).

Remark 4.13.
The generalized Fock space theory presented in this paper occurs also for product

Fock spaces. Fix a Coxeter group G on RN with root system R. Let ` be a positive in-

teger and let k = (k1, . . . , k`) be a collection of ` non-negative multiplicity functions.

For z(1), . . . , z(`) ∈ CN, let z = (z(1), . . . , z(`)) ∈ CN×`. For z,w ∈ CN×`,we define

Kk(z,w) := Kk1
(z(1), w(1)) · · ·Kk`

(z(`), w(`)),

where Kki
(z(i), w(i)) = Eki

(z(i), w(i)). Let Sk(CN×`) be the set of all finite complex

linear combinations

f =

n∑
i=1

αiKk(·, z(i)), αi ∈ C, z(i) ∈ CN×`.

The completion of Sk(CN×`) with respect to the norm

‖f‖2
k = 〈〈f, f〉〉k :=

n∑
i=1

|αi|
2Kk(z(i), z(i))

coincides with the Hilbert space Fk(CN×`) of holomorphic functions on CN×` with

reproducing kernel Kk(z,w). Here Fk(CN×`) will be the Fock space related to the
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root system R` and to the reflection group G`. Moreover, on P(CN×`), the inner

product 〈〈·, ·〉〉k is given by

〈〈p, q〉〉k = p(T(k1), . . . , T(k`))q̄(z)∣∣
z=0

, p, q ∈ P(CN×`),

where T(ki) = (T1(ki), . . . , TN(ki)), and p(T(k1), . . . , T(k`)) is the operator derived

from p(z) by replacing zi,j by Ti(kj).

For x = (x(1), . . . , x(`)) ∈ RN×`, put wk(x) = wk1
(x(1)) · · ·wk`

(x(`)), and let

L 2(RN×`, wk) be the space of L 2-functions on RN×` with respect to the measure

wk(x)dx. In particular, if m = (m(1), . . . ,m(`)) ∈ ZN×`
+ with m(i) ∈ ZN

+ , then the set

{Ψm | m ∈ ZN×`
+ },where

Ψm(x) =
∏̀
i=1

2γi+N/2c
−1/2
ki

hm(i)(2x(i))

forms an orthonormal basis for L 2(RN×`, wk). Finally, for f ∈ L 2(RN×`, wk) and

z ∈ CN×`, let

Bkf(z) = c(k, `)e−tr(zzt)

∫
RN×`

f(x)Ek(
√
2x,

√
2z)e−tr(xxt)wk(x)dx,

where c(k, `) = 2
∑`

i=1 γi+N`/2
(∏`

i=1 c
−1/2
ki

)
, At stands for the transpose of a matrix

A, and tr(A) denotes its trace. The integral transform Bk is the Segal-Bargmann

transform associated with the Coxeter group G`.

With these definitions and basic results, one can derive the results detailed in this

paper for the Fock space Fk(CN×`).

Example 4.14. Assume that R is a rank one root system of type A1, i.e. R = {±
√
2α}. The

Coxeter group G reduces to {±1} ' Z/2Z, and acts on C by multiplication. For all complex

numbers c we adopt the identification α(c) ≡ c. The Dunkl operator associated with a

multiplicity parameter k ∈ C is given by

T(k)f(x) = f ′(x) +
k

x
(f(x) − f(−x)), x ∈ R.

The Dunkl-kernel Ek is given by

Ek(z,w) = Γ(k+
1

2
)
(zw
2

)1
2
−k {

Ik− 1
2
(zw) + Ik+ 1

2
(zw)

}
,

where Iν(z) = e−iπν/2Jν(iz), Jν(z) being the Bessel function of the first kind

Jν(z) =

∞∑
`=0

(−1)`
(

z
2

)2`+ν

Γ(1+ ν+ `)`!
.

In this example

ck = 2k− 1
2 Γ(k+

1

2
), and wk(x) = |x|2k, k ≥ 0.
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We refer to [28] for a thorough study of the space L 2(R, |x|2k).

In this example, we will see that the norm ‖ · ‖k can be written explicitly as an L 2-norm.

Our idea uses a result by F.M. Cholewinski [5], where the author considers only the Fock

space F e
k (C) of even entire functions on C. In [5], the author has also investigated the Segal-

Bargmann transform on F e
k (C) from another point of view.

Let F e
k (C) be the set of even entire functions with inner product

〈〈f, g〉〉k,e =

∫
C
f(z)g(z)dµe

k(z),

where

dµe
k(z) =

‖z‖2k+1

2k−1/2πΓ(k+ 1/2)
Kk−1/2(‖z‖2)dz, (‖z‖2 = zz̄)

with

Kν(z) =
π

2

I−ν(z) − Iν(z)

sinπν
is the Bessel function of the third kind. In [5], the author proves that

Ke(z,w) := Γ(k+
1

2
)

(
zw̄

2

)1
2
−k

Ik− 1
2
(zw̄)

is the reproducing kernel of F e
k (C).

Now, using a similar idea, we consider F o
k (C) to be the set of odd entire functions with

inner product

〈〈f, g〉〉k,o =

∫
C
f(z)g(z)dµo

k(z),

where

dµo
k(z) =

‖z‖2k+1

2k−1/2πΓ(k+ 1/2)
Kk+1/2(‖z‖2)dz.

Therefore, we can show that

Ko(z,w) := Γ(k+
1

2
)

(
zw̄

2

)1
2
−k

Ik+ 1
2
(zw̄)

is the reproducing kernel of F o
k (C).

Set EL2(C) := F e
k (C) ⊕ F o

k (C). Using an elementary argument on reproducing kernels,

we can conclude that the reproducing kernel of EL2(C) is given by

Kk(z,w) = Γ(k+
1

2
)

(
zw̄

2

)1
2
−k {

Ik− 1
2
(zw̄) + Ik+ 1

2
(zw̄)

}
,

which is equal to Ek(z, w̄). Since the Hilbert space EL2(C) is uniquely determined by its

reproducing kernel Kk(z,w), which coincides with Ek(z, w̄), it follows that EL2(C) is the

Fock space Fk(C) introduced in this paper.

In conclusion, for N = 1, the measure associated with Fk(C) is given by

(4.3) dµk(z) =
‖z‖2k+1

2k−1/2πΓ(k+ 1/2)

{
Kk−1/2(‖z‖2)∣∣

even part

+ Kk+1/2(‖z‖2)∣∣
odd part

}
dz,



30 SALEM BEN SAÏD AND BENT ØRSTED

in the sense that f(z) =
[

f(z)+f(−z)
2

]
+
[

f(z)−f(−z)
2

]
. The set {ϕm | m ∈ Z+},where

ϕm(z) =
zm

γk(m)1/2

with

γk(2m) =
22mm!Γ(m+ k+ 1

2)

Γ(k+ 1
2)

, γk(2m+ 1) =
22m+1m!Γ(m+ k+ 3

2)

Γ(k+ 1
2)

,

forms an orthonormal basis for Fk(C). The Segal-Bargmann transform Bk is given by

(4.4)

Bkf(z) = 2k/2+3/4Γ(k+
1

2
)1/2z1/2−ke−z2/2

∫
R
f(x)

(
Ik− 1

2
(2zx) + Ik+ 1

2
(2zx)

)
e−x2

|x|k+1/2dx.

Example 4.15. Denote by {e1, . . . , eN} the standard basis of RN. Let G = (Z/2Z)N be the

Coxeter group generated by the reflection r1, . . . , rN along e1, . . . , eN, i.e. for x ∈ RN ri(x) =

(x1, . . . , xi−1,−xi, xi+1, . . . , xN).

Let k = (k1, . . . , kN) with ki ≥ 0. By Remark 4.13 and Example 4.14, the Fock space

Fk(CN) related to the reflection group (Z/2Z)N, is the Hilbert space of holomorphic func-

tions on CN with inner product

〈〈f, g〉〉k =

∫
CN

f(z)g(z)dµk(z),

where z = (z1, . . . , zN) ∈ CN, and dµk(z) = dµk1
(z1) · · ·dµkN

(zN) with dµki
(zi) is the

measure given by (4.3). Moreover, for z,w ∈ CN, the reproducing kernel Kk(z,w) is given

by

Kk(z,w) =

N∏
i=1

Γ(ki +
1

2
)

(
ziw̄i

2

)1
2
−ki {

Iki−
1
2
(ziw̄i) + Iki+

1
2
(ziw̄i)

}
.

The unitary isomorphism Bk : L 2(RN,
∏N

i=1 |xi|
2ki) → Fk(CN) is given by Bk(f)(z) =

Bk1
⊗Bk2

⊗ · · · ⊗BkN
(f)(z), where the transforms Bki

are given by (4.4). Further, the set

{ϕm | m ∈ ZN
+ } with

ϕm(z) =

N∏
i=1

z
mi
i

γki
(mi)1/2

, mi ∈ Z+,

forms an orthonormal basis for Fk(CN).

Remark 4.16.
(i) Clearly K(k, z,w) =

∏N
i=1(ziwi)

1/2−kiKki−1/2(ziwi) is a solution of the Bessel

differential system (3.7) for G = (Z/2Z)N, with the required asymptotic behavior at

infinity.

(ii) Define `2 to be the set of sequences {zn}∞n=1 of complex numbers which satisfy
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n=1 ‖zn‖2 < ∞. In Example 4.15, one may let N → ∞. The resulting Fock space is

the Hilbert space F∞(`2) of “holomorphic” functions on `2 such that

‖f‖2∞ :=

∫
C∞ |f(z)|2dµ(z) < ∞.

The measure dµ on C∞ is defined as the product of the measures dµki
, given by (4.3),

on each component. For z,w ∈ `2, the reproducing kernel of F∞(`2) is given by

E∞(z,w) :=

∞∏
i=1

Γ(ki +
1

2
)

(
ziw̄i

2

)1
2
−ki {

Iki−
1
2
(ziw̄i) + Iki+

1
2
(ziw̄i)

}
.

Similarly, other facts proved for Fk(CN), with G = (Z/2Z)N, may be “translated”

into corresponding assertions for F∞(`2).

5. A BRANCHING DECOMPOSITION OF THE FOCK SPACE AND HECKE’S TYPE FORMULA

This section describes the structure of a representation of the Lie algebra sl(2,R) (or the

universal covering ˜SL(2,R) of SL(2,R)) on P(CN). This Lie algebra representation, together

with the left regular action of the Coxeter group G, allows to obtain the branching decom-

position of the Fock space under the action of G × sl(2,R). Those readers who are familiar

with the theory of Howe reductive dual pairs [19, 20] will find that our formulation can be

thought of as an instance of this theory. The Hecke’s formula for the Dunkl transform holds

immediately from our sl(2,R)-representation.

Choose z1, z2, . . . , zN as a system of coordinates on CN. Let

E =
1

2
|z|2 =

1

2

N∑
i=1

z2i , F = −
1

2
∆k, H =

N∑
i=1

zi∂zi
+N/2+ γ.

Then E (resp. F) acts on Fk(CN) as a creation (resp. annihilation) operator, and H acts

on Fk(CN) as a number operator. If P(CN) =
⊕∞

m=0 Pm(CN) is the natural grading on

P(CN), it is clear that E raises Pm(CN) to Pm+2(CN), F lowers Pm(CN) to Pm−2(CN),

and H multiplies (elementwise) Pm(CN) by the number (N/2 + γ +m). In [18], Heckman

showed the following commutation relations

(5.1) [E, F] = H, [E,H] = −2E, [F,H] = 2F.

These are the commutation relations of a standard basis of the Lie algebra sl(2,R). Equation

(??) gives raise to a unitary representation ω of sl(2,R). On P(CN), the representation ω

can be described as

(5.2) ω(sl(2,R)) = sl
(2,0)
2 ⊕ sl

(1,1)
2 ⊕ sl

(0,2)
2 ,

where

sl
(2,0)
2 = Span{E}, sl

(1,1)
2 = Span{H}, sl

(0,2)
2 = Span{F}.
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The decomposition (??) is an instance of the Cartan decomposition

sl(2,R) = p+ ⊕ k⊕ p−

where sl
(2,0)
2 ' ω(p+), sl

(1,1)
2 ' ω(k), and sl

(0,2)
2 ' ω(p−). Notice that k = u(1), the Lie

algebra of the compact group U(1). The integrated form of the Lie algebra representation

ω is the metaplectic representation, or the oscillator representation, of the universal cov-

ering ˜SL(2,R) of the group SL(2,R) (or Sp(2,R)). Notice that if γ is an integer, we obtain

the metaplectic representation of the double covering ˜SL(2,R) of SL(2,R). By applying the

Segal-Bargmann transform, one obtains the Schrödinger representation of ˜SL(2,R). How-

ever, for our purpose, its infinitesimal action (??) is enough.

Since ω is a unitary representation, and the operator H, which is the generator of k, has a

positive spectrum, then the representation contains a unique vector v0 such that ω(p−)v0 =

0 and ω(k)v0 = (m + N/2 + γ)v0 for some positive integer m. The vector v0 is the so-

called lowest weight vector for the representation, and the number (m + N/2 + γ) is the

lowest weight. The space of representation then has an orthonormal basis consisting of the

vectors v` = ω(p+)`v0. It is easy to check that each vector vm is an eigenvector forω(k) with

eigenvalue (m+ 2`+N/2+γ). Denote by Wm+γ+N/2 the representation with lowest weight

m+N/2+ γ.

Form ∈ N, set Hm(⊂ P(CN)) to be the space of harmonic homogeneous polynomials of

degree m, i.e. all functions p ∈ Pm(CN) such that ∆kp = 0. It is clear that p ∈ Hm if and

only ifω(k)p = (m+N/2+ γ)p andω(p−)p = 0.

Now one of the key features in this formalism is the following branching decomposition.

Theorem 5.1. The space Pm(CN) of homogeneous polynomials of degreem has a unique decompo-
sition of the form

Pm(CN) =

[m/2]∑⊕

t=0

|z|2tHm−2t,

where Hm−2t denotes the space of harmonic homogeneous polynomials of degree m − 2t. Moreover,
every homogeneous polynomial ψ ∈ Pm(CN) can be written in a unique way as

ψ(z) =

[m/2]∑
t=0

Γ(N/2+m− t+ γ− 1)

4tΓ(t+ 1)Γ(N/2+m+ γ− 1)
|z|2thm−2t,

where hm−2t ∈ Hm−2t and is given explicitly by

hm−2t =

[m/2]−t∑
j=0

(−1)jΓ(N/2+m− 2t− j− 1+ γ)

4jΓ(j+ 1)Γ(N/2+m− 2t+ γ− 1)
|z|2j∆

t+j
k ψ.
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Proof. Ifm = 0 or 1, the statement is obvious. For the rest of the proof we need the following

equation, that may be found in [15]

(5.3) ∆k(|z|2jp) = 4j(N/2+ j− 1+m+ γ)|z|2j−2p+ |x|2j∆kp, p ∈ Pm(CN).

However, one can also derive this equation directly by using the commutation
[
∆k, |z|

2
]

=

4Ȟk. Next assume thatm ≥ 2. Define

Q0p =

[m/2]∑
j=0

cj,m|z|2j∆
j
kp,

with c0,m 6= 0 and

cj,m =
(−1)j

4j

Γ(N/2+m− j− 1+ γ)

Γ(j+ 1)Γ(N/2+m+ γ− 1)
c0,m.

Here [m/2] denotes the integer part ofm/2.Notice thatQ0p ∈ Pm(CN).Next, we will prove

that Q0p ∈ Hm. By using (??), we obtain

∆k(Q0p) =

[m/2]∑
j=0

cj,m∆k(|z|2j∆
j
kp)

=

[m/2]∑
j=0

cj,m4j(N/2+ j− 1+m− 2j+ γ)|z|2j−2∆
j
kp+

[m/2]∑
j=0

cj,m|z|2j∆
j+1
k p

=

[m/2]∑
j=1

cj,m4j(N/2+m− j− 1+ γ)|z|2(j−1)∆
j
kp+

[m/2]−1∑
j=0

cj,m|z|2j∆
j+1
k p

=

[m/2]∑
j=1

cj,m4j(N/2+m− j− 1+ γ)|z|2j−2∆
j
kp+

[m/2]∑
j=1

cj−1,m|z|2j−2∆
j
kp.

Using the expression of the constants cj,m given above , one can check that

4j(N/2+m− j− 1+ γ)cj,m + cj−1,m = 0,

and therefore ∆k(Q0p) = 0, i.e. Q0p ∈ Hm. Now, consider the following sequence of poly-

nomials ∆t
kp with t = 0, . . . , [m/2]. Since p ∈ Pm, then ∆t

kp ∈ Pm−2t and, by the above

discussion, Q0(∆
t
kp) ∈ Hm−2t with

Q0(∆
t
kp) =

[m/2]−t∑
j=0

cj,m−2t|z|
2j∆

t+j
k p := Qtp.
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After multiplying both sides by |z|2t,we obtain

|z|2tQtp =

[m/2]−t∑
j=0

cj,m−2t|z|
2(j+t)∆

j+t
k p

=

[m/2]∑
s=t

cs−t,m−2t|z|
2s∆s

kp.

Write as,t := cs−t,m−2t with t ≤ s ≤ [m/2] and t = 0, . . . , [m/2]. The above equation can be

written as



a0,0 a1,0 a2,0 a3,0 · · ·
0 a1,1 a2,1 a3,1 · · ·
0 0 a2,2 a3,2 · · ·
0 0 0 a4,3 · · ·
...

...
...

...
...




p

|z|2∆kp
...

|z|2[m/2]∆
[m/2]
k p

 =


Q0p

|z|2Q1p
...

|z|2[m/2]Q[m/2]p

 ,

where the expressed upper-triangular matrix is invertible. By solving this system in p, we

obtain

(5.4) p =

[m/2]∑
t=0

αt|z|
2tQtp

where the constants αt are independent of p. We claim that this decomposition is unique.

Substituting in (??) the polynomial p by |z|2`Q`pwith ` = 0, · · · , [m/2],we get

(5.5) |z|2lQ`p =

[m/2]∑
t=0

αt|z|
2tQt(|z|

2`Q`p).

By the uniqueness of the decomposition, as we claimed above, all the terms on the right

hand side of (??) vanish only for t = `. Therefore

Q`p = α`Q`(|z|
2`Q`p)(5.6)

= α`

[m/2]−`∑
j=0

cj,m−2`|z|
2j∆

`+j
k (|z|2`Q`p).(5.7)
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On the other hand, using (??) and the fact that Q`p ∈ Hm−2`,we obtain

∆`
k(|z|2`Q`p) = ∆`−1

k

[
∆k(|z|2`Q`p)

]
= ∆`−1

k

[
4`(N/2+ `− 1+m− 2`+ γ)|z|2(`−1)Q`p

]
= ∆`−1

k

[
4`(N/2− 1+m− `+ γ)|z|2(`−1)Q`p

]
= ∆`−2

k

[
4`(N/2+m− `− 1+ γ)4(`− 1)(N/2+m− `− 1+ γ+ 1)]|z|2(`−2)Q`p

]
...

= 4`Γ(`+ 1)
Γ(N/2+m+ γ− 1)

Γ(N/2+m− `+ γ− 1)
Q`p.

Therefore, (??) becomes

Q`p = α`4
`Γ(`+ 1)

Γ(N/2+m+ γ− 1)

Γ(N/2+m− `+ γ− 1)

[m/2]−`∑
j=0

cj,m−2`|z|
2j∆

j
k(Q`p)

= α`4
`Γ(`+ 1)

Γ(N/2+m+ γ− 1)!

Γ(N/2+m− `+ γ− 1)
c0,m−2`Q`p.

If Q`p 6= 0, then

α` =
Γ(N/2+m− `+ γ− 1)

4`Γ(`+ 1)Γ(N/2+m+ γ− 1)c0,m−2`
,

and the theorem holds. Next, we will prove our claim about the uniqueness of the decom-

position. Assume that there exist two functions P(1)
m−2j,P

(2)
m−2j ∈ Hm−2j such that

p =

[m/2]∑
j=0

|z|2jP(1)
m−2j =

[m/2]∑
j=0

|z|2jP(2)
m−2j.

Therefore

(5.8)
[m/2]∑
j=0

|z|2jP(0)
m−2j = 0, P(0)

m−2j = P(1)
m−2j − P(2)

m−2j.
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After applying ∆[m/2]
k to (??) and using the fact that P(0)

m−2j ∈ Hm−2j,we obtain

0 =

[m/2]∑
j=0

∆
[m/2]
k (|z|2jP(0)

m−2j)

=

[m/2]∑
j=0

∆
[m/2]−1
k

[
4j(N/2+ j− 1+m− 2j+ γ)|z|2(j−1)P(0)

m−2j + |z|2j∆kP(0)
m−2j

]

=

[m/2]∑
j=1

4j(N/2+m− j− 1+ γ)∆
[m/2]−1
k (|z|2(j−1)P(0)

m−2j))

=

[m/2]∑
j=2

42j(j− 1)(N/2+m− j+ γ− 1)(N/2+m− j+ γ− 2)∆
[m/2]−2
k (|z|2(j−1)P(0)

m−2j)

= 4[m/2]Γ(1+ [m/2])
Γ(N/2+m+ γ− [m/2])

Γ(N/2+m− 2[m/2] + γ)
P(0)

m−2j.

Therefore P(0)
m−2j = 0 and (??) becomes

[m/2]−1∑
j=0

|z|2jP(0)
m−2j = 0.

Now, we Apply ∆[m/2]−1
k to the above equation and we obtain P(0)

m−2([m/2]−1) = 0. The same

argument gives P(0)
m−2j = 0 for all 0 ≤ j ≤ [m/2], and the uniqueness of the decomposition

holds. �

For g ∈ G, denote by π(g) the left regular action of G on Fk(CN)

π(g)f(z) = f(g−1z).

The infinitesimal representation dπ commutes withω.

For fixed h ∈ Hm, let I h := {|z|2th, t = 0, 1, . . .}. Since g ◦ ∆k ◦ g−1 = ∆k, the space I h

is invariant under the action of G. Also, the representation ω leaves I h invariant. Indeed,

H(|z|2th) = (m+ 2t+N/2+ γ)|z|2th, E(|z|2th) = 1/2|z|2(t+1)h, and by (??)

F(|z|2th) = −1/2
[
4t(m+ t+N/2+ γ− 1)|z|2(t−1)h+ |z|2t∆kh

]
= −2t(m+ t+N/2+ γ− 1)|z|2(t−1)h.

We summarize the consequences of all the above computations and dissections in the

light of Theorem ??.

Theorem 5.2. As a G × sl(2,R)-module, the Fock space admits the following multiplicity-free de-
composition

Fk(CN) =

∞⊕
m=0

Hm ⊗Wm+N/2+γ,
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where Wm+N/2+γ is the representation with lowest weightm+N/2+γ.We also have the separation
of variables theorem providing the following G× sl(2,R) decomposition

P(CN) =

∞∑⊕

m=0

[m/2]∑⊕

t=0

|z|2tHm−2t.

The following is then immediate.

Corollary 5.3. Under the action of sl(2,R), the Fock space Fk(CN) decomposes as

Fk(CN) =

∞⊕
m=0

dim(Hm)Wm+N/2+γ,

where dim(Hm) =

(
m+N− 1

N− 1

)
−

(
m+N− 3

N− 1

)
. If N > 1, this is always nonzero, but if

N = 1, it is zero form ≥ 2.

As an application of the above demonstrated sl(2,R)-representation theory, we obtain the

Hecke’s formula for the Dunkl transform as following: Recall thatH = Bk◦
[

1
4(−∆k + 4|x|2)

]
◦

B−1
k (see Theorem ??), where B−1

k can be written as (see Corollary ??)

B−1
k = 2γ+N/2c

−1/2
k e−|x|2d2 ◦ e−∆k/2.

Therefore [
1

4
(−∆k + 4|x|2)

]
B−1

k (p) = (m+N/2+ γ)B−1
k (p), p ∈ Pm(CN).

Notice that, for all p ∈ Hm, we have B−1
k (p) = 2γ+N/2c

−1/2
k e−|x|2p, which implies that

e−|x|2p is an eigenvector for
[

1
4(−∆k + 4|x|2)

]
with eigenvalue (m +N/2 + γ). On the other

hand,
[

1
4(−∆k + 4|x|2)

]
is the generator of the Lie algebra k ∼= so(2), while the Dunkl trans-

form Dk can be written as (see Corollary ??)

Dk = ei π
2

(γ+N/2)e− π
8

(−∆k+4|x|2)

Hence, for p ∈ Hm

Dk(e−|x|2p) = ei π
2

(γ+N/2)e− π
2
k(e−|x|2p)

= ei π
2

(γ+N/2)e−i π
2

(m+N/2+γ)e−|x|2p

= e−i π
2

me−|x|2p,

and the following theorem stands.

Theorem 5.4. The following Hecke’s type formula holds

Dk(e−|x|2p) = e−i π
2

me−|x|2p, p ∈ Hm.
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6. THE WEYL QUANTIZATION MAP AND THE BEREZIN TRANSFORM

In this short section, we will use the restriction principle to set the Berezin transform, and,

abstractly, the Weyl quantization map, for a Coxeter group G.

Consider Fk(CN)⊗Fk(CN) realized as the space of Hilbert-Schmidt operators on Fk(CN).

Each Hilbert-Schmidt operator T on Fk(CN) is given by a kernel F(z,w) holomorphic in z

and anti-holomorphic in w with Tf(z) = 〈〈f, F(z, ·)〉〉k and ‖T‖HS = ‖F‖Fk⊗Fk
. Henceforth,

we will identify the operator with its kernel.

To realize the Weyl quantization map, we define

Rk : Fk(CN)⊗Fk(CN) → C ∞(R2N)

RkF(x, y) = F(x+ iy, x+ iy)e−(|x|2+|y|2), x, y ∈ RN.

Clearly Rk is injective and closed. Further, since the Gaussian e−(|x|2+|y|2) belongs to L 1(RN, wk)⊗
L 1(RN, wk) and Fk(CN) ⊗Fk(CN) contains all polynomials, the range of Rk contains the

functions of the form e−(|x|2+|y|2)p(x+ iy, x+ iy) where p(z, z) are polynomials of x and y.

Now, consider the formal adjoint R∗
k : L 2(RN, wk)⊗L 2(RN, wk) → Fk(CN)⊗Fk(CN).

Employing the same argument used in the proof of Proposition 4.1, and the fact that Kz⊗Kw

is the reproducing kernel of Fk(CN)⊗Fk(CN),we can write R∗
k as

R∗
kf(z,w) =

∫∫
RN×RN

f(x, y)K(x+ iy, z)K(x+ iy,w)e−(|x|2+|y|2)wk(x)wk(y)dxdy.

One can think of R∗
k as the Wick quantization map.

Form the adjoint operator RkR∗
k on L 2(RN, wk) ⊗L 2(RN, wk). It is integral representa-

tion is given by

RkR∗
kf(a, b) =

∫∫
RN×RN

f(x, y)|K(x+ iy, a+ ib)|2e−(|x|2+|a|2)e−(|y|2+|b|2)wk(x)wk(y)dxdy.

The transformation RkR∗
k is the Berezin transform related to G.

Theorem 6.1. (cf. [9, Theorem XII.7.6.7]) If T is a closed transformation whose domain is dense,
then T can be written in one and only one way as a product T = PA, where P is a partial isometry
and A is a positive self adjoint transformation.

Let

R∗
k = Bk

√
RkR∗

k

be the polar decomposition of R∗
k. The map Bk is the Weyl quantization map. The properties

of Rk together with Theorem 5.1 imply the following:

Theorem 6.2. The Weyl quantization map Bk is a unitary operator from L 2(RN, wk)⊗L 2(RN, wk)

to Fk(CN)⊗Fk(CN).
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Remark 6.3. One may define the restriction map Rk by RkF(x, y) = F(x+iy, x+iy)e−ω(|x|2+|y|2)

withω > 1. Therefore, one can show that ‖Rk‖ ≤ ck(4(ω−1))−(γ+N/2), i.e. Rk is a bounded

operator. However, from this definition of Rk it is too rough to obtain the transformation Bk

as the deformation of the classical Weyl transform.

Observe that the Dunkl-kernels in dimension 2N and N are related by

Ek((a, b), (x, y)) = Ek(a, x)Ek(b, y), (a, b), (x, y) ∈ RN × RN.

For f ∈ L 2(RN, wk)⊗L 2(RN, wk), put

D⊗
k f(ξ, η) =

∫∫
RN×RN

f(x, y)Ek(−iξ, x)Ek(−iη, y)wk(x)wk(y)dxdy.

Corollary 6.4. The map F 7→ D⊗
k (B∗

kF) is a unitary operator from Fk(CN) ⊗ Fk(CN) onto
L 2(RN, wk)⊗L 2(RN, wk).
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