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ON FOCK SPACES AND SL(2)-TRIPLES FOR DUNKL OPERATORS

SALEM BEN SAÏD AND BENT ØRSTED

Abstract. In this paper we begin with the construction of a generalized Segal-Bargmann
transform related to every root system with finite reflection group G. To do so, we in-
troduce a Hilbert space Fk(CN ) of holomorphic functions with reproducing kernel equal
to the Dunkl kernel. Moreover, by means of an sl(2)-triple, we prove the branching de-

composition of Fk(CN ) as a unitary G × ˜SL(2, R)-module. Further applications of the
sl(2)-triple to the Dunkl theory are given. This paper is a survey of recent results in
[B-Ø2] and [B-Ø3], and it also contains new results.

1. Introduction

Around 1928, in [Fo], Fock has introduced a Hilbert space of holomorphic functions on
CN which are square integrable with respect to the Gaussian measure exp(−‖z‖2)dz, where
‖z‖2 =

∑N
i=1 zizi. These spaces are nowadays known as the Fock spaces. After Bargmann’s

elegant paper [Ba], the Fock spaces have attracted much interest and have played an
important role in a number of developments, specially in physics and mathematical physics.
The remarkable invention of Bargmann is the construction of a unitary map from the
Schrödinger model to the Fock model intertwining the action of the Heisenberg group.
This idea also appeared in the work of Segal [Seg], done independently at about the same
time. This intertwining operator is the so-called Segal-Bargmann transform. Since then,
the study of several generalizations of the classical Segal-Bargmann transform has been
pursued in many different settings. See for instance [Gr-M], [Ó-Ø], [Ha], and [Da-Ó-Z].

While the theory of Segal-Bargmann transform has a long and rich history, the growing
interest in the theory of special functions associated with Coxeter groups is comparably
recent. After the important contribution by Heckman and Opdam in the area of special
functions related to root systems, the subject has attracted much interest and there has
been a rapid development in this subject during the last few years. Around the 90s,
C. Dunkl introduced a family of differential-difference operators associated with Coxeter
groups on finite dimensional Euclidean spaces. These operators are nowadays know as
Dunkl operators. They are parameterized deformations of the ordinary derivatives, for
which it is still possible to study the spectral problem and develop the theory of the
corresponding Fourier transform, called the Dunkl transform. Among the broad literature
in this area, we refer to [D1], [J], [H], [O], [R2], and [T].

In this survey we will first present results from [B-Ø2] (see section 2 below), where we
investigate a generalization of both, the Fock spaces and the Segal-Bargmann transform
in the setting of Coxeter groups and Dunkl operators. The motivation for studying the
Segal-Bargmann transform is to exhibit some relationships between Dunkl’s theory and
its applications in the Schrödinger model and in the Fock model which includes the study
of the Calogero-Moser systems, and the Dunkl transform. We will also prove that one can
develop an analogue theory of Howe dual pairs to obtain the branching decomposition of
the generalized Fock space. It turns out that there exists an sl(2)-triple which gives rise

to a unitary representation of the universal covering ˜SL(2,R) that is an analogue to the
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2 SALEM BEN SAÏD AND BENT ØRSTED

classical metaplectic representation of Mp(2,R). By means of this representation, we prove
in section 3 a Bochner formula for the Dunkl transform, and we investigate the validity
of Huygens’ principle for wave equations for the Dunkl-Laplacian operators. To do so, we
adapt R. Howe’s method for the Euclidean Fourier transform, and for the classical wave
equation, respectively (cf. [Ho1]). We close section 3 by proving a Harish-Chandra type
restriction theorem for the Dunkl transform. That is, there exists a Harish-Chandra type
integral which intertwines the Fourier transform on Cartan motion groups and the Dunkl
transform. Our argument uses M. Vergne’s approach for proving the Rossmann-Kirillov
character formula [Ve]. We refer to [B-Ø3] for complete results on Huygens’ principle.

The main results of the present paper are: Theorems 2.5, 2.7, 2.11, 3.1, 3.4, and 3.6.

We thank the referee for the comments and suggestions. The first author would like to
thank the organizers of the Colloque International de Mathématiques, Analyse et Proba-
bilités, Hammamet (Tunisia), 20–25 October 2003, for their hospitality during his stay in
Hammamet.

2. Fock spaces and Segal-Bargmann transforms

Let 〈·, ·〉 be the standard Euclidean scalar product in RN , as well as its bilinear extension
to CN ×CN . For α ∈ RN \ {0}, let rα be the reflection on the hyperplane 〈α〉⊥ orthogonal
to α

rα(x) := x− 2
〈α, x〉
〈α, α〉

α, x ∈ RN .

Let R be a reduced root system, i.e. R ∩ Rα = {±α} for all α ∈ R and rα(R) = R.
Henceforth, we will normalize R in the sense that 〈α, α〉 = 2. This simplifies formulas,
with no loss of generality for our purposes.

A Coxeter group G is a finite subgroup of the orthogonal group O(N) generated by the
reflections {rα |α ∈ R}. Note that Coxeter groups generalize Weyl groups since there is
no additional crystallographic condition for R.

A multiplicity function on R is a G-invariant function k : R → C. We set K + to be
the set of multiplicity functions k = (kα)α∈R such that kα ≥ 0 for all α, and we let R+

be a choice of positive roots in R.
Around 1990, C. Dunkl defined a family of first order differential-difference operators

that play the role of the usual partial differentiation. Dunkl’s operators are defined by

Tξ(k)f(x) = ∂ξf(x) +
∑

α∈R+

kα〈α, ξ〉
f(x)− f(rαx)

〈α, x〉
, f ∈ C 1(RN ),

where ∂ξ denotes the directional derivative corresponding to ξ. We refer to [D1] for more
details on Dunkl operators. In particular, for any orthonormal basis {ξi}N

i=1 of RN , the
Dunkl-Laplacian operator ∆k :=

∑N
i=1 T

2
ξi

(k) can be written as

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rαx)
〈α, x〉2

}
,

where ∆ and ∇ denote the usual Laplacian and gradient, respectively. For all i-th basis
vectors ξi, we will use the abbreviation Tξi

(k) = Ti(k).
For k ∈ K +, there exists a generalization of the usual exponential kernel e〈·,·〉 by means

of the Dunkl system of differential equations.

Theorem 2.1. (cf. [D2], [O]) For k ∈ K +, there exists a unique function Ek on CN×CN

characterized by:
(i) Tξ(k)Ek(z, w) = 〈ξ, w〉Ek(z, w); and
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(ii) Ek(z, 0) = 1.
Moreover, this function satisfies

(iii) Ek is holomorphic on CN × CN ; and
(iv) Ek(g0 · z, g0 · w) = Ek(z, w) for all g0 ∈ G.

For complex-valued k, there is a detailed investigation of (i) by Opdam [O]. Theorem 2.1
is a weak version of Opdam’s result. For integral-valued multiplicity function k, another
proof for Theorem 2.1 can be found in [B-Ø1], by means of shift operators. (In the latter
reference, we denote Ek(z, w) by G◦(z, k, w).) The function Ek is the so-called Dunkl
kernel. When k ≡ 0, we have E0(z, w) = e〈z,w〉 for z, w ∈ CN .

For k ∈ K +, let ωk be the weight function on RN defined by

ωk(x) :=
∏

α∈R+

|〈α, x〉|2kα .

Further, let

ck :=
∫

RN

e−〈x,x〉/2ωk(x) dx,

which is called the Macdonald-Metha-Selberg integral. The following proposition is crucial
in Dunkl’s theory and its applications.

Proposition 2.2. (cf. [D2]) Let z, w ∈ CN . For non-negative multiplicity function k,∫
RN

Ek(x, z)Ek(x,w)e−〈x,x〉/2ωk(x) dx = cke
(〈z,z〉+〈w,w〉)/2Ek(z, w). (2.1)

For z, w ∈ CN , define
Kk,w(z) = Kk(z, w) := Ek(z, w).

As k will be fixed, we will write K for Kk. By Theorem 2.1, one may check that K is
continuous and Kw is holomorphic for all w ∈ CN . Further, K(z, w) = K(w, z). Another
crucial property is that K(z, w) is a positive definite kernel, i.e. for all z(1), . . . , z(`) ∈ CN

and a1, . . . a` ∈ C ∑̀
i,j=1

aiajK(z(i), z(j)) ≥ 0.

These properties of K lead to the following result.

Theorem 2.3. (cf. [B-Ø2]) (i) There exists a Hilbert space Fk(CN ) of holomorphic
functions on CN , such that K is its reproducing kernel.

(ii) The Hilbert space Fk(CN ) contains the C-algebra P(CN ) of polynomial functions
on CN as a dense subspace.

In particular, if we denote by 〈〈·, ·〉〉k the inner product in Fk(CN ), then

〈〈p, q〉〉k = p(T (k))q(z̄)∣∣z=0
, ∀ p, q ∈ P(CN ),

where p(T (k)) is the operator formed by replacing zi by Ti(z) for 1 ≤ i ≤ N.
If k ≡ 0, F0(CN ) coincides with the classical Fock space. We shall call Fk(CN ) the

Fock space associated with the Coxeter G.

Example 2.4. Let {e1, . . . , eN} be the standard basis of RN , and consider the reflection
groupG generated by the reflections r1, . . . , rN along e1, . . . , eN , i.e. rj(· · · , xj−1, xj , xj+1, · · · ) =
(· · · , xj−1,−xj , xj+1, · · · ) for x ∈ RN .

For a multi-parameter k = (k1, . . . , kN ) such that ki ≥ 0, the Dunkl operators take the
form

Tj(k)f(x) = ∂jf(x) + kj
f(x)− f(rjx)

xj
, 1 ≤ j ≤ N, x ∈ RN
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The Dunkl kernel Ek is given by

Ek(z, w) =
N∏

j=1

Γ
(
kj +

1
2

)(zjwj

2

)1/2−kj{
Ikj−1/2(zjwj) + Ikj+1/2(zjwj)

}
,

where Iν is the modified Bessel function of the first kind. In this example, the Fock space
Fk(CN ) related to G ∼= (Z/2Z)N is the Hilbert space of holomorphic functions on CN

which are square integrable with respect to the measure

dµk(z) =
N∏

j=1

|zj |2kj+1

π2kj−1/2Γ(kj + 1/2)

{
Kkj−1/2(|zj |2)∣∣

even part

+ Kkj+1/2(|zj |2)∣∣
odd part

}
dzj ,

splitting functions into even and odd parts in each variable zj . Here Kν is the Bessel
function of the third kind.

The study of several generalizations of the classical Segal-Bargmann transform has a
long and rich history in many different settings (cf. [Ba], [Seg], [Ó-Ø], [Ha], [Da-Ó-Z],
[Z], [So]). There are many ways of computing the integral kernel appearing in the Segal-
Bargmann transform and showing the unitarity of this transform. One unifying tool is
the restriction principle, i.e. polarization of a suitable restriction map [Ó-Ø]. We will use
this idea to construct the Segal-Bargmann transform associated with G. The main tool is
the heat-kernel analysis for Coxeter groups [R1].

For t > 0 and z, w ∈ CN , set

Γk(t, z, w) =
1

(2t)γk+N/2ck
e−(〈z,z〉+〈w,w〉)/4tEk

( z√
2t
,
w√
2t

)
.

The kernel Γk(t, z, w) was introduced in [R1] as a generalized heat kernel.
Let L 2(RN , ωk) be the space of L 2-functions on RN with respect to the weight function

ωk.
Let Rk be the restriction map Rk : Fk(CN ) → L 2(RN , ωk), given by

Rkf(x) := e−〈x,x〉/2f(x), x ∈ RN .

The map Rk is a closed, densely defined operator from Fk(CN ) into L 2(RN , ωk) with
dense image (see for instance [R1, Corollary 3.5]). Consider the adjointR∗

k : L 2(RN , ωk) →
Fk(CN ) as a densely defined operator. Since K is the reproducing kernel of Fk(CN ), one
can prove that for f ∈ L 2(RN , ωk), the integral

RkR∗
kf(y) = ck

∫
RN

f(x)Γk

(1
2
, x, y

)
ωk(x) dx

converges absolutely for a.e. y ∈ RN . The function RkR∗
kf thus defined is in L 2(RN , ωk)

and ‖RkR∗
k‖ ≤ ck. We can therefore define

√
RkR∗

k and there exists an isometry Bk so
that R∗

k = Bk

√
RkR∗

k. Since Rk =
√
RkR∗

kB
∗
k and Image(Rk) is dense, it follows that

Bk is a unitary isomorphism. We shall call Bk the Segal-Bargmann transform associated
with G. Using the positivity of the heat kernel Γ(t, x, y) as an operator [R1], we obtain
the following integral representation of the Segal-Bargmann transform Bk.

Theorem 2.5. (cf. [B-Ø2]) The unitary isomorphism Bk : L 2(RN , ωk) → Fk(CN ) is
given by

Bkf(z) = 2γk+N/2c
−1/2
k e−〈z,z〉/2

∫
RN

f(x)Ek(
√

2x,
√

2z)e−〈x,x〉ωk(x) dx,

where γk :=
∑

α∈R+ kα.
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Remark 2.6. (i) For the special case k ≡ 0,

B0f(z) = (2/π)N/4

∫
RN

e−〈x,x〉+2〈x,z〉−〈z,z〉/2f(x) dx.

This compares well with the classical Segal-Bargmann transform (cf. [Fol, p. 40]).
(ii) As a differential operator

B−1
k = 2γk+N/2c

−1/2
k e〈 · , · 〉 d2 ◦ e−∆k/2, (2.2)

where d2 is the dilation operator on functions by 2.
(iii) WhenN = 1 andG = Z/2Z, Cholewinski [Ch] has investigated the Segal-Bargmann

transform only in the Hilbert space of even functions in Fk(C), by employing another ap-
proach. Recently, in [Si-So] for N = 1 and G = Z/2Z, the authors use Cholewinski’s
method to obtain the Segal-Bargmann transform for Fk(C). See also [So] where the inte-
gral representation of Bk is obtained in the general case, using Cholewinski’s approach.

The Dunkl transform, which shares many properties with the Euclidean Fourier trans-
form, was introduced in [D2] and further studied in [J]. For our convenience, we will write
the Dunkl transform as

Dkf(ξ) = c−1
k 2−γk−N/2

∫
RN

f(x/2)Ek(−iξ, x)ωk(x) dx, ξ ∈ RN .

Theorem 2.7. (cf. [B-Ø2]) The following diagram commutes

L 2(RN , ωk)
Bk−−−−→ Fk(CN )

Dk

y y(−i)∗

L 2(RN , ωk)
Bk−−−−→ Fk(CN )

where (−i)∗f(z) := f(−iz) for f ∈ Fk(CN ).

The above theorem gives a simple alternative proof for the unitarity of the transform
Dk, which was proved earlier by Dunkl [D2] using a different approach. See also [J]. Our
proof uses only the integral formula (2.1).

For ξ ∈ CN , denote by Mξ the operator Mξ(f)(z) := 〈z, ξ〉f(z). Define the lowering and
the raising operators on L 2(RN , ωk) by

A−
ξ :=

1√
2
(M2ξ + Tξ(k)), A+

ξ :=
1√
2
(M2ξ − Tξ(k)).

These two operators were introduced by Rösler [R2] in connection with Rodrigues-type
formulas for the eigenfunctions of the Calogero-Moser systems. Next we will see that
these two operators, in the Fock model, are also the lowering and the raising operators on
Fk(CN ) in a more natural way.

Below, we will exhibit some relationships between operators on L 2(RN , ωk) and on
Fk(CN ). For an operator O on L 2(RN , ωk), we define the operator Õ on Fk(CN ) by

Õ = Bk ◦ O ◦B−1
k .

Further, as usual, [A,B] = AB −BA for A,B ∈ End(P(CN )).

Theorem 2.8. (cf. [B-Ø2]) The following properties hold:
(i) T̃ξ(k) = Tξ(k)−Mξ for ξ ∈ CN ;
(ii) [T̃ξ(k), T̃η(k)] = 0 for ξ, η ∈ CN ;
(iii) M̃2ξ = Tξ(k) +Mξ for ξ ∈ CN ;
(vi) [M̃2ξ, M̃2η] = 0 for ξ, η ∈ CN ;
(v) [T̃ξ(k), M̃2η] = 2〈ξ, η〉+ 2

∑
α∈R+ kα〈α, ξ〉〈α, η〉rα; and
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(vi) Ã−
ξ =

√
2Tξ(k), and Ã+

ξ =
√

2Mξ.

Notice that, as the Dunkl operators are homogeneous of degree −1 on polynomials, and
since Mξ are the multiplication operators, now obviously Ã−

ξ and Ã+
ξ are the lowering and

the raising operators on P(CN ).

Remark 2.9. The relationship between T̃ξ(k) and M̃η, given in the statement (v) above, is
the key commutation relation defining the so-called rational Cherednik algebra (cf. [E-G,
p. 250]). Indeed, here we have an explicit action on a Hilbert space, with the relevant
adjoints, representing this rational Cherednik algebra. After [B-Ø2] was finished, we were
able to construct two operators, now acting in the tensor algebra, and which depend on a
parameter −1 ≤ q ≤ 1. These two operators satisfy a q-commutation relation analogue to
the one in (v). The details of such a q-deformation of Fk(CN ) will appear in a forthcoming
paper.

The above theorem, which is of independent interest, is mainly useful to obtain the
quantum Calogero-Moser (CM) rational system in the Fock model. We refer to [B-Ø2] for
more details on this matter. Let

Lk := ∆− 2
∑

α∈R+

1
〈α, x〉2

kα(kα − rα),

and consider the following gauge equivalent version

Hk := 1
4ω

−1/2
k (−Lk + 4〈x, x〉)ω1/2

k = 1
4(−∆k + 4〈x, x〉)

of the CM Hamiltonian with harmonic confinement and reflection terms. These operators
are introduced by Heckman [H] to prove the quantum integrability of the G-invariant part
of Hk. See also [Ol-P].

Theorem 2.10. (cf. [B-Ø2]) Let {ξ1, . . . , ξN} be any orthonormal basis of CN . On
Fk(CN ), the corresponding operator to the Hamiltonian Hk is given by

H̃k = (γk +N/2) +
N∑

i=1

ξi∂ξi
,

where γk =
∑

α∈R+ kα.

The advantage of the above theorem is that the study of the Hamiltonian Hk in the Fock
model is rather easy. In particular, by means of the B−1

k ’s expression given in Remark
2.6(ii), we can recover in a simple way the Hermite polynomials and functions investigated
independently in [R1].

We close this section by describing the structure of a representation of the universal
covering group ˜SL(2,R) of SL(2,R) on P(CN ). This representation, together with the
left regular action of the Coxeter group G, allows to obtain the branching decomposition of
the Fock space Fk(CN ) under the action of G× ˜SL(2,R). Those readers who are familiar
with the theory of Howe reductive dual pairs [Ho2] will find that our formulation can be
thought of as an analogue of this theory.

Choose z1, z2, . . . , zN as the usual system of coordinates on CN . Let

E =
1
2

N∑
i=1

z2
i , F = −1

2
∆k, H = N/2 + γk +

N∑
i=1

zi∂zi .

In the notation of Theorem 2.9, the operator H = H̃k. Then E (resp. F) acts on Fk(CN )
as a creation (resp. annihilation) operator, and H acts on Fk(CN ) as a number operator.
If P(CN ) =

⊕∞
m=0 Pm(CN ) is the natural grading on P(CN ), it is clear that E raises
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Pm(CN ) to Pm+2(CN ), F lowers Pm(CN ) to Pm−2(CN ), and H multiplies (element-
wise) Pm(CN ) by the number (N/2 + γk + m). In [H], Heckman showed the following
commutation relations

[E,F] = H, [E,H] = −2E, [F,H] = 2F. (2.3)

These are the commutation relations of a standard basis of the Lie algebra sl(2,R). Equa-
tion (2.3) gives rise to an infinitesimally unitary representation$k of sl(2,R). The unitarity
of $k follows from the fact that E∗ = −F and H = H∗ (cf. [B-Ø2, Theorem 3.7]). Notice
also that H has discrete spectrum bounded below.

On P(CN ), the representation $k can be described as

$k(sl(2,R)C) = sl
(2,0)
2 ⊕ sl

(1,1)
2 ⊕ sl

(0,2)
2 , (2.4)

where
sl

(2,0)
2 = Span{E}, sl

(1,1)
2 = Span{H}, sl

(0,2)
2 = Span{F}.

The decomposition (2.4) is an instance of the Cartan decomposition

sl(2,R)C = p+ ⊕ kC ⊕ p−

where sl
(2,0)
2 ' $k(p+), sl

(1,1)
2 ' $k(kC), and sl

(0,2)
2 ' $k(p−). Here k = u(1), the Lie

algebra of the compact group U(1). The integrated form of the Lie algebra representation
$k is an analogue of the metaplectic representation, or the oscillator representation, of
the universal covering ˜SL(2,R) of the group SL(2,R). Notice that if N/2 + γk ∈ 1

2Z \ Z,
we obtain a unitary representation of the double covering Mp(2,R) of SL(2,R), and if
N/2 + γk ∈ Z, we obtain a representation of SL(2,R). By applying the Segal-Bargmann

transform, one obtains the Schrödinger picture of this representation of ˜SL(2,R). However,
for our purpose, its infinitesimal action (2.4) is enough.

Since $k is an infinitesimally unitary representation, and the operator H, which is the
generator of k, has a positive spectrum, then the representation contains vectors v0 such
that$k(p−)v0 = 0 and$k(k)v0 = (m+N/2+γk)v0 for some positive integerm. The vector
v0 is the so-called lowest weight vector for a representation, and the number (m+N/2+γk)
is the lowest weight. Then the space of representation has an orthonormal basis consisting
of vectors v` ∈ $k(p+)`v0. It is easy to check that each vector v` is an eigenvector for $k(k)
with eigenvalue (m+ 2`+N/2 + γk). Denote by Wm+N/2+γk

the unitary representation of
˜SL(2,R) with lowest weight m+N/2 + γk.
For m ∈ N, set Hm(k) to be the space of harmonic homogeneous polynomials of degree

m, i.e. all functions p ∈ Pm(CN ) such that ∆kp = 0. It is clear that p ∈ Hm(k) if and
only if $k(k)p = (m+N/2 + γk)p and $k(p−)p = 0.

Now one of the key features in this formalism is the following branching decomposition.
We refer to [B-Ø2] for its proof, which was inspired by Sobolev’s argument in the classical
case [Sob]. The notation [m/2] stands for the integer part of m/2.

Theorem 2.11. (cf. [B-Ø2]) The space Pm(CN ) of homogeneous polynomials of degree
m has a unique decomposition of the form

Pm(CN ) =
[m/2]∑⊕

µ=0

〈z, z〉µHm−2µ(k),

where Hm−2µ(k) denotes the space of harmonic homogeneous polynomials of degree m−2µ.
Moreover, each homogeneous polynomial p ∈ Pm(CN ) can be written in a unique way as

p(z) =
[m/2]∑
µ=0

Γ(N/2 +m− µ+ γk − 1)
4µΓ(µ+ 1)Γ(N/2 +m+ γk − 1)

〈z, z〉µhm−2µ(z),
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where hm−2µ ∈ Hm−2µ(k) and is given explicitly by

hm−2µ(z) =
[m/2]−µ∑

ν=0

(−1)νΓ(N/2 +m− 2µ− ν − 1 + γk)
4νΓ(ν + 1)Γ(N/2 +m− 2µ+ γk − 1)

〈z, z〉ν∆µ+ν
k p(z).

For g ∈ G, denote by π(g) the left regular action of G on Fk(CN )

π(g)f(z) = f(g−1z).

The actions of G and sl(2,R) on Fk(CN ) commute.
We now summarize the consequences of all the above computations and discussions in

the light of Theorem 2.10.

Theorem 2.12. (cf. [B-Ø2]) As a G × ˜SL(2,R)-module, the Fock space admits the fol-
lowing multiplicity-free decomposition

Fk(CN ) =
∞⊕

m=0

Hm(k)⊗Wm+N/2+γk
, (2.5)

where Wm+N/2+γk
is the ˜SL(2,R)-representation with lowest weight m + N/2 + γk. We

also have the following separation of variables decomposition

P(CN ) =
∞∑⊕

m=0

[m/2]∑⊕

µ=0

〈z, z〉µHm−2µ(k).

Remark 2.13. (i) Recall that the Fock space Fk(CN ) was defined for non-negative mul-
tiplicity functions k. Now, notice that the right hand side of (2.5) exists for all γk > −N/2,
where γk =

∑
α∈R+ kα, which implies that k = (kα)α∈R could have negative-values up to

a certain point. By analytic continuation, it follows that the left hand side of (2.5), i.e.
the Fock space Fk(CN ), exists also for these negative-valued multiplicity functions k.

(ii) The space Hm(k) is a unitary representation of G, in general not irreducible. It
would be interesting to decompose it further.

3. Some applications of the sl(2)-triple

In this section we will give several applications of the sl(2,R)-representation discussed
in the previous section. In the first and the second applications we adapt the method of
R. Howe in the theory of ordinary derivatives, i.e. when k ≡ 0 (cf. [Ho1], [Ho-T]). In
the last application we employ M. Vergne’s approach for proving the Rossmann-Kirillov
character formula [Ve].

I. A Bochner formula for the Dunkl transform. Denote by S (RN ) the Schwartz
space of rapidly decreasing functions equipped with the usual Fréchet space topology.
From Theorem 2.11 it follows, by standard arguments, that

S (RN ) =
∞∑⊕

m=0

Hm,R(k) ·I (RN ), (3.1)

where I (RN ) denotes the space ofO(N)-invariant Schwartz functions on RN , and Hm,R(k)
is the space of harmonic homogeneous polynomials in P(RN ) of degree m. By abuse of
notation we will write Hm(k) for Hm,R(k). In the light of (3.1) we may consider the map

ζN
m,k : Hm(k)⊗S (R+) → S (RN ),

defined by

ζN
m,k(hm ⊗ ψ)(x) := hm(x)ψ(‖x‖2), hm ∈ Hm(k), ψ ∈ S (R+).
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By means of the representation$k we construct a representation πN
m,k of sl(2,R) on S (R+)

as follows

ζN
m,k

(
hm ⊗ πN

m,k(X)ψ
)

= $k(X)
(
ζN
m,k(hm ⊗ ψ)

)
, X ∈ sl(2,R)

for fixed hm ∈ Hm(k). Using (2.4), one may check that

πN
m,k

[
0 1
0 0

]
=

1
2
t,

πN
m,k

[
1 0
0 -1

]
= 2t

d

dt
+

(
m+

N

2
+ γk

)
,

πN
m,k

[
0 0
1 0

]
= −2

{
t
d2

dt2
+

(
m+

N

2
+ γk

) d
dt

}
,

where γk =
∑

α∈R+ kα, and t is the positive variable of R+. Note that πN
m,k does not

depend on hm, and depends only on m+ N
2 + γk.

In [B-Ø2, Corollary 4.6] we proved that the Dunkl transform Dk can be written as

Dk = ei
π
2
(γk+N/2)e−i π

8
(−∆k+4〈x,x〉),

whilst X :=
{

1
4(−∆k + 4〈x, x〉)

}
is the generator of the Lie algebra k ∼= so(2). Thus Dk is

in ˜SL(2,R), up to a constant. Hence we may define the transform DN
m,k on S (R+) by

ζN
m,k

(
hm ⊗DN

m,k(ψ)
)

:= ζN
m,k

(
hm ⊗ πN

m,k(e
i π
2
(γk+N/2)e−i π

2
X)ψ

)
= Dk

(
ζN
m,k(hm ⊗ ψ)

)
.

This implies the following Bochner formula for the Dunkl transform.

Theorem 3.1. (i) For f(x) = hm(x)ψ(‖x‖2), with hm ∈ Hm(k) and ψ ∈ S (R+), we
have

Dk(f)(ξ) = hm(ξ)DN
m,k(ψ)(‖ξ‖2),

where DN
m,k depends only on m+ N

2 + γk, up to a constant, i.e.

e−i π
2
(γk+N

2
)DN

m,k = e−i π
2
(γk′+

N′
2

)DN ′
m′,k′

if

m+
N

2
+ γk = m′ +

N ′

2
+ γk′ . (3.2)

(ii) The transform DN
m,k coincides with the usual Hankel transform. More precisely, for

ψ ∈ S (R+)
DN

m,k(ψ)(r2) = e−i π
2
mHm+N

2
+γk−1(ψ ◦Υ)(r),

where Υ(t) := t2 for t ∈ R, and

Hνf(r) :=
∫ ∞

0
f(s)

Jν(rs)
(rs)ν

s2ν+1ds

denotes the Hankel transform, with Jν is the Bessel function of the first kind. In these
circumstances, (i) reads

Dk

(
hmψ(‖ · ‖)

)
(ξ) = e−i π

2
mhm(ξ)Hm+γk+N

2
−1(ψ)(‖ξ‖).

To prove the statement (ii) above, we start with the case m = 0, and then we use (3.2)
to deduce the claim for general m. The above theorem generalizes [D2, Theorem 2.1], as
the example below shows.
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Example 3.2. (Hecke-type formula) If we choose ψ(s) = e−
s2

2 , then the following Hecke-
type formula for the Dunkl transform holds

Dk

(
e−

‖x‖2
2 hm)(ξ) = e−i π

2
mhm(ξ)Hm+γk+N

2
−1

(
e−

s2

2
)
(‖ξ‖)

= e−i π
2
me−

‖ξ‖2
2 hm(ξ).

II. Huygens’ principle. It is well known that propagation of waves is different in
the two- and in the three-dimensional spaces. For instance, suppose we make a “noise”
located near a point x at time t = 0. Thus we can “hear” this noise at a point y at a
later time t only if the distance y − x from y to x is less then t. This phenomena holds
in all dimensions, but something special happens in the three dimensional space. After
the noise is heard, it moves away and leaves no vibration. This is the so-called Huygens
principle. In mathematical terms, Huygens’ principle can be explained as following. On
RN+1, consider the classical wave equation (?) ∆u(x, t) = ∂ttu(x, t). For odd N ≥ 3, the
solution of the Cauchy problem for (?) at every given point x0 depends only on its Cauchy
data in an arbitrary neighborhood on the light cone surface with vertex x0. The problem
of classifying all second order differential operators which satisfy Huygens’ principle is
still far from being fully solved (see for instance [L-St], [Co-Hi], [La-P], [Ø], [M], [He2],
[Be-V], [Br-Ó-S], [C-F-V], [B]). In the present application, we will investigate the validity
of Huygens’ principle for (?) when ∆ is replaced by the Dunkl-Laplacian operator ∆k. We
refer to [B-Ø3] for a complete investigation.

For a multiplicity function k ∈ K +, consider the following Cauchy problem for the
wave equation associated with the Dunkl Laplacian operator

∆kuk(x, t) = ∂ttuk(x, t), (x, t) ∈ RN × R,

uk(x, 0) = f(x), ∂tuk(x, 0) = g(x).
(3.3)

To simplify the presentation of our results, we shall assume that f and g are smooth and
supported in a closed ball of radius R > 0 about the origin. We mention that in [B-Ø3],
we investigated the Cauchy problem (3.3) where the Cauchy data (f, g) belong to the
Schwartz space S (RN ).

A standard argument shows that the solution of the Cauchy problem (3.3) is uniquely
given by

uk(x, t) = (P (1)
k,t ∗k f)(x) + (P (2)

k,t ∗k g)(x),

where, for fixed t,

P
(1)
k,t = D−1

k

[
cos(t‖ · ‖)

]
, P

(2)
k,t = D−1

k

[
sin(t‖ · ‖)

/
‖ · ‖

]
.

Here ∗k is a generalized translation, and when k ≡ 0, ∗0 coincides with the usual Euclidean
convolution. We refer to [T] for the definition of ∗k. In terms of the propagators, Huygens’
principle amounts to the fact that P (1)

k,t and P
(2)
k,t are supported on the light cone C :={

(x, t) ∈ RN × R | ‖x‖2 − t2 = 0
}
.

Choose x1, x2, . . . , xN as the usual system of coordinates on RN . Let

EN,1 :=
1
2
(‖x‖2 − t2), FN,1 := −1

2
(∆k − ∂tt),

HN,1 :=
N + 1

2
+ γk +

N∑
j=1

xj∂j + t∂t.

Using (2.3), one may check the following commutation relations

[EN,1,HN,1] = −2EN,1, [FN,1,HN,1] = 2FN,1, [EN,1,FN,1] = HN,1. (3.4)
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These are the commutation relations of a standard basis of the Lie algebra sl(2,R). Equa-
tion (3.4) gives rise to a representation Ωk of sl(2,R), which could be described in a similar
way to $k from the previous section.

Define the distributions P (`)
k on RN+1 by

P
(`)
k (ψ1 ⊗ ψ2) :=

∫
R
P

(`)
k,t (ψ1)ψ2(t)dt, ` = 1, 2,

where ψ1 ∈ S (RN ) and ψ2 ∈ S (R). Thus we may rewrite the solution uk as

uk = P
(1)
k ∗k,x f + P

(2)
k ∗k,x g,

where ∗k,x is the ∗k-convolution with respect to x. Since C is the locus of zeros of ‖x‖2−t2,
then P (`)

k (` = 1, 2) is supported on the light cone C if and only if

(‖x‖2 − t2)mP
(`)
k = 0, i.e. Em

N,1 · P
(`)
k = 0,

for some positive integer m. Further, one can prove that

(∆k − ∂tt)P
(`)
k = 0, i.e. FN,1 · P (`)

k = 0. (3.5)

These two facts yield the following theorem.

Theorem 3.3. (cf. [B-Ø3]) Huygens’ principle holds in the sense that P (`)
k (` = 1, 2) is

supported on the light cone C if and only if P (`)
k generates a finite-dimensional Ω∗

k(sl(2,R))-
module.

In the light of the above theorem, we will look for conditions on N and k which may
assure the existence of a finite dimensional representation. As a first step in this direction,
when (N+1)/2+γk 6∈ Z, Huygens’ principle fails. This is due to the fact that the spectrum
of the element HN+1 = (N + 1)/2 + γk +

∑N+1
i=1 xi∂i (or its dual) acting on S (RN+1) (or

S ′(RN+1)) is (N + 1)/2 + γk + Z, whilst the spectrum of HN+1 (or its dual) in finite
dimensional modules is contained in Z. We refer to [B-Ø3] for more details on this matter.

This leaves the possibility that Huygens’ principle may hold when (N + 1)/2 + γk ∈ Z,
which turns out to be true. To see this, let us first define the dilation operator Sλ on
S (RN+1) by Sλψ(x, t) = ψ(λx, λt), for λ > 0. By duality, Sλ acts on distributions in the
standard way. Thus, we prove that

SλP
(`)
k = λ`P

(`)
k .

Second, we introduce what we call the Dunkl-Fourier transform

DkFψ(x, t) := (2π)−1/2c−1
k

∫
RN+1

ψ(y, s)Ek(−ix, y)eistωk(y)dyds,

for ψ ∈ S (RN+1). Here we used notation from the previous section. The transform DkF
acts on distributions in the standard way. In particular, we show that

(‖x‖2 − t2)DkF (P (`)
k ) = 0, i.e. EN,1 ·DkF (P (`)

k ) = 0,

and
Sλ

(
DkF (P (`)

k )
)

= λ2γk+N+1−`DkF (P (`)
k ).

As a consequence of the above discussions, and in the light of (3.5), the following theorem
holds.

Theorem 3.4. (cf. [B-Ø3]) Under the assumption

N + 1
2

+ γk − ` ∈ N, (3.6)
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the tempered distribution P
(`)
k generates an sl(2,R)-module of dimension

d(k, `) =
N + 3

2
+ γk − `,

with highest weight vector DkF (P (`)
k ) of highest weight

(
N+1

2 + γk − `
)
. Further, for each

` there exists a constant α` such that

P
(`)
k = α` Fd(k,`)−1

N,1 ·DkF (P (`)
k ).

By taking into account the condition (3.6) for both P (1)
k and P (2)

k , and recalling Theorem
3.3, we can state Huygens’ principle for the Cauchy problem (3.3) as following.

Theorem 3.5. (cf. [B-Ø3]) Let uk be the solution of the Cauchy problem (3.3) and suppose
that the Cauchy data (f, g) are supported inside the closed ball of radius R > 0 about the
origin. The support of uk is contained in the conical shell

C =
{
(x, t) ∈ RN × R | |t| −R ≤ ‖x‖ ≤ |t|+R

}
(3.7)

if and only if
(N − 3)/2 + γk ∈ N.

The shell C is the union ⋃
‖y‖≤R

Cy (3.8)

where Cy is the light cone
Cy =

{
(x, t) | ‖x− y‖ = |t|

}
.

III. A Harish-Chandra restriction type theorem for the Dunkl transform.
Let G be a connected noncompact semi-simple Lie group with finite center, and let K be
a maximal compact subgroup of G. The symmetric space G/K is a Riemannian symmetric
space of the noncompact type. Let θ be the Cartan involution on G corresponding to K.
We use the same symbol θ for its differential on the Lie algebra g of G. Let g = k⊕ p be
the Cartan decomposition of g with respect to θ.

Let a be a maximal abelian subspace of p. Denote by Σ = Σ(g, a) the set of roots of a in
g. For every α ∈ Σ let g(α) be the corresponding root space, and set mα = dim(g(α)). For
α ∈ Σ, define Hα ∈ [g(α), g(−α)] by α(Hα) = 2, and recall the definition of the reflections
rα for α ∈ Σ. Consider the Coxeter group W := 〈rα | α ∈ Σ〉. Usually W is called the
Weyl group of Σ. Henceforth, we shall choose a positive root system Σ+ in Σ.

For X,Y ∈ g, set
〈〈X,Y 〉〉 := −B(X, θ(Y )),

where B is the Killing form of g. Then 〈〈·, ·〉〉 is an inner product on g. As a ⊂ p, the
Killing form B(·, ·) and the inner product 〈〈·, ·〉〉 agree on a. We use this inner product to
identify a and a∗, and we shall denote the norm on a by ‖ · ‖. Indeed, if N = dim(a), then
(a, 〈〈·, ·〉〉) ∼= (RN , 〈·, ·〉).

For a function f on p, we denote by M f the function of a defined by

M f(X) =
∫

K
f(Ad(k)X)dk.

We normalize the Haar measure dk on K such that∫
p
f(Y )dY =

∫
K

∫
a
f(Ad(k)X)

∏
α∈Σ+

|α(X)|mαdkdX, (3.9)

where the Lebesgue measures on p and a will be normalized as below. (See [He1] for
the integral formula above.) Since K is compact, the integral M is continuous, from the
Schwartz space S (p) to the space S (a)W of W -invariant Schwartz functions on a.



ON FOCK SPACES AND SL(2)-TRIPLES FOR DUNKL OPERATORS 13

For a function f on p, we define its p-Fourier transform Fp(f) by

Fpf(X) =
∫

p
f(Y )e−i〈〈X,Y 〉〉dY.

We normalize the Lebesgue measure on p by F 2
p (f)(X) = f(−X). We extend Fp to a

transform of tempered distributions in the usual way. The crucial observation is that
Fp belongs, up to a scalar multiple, to the one parameter group of unitary transforms
e−it(Bp−∆p). Here Bp is the restriction of the Killing form B to p×p, and ∆p is the Laplace
operator on p. More precisely

Fp = ei
π
4

dim(p)e−i π
4

(
Bp−∆p

)
. (3.10)

See for instance [Ve] for a general discussion.
Now we turn our attention to the Dunkl transform in the present setting. For H ∈ a,

let ∂(H) denote the corresponding directional derivative in a. The Dunkl operator takes
the form

TH(m)f(X) = ∂(H)f(X) +
∑

α∈Σ+

mα

2
α(H)

(f(X)− f(rαX)
α(X)

)
,

and the Dunkl-Laplacian operator is given by

∆mf(X) =
N∑

j=1

∂(Hj)2f(X) +
∑

α∈Σ+

mα

(∂αf(X)
α(X)

− f(X)− f(rαX)
α(X)2

)
,

where {Hj}N
j=1 is an orthonormal basis of a, and ∂α = ∂(Hα). Further, we may rewrite

the Dunkl transform Dm (instead of the notation Dk) as

Dmf(H) = c−1
m 2−γm−N/2

∫
a
f(X)Em(−iX,H)

∏
α∈Σ+

|α(X)|mαdX,

where γm =
∑

α∈Σ+ mα/2, and cm =
∫
a e

−‖X‖2 ∏
α∈Σ+ |α(X)|mαdX. Here the Lebesgue

measure on a is normalized so that D2
mf(X) = f(−X). We mention that Dm leaves the

Schwartz space S (a) stable.
Now recall the sl(2,R)-triple {E,F,H} from Section 2. By [B-Ø2, Corollary 4.6] the

Dunkl transform can be written as

Dm = ei
π
2
(γm+N/2)e−i π

4

(
‖X‖2−∆m

)
= ei

π
2
(γm+N/2)e−i π

2
(E+F). (3.11)

To establish the connection between Fp and the Dunkl transform, one needs the fol-
lowing fundamental properties of the map M , which are rather clear (recall that M is a
W -invariant map).

Lemma 3.6. On the Schwartz space S (p), the map M satisfies

MBp(·, ·) = ‖ · ‖2M , M∆p = ∆(m)M .

Below we state the main result which follows from (3.10) and (3.11) by means of the
previous lemma. Note that dim(p) = 2γm +N.

Theorem 3.7. For f ∈ S (p), we have

MFp(f) = DmM (f).

The above theorem releases the connection between the Fourier analysis on the flat
symmetric space p and the Dunkl theory on a.

Denote by S ′(p) (resp. S ′(a)) the space of tempered distributions on p (resp. a).
Let S ′(p)K be the space of K-invariant elements in S ′(p). The transpose F t

p of Fp

leaves S ′(p) and S ′(p)K stable. Similarly, D t
m leaves S ′(a) and S ′(a)W stable, and the
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transpose M t of M maps S ′(a)W to S ′(p)K . Moreover, by means of the integral formula
(3.9), it follows that if f ∈ S ′(a)W is a function, then

M tf(p) =
f(X)∏

α∈Σ+ |α(X)|mα
, ∀ p = Ad(k)X ∈ p, with k ∈ K and X ∈ a.

For X ∈ a, denote by δX the distribution on p defined by 〈δX , f〉 =
∫

K
f(Ad(k)X)dk,

and define δ◦X on a by 〈δ◦X ,M f〉 = 〈δX , f〉. Thus one can check that

M tD t
m(δ◦X)(Y ) = c−1

m 2−γm−N/2 1
|W |

∑
w∈W

Em(−iwX, Y ), X, Y ∈ a.

As a direct application of Theorem 3.7, we can express the spherical functions on the flat
symmetric space p in terms of the Dunkl kernels. This explains the meaning of the Dunkl
kernels in the context of Euclidean symmetric spaces.

Corollary 3.8. The restriction of the spherical function

ψ(X,Y ) =
∫

K
e−iB(Ad(k)X,Y )dk, X ∈ a, Y ∈ p,

to a× a coincides with

c−1
m 2−γm−N/2 1

|W |
∑

w∈W

Em(−iwX, Y ).

Remark 3.9. (i) The Bessel functions Jm(X,Y ) := 1
|W |

∑
w∈W Em(wX, Y ) were first

introduced by Opdam independently from the context of flat symmetric spaces [O]. See
also [B-Ø1], where we denote Jm(X,Y ) by F ◦(X,m, Y ).

(ii) The above corollary was also proved by de Jeu in [J] using a different approach. De
Jeu’s method is based on a result due to Heckman, together with Helgason’s result regard-
ing the uniqueness of the solution ψ(·, Y ) to the equation ∂(p)ψ(X,Y ) = p(Y )ψ(X,Y ),
for p ∈ S(p)K , such that ψ(0, Y ) = 1.

As a consequence of Corollary 3.8, we may express the average of the Dunkl kernels over
the Weyl group in terms of the exponential functions. Indeed, let U be a connected, simply
connected, compact, semi-simple Lie group. Let u = Lie(U), and g be the complexification
of u. Let T be a maximal torus of U, and t0 be its Lie algebra. Then the subalgebra t of g
generated by t0 is a Cartan subalgebra. Denote by ∆ := ∆(g, t). Using the Harish-Chandra
integral formula, the following holds for all X,Y ∈ t

1
|W (g, t)|

∑
w∈W (g,t)

Em(X,wY ) = cm2γm+N/2
∏

α∈∆+

α(ρ)

∑
w∈W (g,t) det(w)e〈〈X,wY 〉〉∏

α∈∆+ α(X)
∏

α∈∆+ α(Y )
, (3.12)

where W (g, t) := 〈rα | α ∈ ∆(g, t)〉, and ρ =
∑

α∈∆+ α/2.

Remark 3.10. The argument presented in this subsection could also be generalized for
an arbitrary symmetric pair (G,H) with a Lie group G, for which there is an involution
σ of G such that Gσ

e ⊂ H ⊂ Gσ. Here Gσ is the subgroup of fixed points for σ, and
Gσ

e denotes its identity component. We briefly outline this generalization. Let θ be the
Cartan involution on G with the corresponding maximal compact subgroup K, such that
θσ = σθ. We shall use the same symbol for an involution on G and its differential on the
Lie algebra g. As usual, write k = gθ, p = g−θ, h = gσ, and q = g−σ. Let aq be a maximal
abelian subspace of p∩q. We write g+ := k∩h⊕p∩q and g− := k∩q⊕p∩h. In particular,
g = g− ⊕ g+. Consider the following assumptions:

(i) Σ(g, aq) is the disjoint union of Σ(g+, aq) and Σ(g−, aq),
(ii) the multiplicity of each α ∈ Σ(g−, aq) equals 2. (H)
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Under the hypothesis (H) one can prove that

Mqf(X) :=
∏

α∈Σ+(g−,aq)

|α(X)|
∫

H
f(Ad(h)X)dh, X ∈ aq,

intertwines the Fourier transform on q with the Dunkl transform on aq. In particular, for

X,Y ∈ aq, one can express
∫

H
e−iB(Ad(h)X,Y )dh, as a distribution, in terms of the Dunkl

kernels related to the Riemannian symmetric space G+/K ∩ H, divided by the product∏
α∈Σ+(g−,aq) α(X)α(Y ). Unfortunately we were not able to find an interesting example

where the hypothesis (H) holds, other than the cases of Riemannian symmetric spaces
(treated in this subsection), and the group cases investigated earlier by Rossmann [Ro]
and Vergne [Ve]. However, in the group cases, we can apply the approach outlined above
to the c-dual pair (gc, h) of (g, h) where gc = h ⊕ iq = kc ⊕ pc with kc = h ∩ k ⊕ i(q ∩ p)
and pc = h ∩ p ⊕ i(q ∩ k). Thus we can express the Fourier transform of the measures on
orbits in the coadjoint representation in terms of the Dunkl kernels divided by products
of noncompact roots. Now by means of (3.12) we recover Rossmann’s explicit formula for
the characters of discrete series representations.
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