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2 Lasmea, CNRS UMR 6602, Université Blaise-Pascal, 24 Avenue des Landais 63177 Aubière cedex, France
3 Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou, Algeria

ABSTRACT Recently a new structure showing a super-enhanced
transmission [Optics Commun. 209, 17–22 (2002); Phys. Rev.
B, 67, 155 314, (2003)] has been proposed. The origin of this
phenomenon was not clearly explained. In this paper, by using
a numerical Order-N FDTD spectral method, we study the
eigenmodes, the band structure and the dispersion curves of
a photonic 2-D crystal made with coaxial circular cavities and
made from a real metal. We show that the super-enhanced trans-
mission of the finite structure is due to a cavity resonance of
a single guided mode. An extensive characterization of this
mode is presented, in terms of the spatial mode structure and
effective index dispersion curve.

1 Introduction

In 1998, T. Ebbesen [1] published a very interesting
paper showing enhanced transmission of light through a sub-
wavelength circular aperture array in a metallic film. That
paper has stimulated many studies on this subject. A short
bibliography can be found in reference [2]. In most studies,
structures showing an enhanced transmission are 1-D lamellar
gratings [3] or 2-D arrays made of cylindrical cavities in the
metallic film [4]. For such a 2-D structure, the transmission
is significantly enhanced but remains small: experimentally
an 8% zero order transmission is observed through a circular
hole grating in gold (hole diameter 200 nm, lattice constant
600 nm, metal thickness 250 nm [4]).

Recently we have proposed a new structure [2, 5] which
can exhibit a very large transmission. FDTD (finite difference
in the time domain) calculations have demonstrated an 80%
transmission in the visible region by using a 2-D grating made
of coaxial cavities. As reported in reference [2], we studied the
influence of the physical parameters on the transmission spec-
tra of this annular aperture array (AAA). In reference [5], we
calculated the near-field and field in the cavities. Examples of
spectra are presented in Fig. 1 for two metal thicknesses [2].

The FDTD code, used to theoretically study the phe-
nomenon, has been seriously and extensively checked by
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FIGURE 1 Zero order transmission efficiencies for AAA silver square
grating structure (grating period p = 300 nm, a = 75 nm and b = 50 nm
in Fig. 2). a Schematic of the structure. In b the metal thickness is set to
e = 300 nm, in c e = 1800 nm

comparison with published results for similar structures.
Moreover, a structure made with a 2-D array of square coax-
ial cavities has been studied with our code and with a RCWM
code (rigorous coupled wave method) [6]. The results are plot-
ted in Fig. 2 of that reference. The square coaxial structure
also exhibits a very large transmission, and the two theor-
etical methods lead to similar transmission efficiencies (the
small discrepancies between the two are probably created by
meshing approximations in the FDTD method).

So, it has been theoretically demonstrated that a coaxial
structure can exhibit a very large transmission, and experi-
ments that investigate this effect are in progress. AAA could
have the same applications that Ebbesen’s structures have,
but with a larger transmission efficiency and a better peak
structure (see Fig. 1). Also, they can be used in near-field
optical microscopy [7] to design optical modulators or tun-
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able filters [8] or to perform photolithography at a submicron
scale [9]. It has also been proposed as having a potential appli-
cation in flat-panel displays [10].

However, the interpretation of the large transmission ob-
tained with AAA is not completely clear. All of the modes of
a cylindrical waveguide made with a perfect metal have a cut-
off. Consequently, when the radius is very small, the modes
are evanescent and transmission of the aperture array remains
small. A coaxial waveguide made with a perfect metal has
a TEM mode (electro transverse magnetic) deprived of cut-off
and we thought, at the beginning of our study, that this mode
could explain the very large transmission of the AAA. But
the field structure in the cavities does not look like the radial
structure of a TEM mode.

So, the aim of this work is to study the mode structure in
a grating of coaxial cavities. The studied structures are 2-D
periodic gratings, infinite in the third direction. They can be
considered as metallic photonic structures. Many papers are
devoted to the theoretical study of metallic photonic crystals.
It is difficult to cite all published works on this subject. We
only mention a recent paper by Sakoda et al. [11] where a bib-
liography on the various theoretical methods can be found and
is briefly discussed. Among all of the theoretical schemes, the
FDTD method is a very efficient tool for obtaining the band
structure of photonic crystals made with absorbing and dis-
persive material [12]. However, to our knowledge, the band
structure of a photonic metallic crystal with coaxial cavities
has not been studied.

This paper is therefore constructed around four sections:
the first one introduces the notations and it briefly describes
the computing scheme. In the second section, we study the
band structure of a photonic crystal made of coaxial cavities,
made from a perfect metal. This second section is needed to
test our computing method and to check the location of the
known modes of such a structure. In the third section, we re-
place the unrealistic perfect metal by silver. We determine the
modes and we locate ones that could explain the very large
transmission in the case of the AAA structure. Finally, we dis-
cuss the obtained results.

2 Notations and computational principle

The geometry and the parameters of the studied
structures are indicated in Fig. 2. They are infinite in the z

direction. We denote the 2-D vectors in the transverse plane
by capital letters: R = (x, y), K = (kx, ky). In this paper, we
only consider a coaxial structure with circular cross-sections,
which corresponds to an annular cavity with an external ra-
dius a and inner radius b. For the array, the coaxial cavities are
periodic in the x − y plane: it is a square grating of period p.

For the electromagnetic modes studied in this paper, z is
the propagation direction. A TE mode (transverse electric)
has no z component for the electric field (Ez = 0). For a TM
mode (transverse magnetic), Hz = 0, and for the TEM mode
Hz = Ez = 0.

For any mode, all of the field components contain a term
proportional to e−i(ωt−kz z) where ω is the eigenfrequency and
kz the propagating constant. The effective index of a mode, ñ,
is directly connected to kz : kz = ñ ω

c
= ñ 2π

λ
, where c and λ are

respectively the speed of light and the wavelength in vacuum.

FIGURE 2 Coaxial waveguide geometry. a Single perfectly metallic wave-
guide, b Periodic grating of infinite coaxial waveguides made in silver metal

For the grating structure, the field amplitudes of each
mode must also verify the Bloch theorem, and the electric field
of one mode can be written:

Em(R, z, t) = e−i(ωm t−kz z)
∑

G

Em(G)ei(K+G)·R (1)

where K is a Bloch vector and G is a vector of the reciprocal
grating.

In the FDTD, space and time are discretized. We use the
“leapfrog” scheme proposed by Yee, which leads to a very
efficient computing scheme when stability criteria are re-
spected [13]. Electric and magnetic fields are calculated on
interleaved grids; each component of the fields being at a dif-
ferent node of the grids. We take into account the dispersion
and the absorption of the metal. The dielectric constant is
therefore described by a simple Drude model that is very
efficient in the studied spectral domain (visible and near in-
frared) [2].

To determine the mode structure of a photonic crystal,
the plane wave expansion method (PWE) is generally used.
However, the simple method does not work for a structure
with absorption because the linear system is no longer hermi-
tian. Our theoretical model is therefore based on the Order-N
FDTD numerical method, developed in an interesting paper
by Chan et al. [14]. The principle of the method is easily ex-
posed: it consists of exciting the structure using an initial field
whose spectrum extends over all of the possible frequencies of
the structure modes. Then the FDTD code determines the field
variations versus time. After a transient delay, only the eigen-
modes of the structure persist and they lead to a great spectral
radiant intensity at every eigenfrequency. The components of
the initial electromagnetic field which do not correspond to an
eigenmode will disappear.

The initial condition, defined by the fields at t = 0, is
given in Sect. III of [14]. The reciprocal vectors of the prim-
itive unit cell were used in order to make sure that the initial
field has nonzero projections onto all of the eigenstates of
the studied structure. At the end of the FDTD calculation,
a Fourier transform of the temporal response is calculated and
leads to a spectrum composed of thin spectral lines corres-
ponding to the eigenfrequencies (see the solid line in Fig. 3
for example). The spectral intensities are calculated at some
randomly chosen nodes in the structure (30 nodes in our case)
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FIGURE 3 Normalized spectral in-
tensities for two different kz values in
the case of a perfectly metallic coax-
ial waveguide. kz = 0 for the solid line
and kz = 2π

500
nm−1 for the dashed line

in order to collect all of the modes. Notice that, for such
a spectrum, the amplitude of the spectral lines has no physical
meaning since it depends on the exact structure of the initial
field.

By changing the values of kz and those of the Bloch
vector K , we can determine the dispersion relations of every
mode: ω versus kz for a waveguide and ω versus kz and K for
a grating structure.

In the case of a 2-D structure, there are two ways of writing
the boundary conditions:

– When we attempt to point out the in-plane modes (kz = 0),
TE and TM modes can be treated separately by 2-D FDTD
calculations. Periodic boundary conditions are imposed
on both the two fields E and H in the x and y directions.
No absorbing conditions are necessary here.

– To determine the out-of-plane modes, with kz �= 0, we
should use a complete 3-D FDTD code and therefore
add a third boundary condition along z which takes into
account the mode’s propagation. However, a very small
number of nodes in the z-direction is necessary and the
boundary conditions in this direction are: Ψ(x, y, z1) =

Ψ(x, y, z2)× ei·kz ·(z2−z1) where Ψ is one component of the
electric and/or the magnetic field.

In all of the studied cases, our FDTD lattice consists of one
period p of the grating. The spatial mesh steps were set to
∆x = ∆y = ∆z =

p

120
and the temporal step to ∆t = 0.003

p

c
as

in [14]. The simulations used a total of 200 000 time steps.

3 Dispersion relations and mode structure for

a perfect metal

For a photonic crystal made in a perfect metal, the
fields are thoroughly confined in the cavities and there is no
coupling between the various cavities. Consequently, modes
of the grating are simply connected to the mode of one cav-
ity: the dispersion relations and the eigenfrequencies depend
on kz and are independent of the Bloch vector. Such a structure
is a very efficient test for our FDTD code.

The eigenmodes of a coaxial waveguide made in a perfect
metal are well-known [15]. There is a TEM0 mode without
cutoff. Its effective index is always ñ = 1 and it has cylindrical
symmetry. The electric field of the TEM0 mode is radial.

Other propagating modes of a coaxial waveguide are well
known. The dispersion relation of a mode verifies the relation:

k2
z =

4π2

λ2
−

4π2

λ2
c

(2)

where λc is the cutoff wavelength of the mode. This cutoff is
theoretically given by:

λcTMm,q ≈
2(b −a)

q
for TM modes , (3)

λcTEm,1 ≈
π(a +b)

m
and

λcTEm,q ≈
2(b −a)

q −1
for TE modes . (4)

where a and b are the outer and the inner radii of the coaxial
waveguide.

We have determined the eigenmodes for an array of coax-
ial cavities with a = 75 nm and b = 50 nm. Geometrical pa-
rameters of the structure were chosen in accordance with the
ones of the silver AAA which exhibits a very large transmis-
sion. The normalized spectral intensities versus λ, calculated
for two different values of kz, are shown in Fig. 3.

We have verified that the eigenfrequencies are indepen-
dent of K which is an obvious result for a perfect metal, which
implies a localisation of the fields in the cavities.

The solid line in Fig. 3 corresponds to kz = 0 (to the in-
plane modes). In this case, the eigenwavelengths are equal to
the cutoff wavelengths of the coaxial waveguide (λmode = λc

in (3) and (4)).
Only two modes appear between λ = 200 nm and λ =

800 nm. The two peaks are located at λ = 209 nm and
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FIGURE 4 |hz|2 of the two
modes of a perfectly metallic
coaxial waveguide for kz = 0. a
For the TE11 mode, and b for the
TE21 mode

FIGURE 5 Square modulus of
the three cylindrical components
of the magnetic field in the case
of the TEM mode of Fig. 8 (λ =

528 nm and kz = 2π
500

nm−1)

λ = 416 nm. This is in accordance with the values of the
TE21 and TE11 modes of (4) respectively. TM modes are
not visible because their cutoff wavelengths are lower than
50 nm.

The dashed line of Fig. 3 corresponds to kz = 2π
500

nm−1.
The shift of the two peaks is in good agreement with (2) and
a third peak appears at λ = 528 nm. This peak probably cor-
responds to the TEM mode. Its effective index is theoretically
equal to 1; therefore it must be located at 500 nm instead
of 528 nm. This discrepancy is probably due to the spatial
meshing of the object, which leads to a non-perfectly circular
waveguide. The spatial step of the grid used in the FDTD cal-
culation is ∆ = 2.5 nm. It induces a staircase structure of the
edges of the cavities which could be described by an uncer-
tainty of the radii. Note here that such a mode (the TEM one)
only exists when kz �= 0.

To confirm the nature of the modes of the solid line in
Fig. 3, we present in Fig. 4 the square modulus of the magnetic
field for both the two eigenwavelengths.

We note that, as is well-known, the TE11 mode’s (Fig. 4a)
|hz|2 varies with respect to cos2(ϕ) while the |hz|2 of the TE21

mode varies as cos2(2ϕ) (Fig. 4b), where ϕ is the azimuthal
angle.

We also present in Fig. 5 the square modulus of the spatial
distribution for the three cylindrical components (Hr , Hϕ and
Hz) of the magnetic field of the TEM out-of-plane mode (at
λ = 528 nm) corresponding to the third peak of the dashed line
in Fig. 3.

Notice the cylindrical symmetry of the tangential com-
ponent, Hϕ. Theoretically, for a TM0 mode the other com-
ponents must vanish: Hr = Hz = 0. In our calculation, they
do not vanish but |Hz|

2 and |Hr|
2 are 100 times weaker

than |Hϕ|
2. The meshing of the structure leads to non per-

fectly circular edges and therefore to a non-zero field at these
edges.

This good agreement demonstrates, if necessary, the accu-
racy of the Order-N FDTD spectral method for treating such
a problem, and is a very good test of our code. The discrepancy
mentioned above allows us to define an absolute precision on
the value of ñ by ∆ñ

ñ
= 5%.

4 Dispersion relations and modes for a silver

structure

In the following, we replace the perfect metal by
silver, which has its dielectric constant described by a Drude
model1. First, we study the influence of the grating period, p,
on the values of the eigenfrequencies. The results are plotted
in Fig. 6. We can see that each spectrum is more complicated
than in the case of a perfect metal. For a perfect metal, only
two peaks occurred between λ = 200 nm and λ = 800 nm and
their linewidths are very close to zero but do not absolutely
vanish because of the time sampling necessary to calculate the
spectrum (see reference [14] for more details). In the case of
silver, other peaks occur (primarily four peaks or more pre-
cisely two bands with double peak features) and their widths
do not vanish. This broadening is induced by damping in
metal and could be related to the imaginary part of the effect-
ive index.

The spectra of Fig. 6 contain two band structures. The
position of the UV band, between 300 nm and 400 nm, re-
mains almost constant when the grating period, p, is increased
from 160 to 350 nm. This can be interpreted by the fact that

1 The Drude model is given by: ε(ω) = 1−
ω2

p

ω(ω+iγ)
. For silver, we set

ωp = ω
Ag
p = 1.374×1016 rad/s and γ = γAg = 3.21×1013 rad/s.
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FIGURE 6 Normalized spectral intensities versus the period of a silver
coaxial waveguide grating for kz = 0 (the in-plane modes). The other geomet-
rical parameters of the structure are a = 75 nm and b = 50 nm (see Fig. 2b)

FIGURE 8 Normalized spectral intensities for two
different kz values in the case of a silver coaxial wave-
guide. kz = 0 for the solid line and kz = 2π

500
nm−1 for

the dashed line

the spatial distribution of this mode is very confined around
the waveguide which induces a weak coupling between two
closer waveguides. However, the other band, in the red part
of the spectra, has a position which exhibits large variations
when the period is increased. This mode seems more sensi-
tive to coupling between cavities. But this band position re-
mains stable when p ≥ 250 nm. It means that for p = 300 nm,
which is the period of the AAA structure studied in transmis-
sion, the coupling between adjacent coaxial cavities remains
small.

Figure 6 shows that for p = 160 nm the coaxial wave-
guides are coupled. Therefore, in this case, it is interesting to
study the in-plane modes of such a structure when the Bloch
vector runs over the first Brillouin zone.

In Fig. 7 we present the photonic band structure for the
case of H polarization (TE modes) when a = 75 nm, b =

50 nm and p = 160 nm. For this polarization, an absolute

FIGURE 7 In-plane (kz = 0) photonic band structure for H polarization of
the silver annular 2-D grating with a = 75 nm, b = 50 nm and p = 160 nm

FIGURE 9 Effective index for the TE1 guided mode. Errorbars are indi-
cated with respect to the calculated ∆ñ in Sect. 3

5



FIGURE 10 |hz|2 of the two in-
plane modes (kz = 0) of the sil-
ver coaxial waveguide. a For λ2a =

681 nm, and b for λ1b = 385 nm

FIGURE 11 Square modulus of the
Ex , Ey and Hz components for the
three peaks of the dashed line in
Fig. 8. a Corresponds to λ3, b to
λ1b, and c to λ′

2a
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band gap is present in this structure (shaded zone) between
λ = 492 nm and λ = 630 nm.

Let us now study the grating with p = 300 nm. Figure 8
shows the normalized spectral intensities of the 2-D silver
structure for two different values of kz.

The solid line of Fig. 8, which is an enlargement of one
curve of Fig. 6, corresponds to kz = 0. Two double peaks ap-
pear and are located at λ1a = 382 nm and λ1b = 386 nm for
the first one and at λ2a = 681 nm and λ2b = 689.6 nm for the
second one. The double peak structure is discussed below.

When kz = 2π
500

nm−1 (dashed line in Fig. 8), the two
double peaks are shifted (λ1a → λ′

1a = 363.6 nm ; λ1b →

λ′
1b = 366.6 nm ; λ2a → λ′

2a = 549.7 nm and λ2b → λ′
2b =

558.7 nm). These shifts do not verify equation (2). The ef-
fective indices of λ′

2a and λ′
2b modes are larger than 1. The

variations in the effective index of this mode versus the wave-
length are presented in Fig. 9. These variations are in good
agreement with the curve published by Moreau et al. [6] in the
case of a square coaxial geometry.

ñ > 1 for λ < 570 nm; it is less than 1 near the cutoff and it
falls to zero at the cutoff (λ ≃ 700 nm).

A new spectral line appears at λ3 = 910 nm in the dashed
line of Fig. 8. This latter line is exclusively composed of only
one peak and should correspond to a TEM mode for a silver
waveguide. Its effective index is equal to 1.82 instead of one
for a perfect metal.

Figure 10 show the distributions of |hz|2 for two in-plane
modes in the case of a silver coaxial waveguide. Figure 10a,
calculated for λ2a , seems to correspond to a TE11 mode while
Fig. 10b, which is calculated for λ1b, has the characteristics of
a TE21 mode.

In the case of the out-off plane modes and for kz =
2π
500

nm−1, we present in Fig. 11 the spatial distribution of

the square modulus of the three cartesian components (|Hx|
2,

|Hy|
2 and |Hz|

2) of the magnetic field and their sum (I =

|Hx|
2 +|Hy|

2 +|Hz|
2).

The first column (a) corresponds to λ3. We find that the Hz

component is zero and Hx and Hy vary as sin ϕ and cos ϕ re-
spectively which corresponds effectively to the angular prop-
erties of a TEM0 mode.

The second column (Fig. 11b) and the third one (Fig. 11c)
correspond to the two other peaks of the dashed line of Fig. 8
(λ′

2a and λ′
1b respectively). The spatial distribution of the in-

tensities confirms the nature of these two modes; the first one
looks like a TE1 mode while the second one is similar to a TE2

one.
Remarks:

– For a perfect metallic waveguide, TEm and TMm modes
are independent. In the case of a dielectric and non-perfect
metal, pure TE and TM only exist for m = 0. When m > 0,
all of the modes have Ez and Hz different from zero, so
these modes are named HEm or EHm. In our case, we have
verified that the Ez component of the guided modes re-
mains zero as for the perfect metal. So, in the following,
we keep the notations introduced above.

– We have interpreted the main features of the spectra. It re-
mains for us to explain the origin of the fine structure; dou-
ble peaks appearing in the case of silver (see Fig. 8). For
one coaxial waveguide, the physical problem has a cylin-

drical symmetry; in this case the direction of the x-axis
is arbitrary and the TE1 mode is in fact degenerated. This
cylindrical symmetry is broken when coaxial cavities are
arranged in a square grating. As mentioned above, the
coupling between adjacent cavities is very weak but it does
not completely vanish and it induces a breaking of the de-
generacy. We have verified that the two peaks of the same
band are TE1 modes. For a single waveguide (p → ∞),
only one peak should occur instead of a double struc-
ture. The TEM mode has no fine structure because it has
a cylindrical symmetry that is not perturbed by the adja-
cent cavities.

5 Discussion

In light of these results, the interpretation of trans-
mission spectra for AAA structures (Fig. 1b and c) for
400 nm < λ < 800 nm can be clarified. All of the enhanced
transmission peaks correspond to a resonance of one mode:
the TE1 mode. The α-band located around λ = 700 nm corres-
ponds to the cutoff (kz = 0). In this case, the effective index
vanishes and this mode does not really propagate. Its position
is independent of metal thickness, and it appears in all of the
spectra.

In order to verify this assumption, in Fig. 12 we present
the cross-sections of the field intensity in the xz plane
(e = 300 nm) for the three bands of the spectrum pre-
sented in Fig. 1b. We note that the α-band intensity is
pretty constant along z inside the cavity. The β-band has
one node located at the middle of the cavity, while there
are two nodes for the δ-band. At resonances, a standing
wave structure is created in the cavities with maxima at the
edges.

It is remarkable that the peak positions (except for the α

one) in the transmission spectra of one AAA structure can
be described by one simple equation that is valid for any

FIGURE 12 Cross-sections of field intensities in logarithmic gray scale. a In
the case of the α-band, b for the β-band, and c for the δ-band. The structure
parameters are given in Fig. 1a, with e = 300 nm
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thickness:

4πñ(λ)e

λ
+2ϕr = 2lπ (5)

where l is a positive integer and ϕr is the phase of the re-
flection coefficient of the cavity’s sides. ñ(λ) is the effect-
ive index determined above (Fig. 9) for an infinite photonic
crystal. ϕr is reasonably independent of the film thickness
(ϕr) ≃ 50◦).

Note that the TEM and the TE21 modes cannot be excited
with a linearly polarized incident beam.

6 Conclusion

In this paper we have established that the transmis-
sion enhancement obtained by a AAA structure is a cavity
resonance due to a single guided mode through the coaxial
cavities. This interpretation is very similar to the one proposed
by Lalanne et al. [3, 16] in the case of a 1-D array. The “ho-
rizontal” surface plasmons, along the (x − y) plane, are not the
origin of the enhanced transmission in the case of the AAA
structure.

The dispersion properties of the real metal are of great
importance to inducing the transmission enhancement. The
wavelength cutoff is shifted from 415 nm in the case of a per-
fect metal to 700 nm for silver for the same geometrical
parameters. This value of the cutoff wavelength depends both
on the nature of the metal (the dielectric constant) and on the
geometry of the object.

The guided mode is excited by diffraction at the input side
of the metallic film. Because of the linear polarization of the

incident beam, the “TEM” mode cannot be excited. How-
ever, it could be generated by using a radially polarized Bessel
beam [17]. In this case, enhanced transmission could be ex-
pected at a larger wavelength (λ ≃ 900 nm see Fig. 8).
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