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The anticyclic operad of moulds

F. Chapoton

September 15, 2006

Abstract

A new anticyclic operad Mould is introduced, on spaces of functions in

several variables. It is proved that the Dendriform operad is an anticyclic

suboperad of this operad. Many operations on the free Mould algebra

on one generator are introduced and studied. Under some restrictions,

a forgetful map from moulds to formal vector fields is then defined. A

connection to the theory of tilting modules for quivers of type A is also

described.

0 Introduction

The aim of this article is to build and use a new connection between the the-
ory of operads and the theory of moulds. Operads were introduced in alge-
braic topology in the 1960’s. After being somewhat neglected for some decades,
this notion has found a new impetus recently, in connection with mathematical
physics, moduli spaces of curves and algebraic combinatorics.

Moulds have a rather different origin. They have been introduced in analysis
by J. Ecalle, as a convenient tool to handle complicated singular functions, in
relation with his theory of resurgence. Later, he developed around moulds a
large apparatus which allowed him to make substantial progress in the theory
of polyzetas [Eca02, Eca03, Eca04]. In this article, only the simplest case of
moulds will be considered, not the more general case of bimoulds.

The first result of this article is the existence of a very simple structure
of operad on moulds, denoted by Mould. In fact, one can define on moulds
the finer structure of an anticyclic operad, involving in addition to composition
maps some actions of cyclic groups.

This structure is then shown to contain as an anticyclic suboperad the so-
called Dendriform operad introduced by J.-L. Loday [Lod01] and denoted by
Dend, which has been much studied recently [LR98, LR02]. This provides a
radically new point of view on the operad Dend and the key to some new
results. The main result is the explicit description of the smallest subset of
Dend containing its usual generators and closed under the anticyclic operad
structure, by the mean of new combinatorial objects called non-crossing plants.

This article also contains the description of many different operations on
moulds, coming either from the operad or from the mould viewpoint, and some
of their properties. This is used to prove the existence of a morphism from the
Lie algebra of moulds (for one of the Lie brackets and under some restrictions)
to the Lie algebra of formal vector fields in one indeterminate. Interesting and
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natural examples of moulds are provided and their images by this map are
computed.

In some sense, this article provides a reformulation of the basic results of
Ecalle on moulds in a more classical algebraic language. This includes notably
the so-called ARI bracket, for which we provide a very short definition using
the operations obtained from the operad structure. We use this definition to
prove some properties of this bracket. It should be said that our setting does
not seem to extend to bimoulds, hence can only describe a small part of the
theory of Ecalle.

In the last section, it is recalled that the Dendriform operad is strongly
related to the theory of tilting modules for the equi-oriented quivers of type A,
and how the results of the present article fit very-well in this relationship. Some
conjectural extension of the properties in type A to other Dynkin diagrams are
proposed.

Many thanks to Jean Ecalle for discussions which have led to this research.
MSC 2000: 18D50, 05C05, 05E

1 Notations and definitions

We recall here the terminology we need concerning moulds.
A mould is a sequence (fn)n≥1, where fn is a function of the variables

{u1, . . . , un}. A mould is said to have degree n if its only non-zero component
is fn. In this case, this unique component will be denoted f by a convenient
abuse of notation.

A mould f of degree n is called alternal if it satisfies the following conditions,
for 1 ≤ i ≤ n− 1:

∑

σ∈Sh(i,n−i)

f(uσ(1), . . . , uσ(n)) = 0, (1)

where σ runs over the shuffle permutations of {u1, . . . , ui} and {ui+1, . . . , un},
i.e. permutations such that σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(n).
One can then extend this definition: a mould is called alternal if each of its
components is alternal.

A mould f of degree n is called vegetal if it satisfies the following equation:

u1 . . . un

∑

σ∈Sn

f(t uσ(1), . . . , t uσ(n)) = n!f(t, . . . , t), (2)

where Sn is the permutation group of {1, . . . , n}.
There is a natural associative product on moulds, defined for f of degree m

and g of degree n by

MU(f, g) = f(u1, . . . , um)g(um+1, . . . , um+n). (3)

The associated Lie bracket is

LIMU(f, g) = MU(f, g) − MU(g, f). (4)

We will often use the following convenient shorthand notation:

ui..j :=
∑

i≤k≤j

uk. (5)
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At some places in the text, we will use the following shorthand notation.
For a shuffle σ of two ordered sets S′ and S′′, let uσ be the sequence us for
s ∈ S′ ∪ S′′ in the order specified by σ.

2 The Mould operad

For n ≥ 1, let Mould(n) be the vector space of rational functions with ratio-
nal coefficients in the variables {u1, . . . , un}. We will show that the collection
Mould = (Mould(n))n≥1 has the structure of an anticyclic non-symmetric op-
erad. The reader is referred to [Mar99, MSS02] for the basics of the theory of
operads and anticyclic operads.

First, let 1 be the function 1/u1 in Mould(1). This will be the unit of the
operad.

Let us then introduce a map τ , which is called the push. It is defined on
Mould(n) by

τ(f)(u1, . . . , un) = f(−u1...n, u1, . . . , un−1). (6)

Note that τ has order n + 1 on Mould(n). It will give the cyclic action of the
operad. Let us note also that τ(1) = −1. This is one of the axioms of an
anticyclic operad.

Let us now introduce the composition maps ◦i from Mould(m) ⊗ Mould(n)
to Mould(m + n − 1), with 1 ≤ i ≤ m. Let f be in Mould(m) and g be in
Mould(n). The function f ◦i g is defined by

ui...i+n−1f(u1, . . . , ui−1, ui...i+n−1, ui+n, . . . , um+n−1)g(ui, . . . , ui+n−1). (7)

Theorem 2.1 The push τ and composition maps ◦i define the structure of an
anticyclic non-symmetric operad Mould.

Proof. One has first to check that these composition maps do indeed define a
non-symmetric operad. The unit 1 has clearly the expected properties: 1◦1 f =
f and f ◦i 1 = f for all f ∈ Mould(m) and 1 ≤ i ≤ m. One has also to check
two “associativity” axioms.

Let f, g, h be in Mould(m),Mould(n) and Mould(p).
Let i and j be such that 1 ≤ i < j ≤ m. Then one has to check that

(f ◦i g) ◦j+n−1 h = (f ◦j h) ◦i g. (8)

Indeed, both sides are equal to

ui...i+n−1 uj+n−1...j+n+p−2 g(ui, . . . , ui+n−1)h(uj+n−1, . . . , uj+n+p−2)

f(u1, . . . , ui−1, ui...i+n−1, ui+n,

. . . , uj+n−2, uj+n−1...j+n+p−2, uj+p+n−1, . . . , um+n+p−2). (9)

Let now i and j be such that 1 ≤ i ≤ m and 1 ≤ j ≤ n. One has to check
that

f ◦i (g ◦j h) = (f ◦i g) ◦j+i−1 h. (10)
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Indeed, both sides are equal to

f(u1, . . . , ui−1, ui...i+p+n−2, ui+p+n−1, . . . , um+n+p−2)

g(ui, . . . , uj+i−2, uj+i−1...j+i+p−2, uj+i+p−1, . . . , ui+p+n−2)

ui...i+p+n−2 uj+i−1...j+i+p−2h(uj+i−1, . . . , uj+i+p−2). (11)

This proves that Mould is a non-symmetric operad. Then one has to verify
that τ gives furthermore an anticyclic structure on this operad.

For this, one has to check two identities. The first one is

τ(f ◦i g) = τ(f) ◦i−1 g, (12)

for f ∈ Mould(m), g ∈ Mould(n) and 2 ≤ i ≤ m. Indeed, this holds true, as
both sides are equal to

f(−u1...m+n−1, u1, . . . , ui−2, ui−1...n+i−2, un+i−1, . . . , um+n−2)

g(ui−1, . . . , un+i−2)ui−1...n+i−2. (13)

The other identity that we have to check is

τ(f ◦1 g) = −τ(g) ◦n τ(f), (14)

for f ∈ Mould(m) and g ∈ Mould(n). Again, this is true as both sides are equal
to

−un...m+n−1f(−un...m+n−1, un, . . . , um+n−2)g(−u1...m+n−1, u1, . . . , un−1).
(15)

Remark 2.2 It follows from Eq. (7) that if f and g are homogeneous functions
of weight df and dg (where all variables ui are taken with weight 1), then f ◦i g
is also homogeneous of weight df +dg +1. Also, the action of τ clearly preserves
the weight in that sense. Hence the collection of subspaces of homogeneous
rational functions of weight −n in Mould(n) is a anticyclic suboperad.

Remark 2.3 Another consequence of Eq. (7) is the following. Let Hn be the
product

Hn =
∏

1≤i≤j≤n

ui...j . (16)

One can see that, if Hmf and Hng are polynomials, then so is Hm+n−1(f ◦i g).
It is also true that Hmτ(f) is polynomial if Hmf is, as one can easily check that
τ preserves Hm up to sign.

Combining the two previous remarks, one gets that the subspace of Mould(n)
made of homogeneous rational functions f of weight −n such that Hnf is a
polynomial define a anticyclic suboperad, which is finite dimensional in each
degree.

Remark 2.4 By a similar argument, one can also note that the subspace of
rational functions that have only poles of the shape ui...j (at some power) for
some i ≤ j is also stable for the composition and the cyclic action. Such
functions will be said to have nice poles.
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Figure 1: a planar binary tree T and the standard numbering

3 The Dendriform operad

The Dendriform operad was introduced by Loday [Lod01], motivated by some
problem in algebraic topology. Later, it was shown to be an anticyclic operad
[Cha05a]. We refer the reader to the book [Lod01] for more details on this
operad.

Recall that the Dendriform operad is an operad in the category of vector
spaces, generated by and of degree 2 with relations

◦1 ( + ) = ◦2 , (17)

◦1 = ◦2 , (18)

◦1 = ◦2 ( + ). (19)

The dimension of Dend(n) is the Catalan number

cn =
1

n+ 1

(

2n

n+ 1

)

. (20)

There is a basis of Dend(n) indexed by the set Y(n) of rooted planar binary
trees with n + 1 leaves. In the presentation above, and correspond to the
two planar binary trees in Y(2). We will sometimes denote by Y the unique
planar binary tree of degree 1.

The cyclic action is defined on the generators by

τ( ) = , (21)

τ( ) = −( + ). (22)

Theorem 3.1 There is a unique map ψ of anticyclic non-symmetric operads
from Dend to Mould which maps to 1/(u1u1...2) and to 1/(u1...2u2).

Proof. It is quite immediate to check, using the known quadratic binary pre-
sentation of Dend and the description of the cyclic action on these generators
recalled above, that this indeed defines a morphism ψ of operads and that this
morphism ψ is a morphism of anticyclic operads.

Let us now describe the image by ψ of a planar binary tree T in Y(n).
Let us define, for each inner vertex v of T , a linear function dim(v) in the

variables u1, . . . , un. One can label from left to right the spaces between the
leaves from 1 to n as in Fig. 1. Then the vertex v defines a pair of leaves (its
leftmost and rightmost descendants), enclosing a subinterval [i, j] of [1, n]. Let
dim(v) be ui...j .
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Proposition 3.2 Let T be a planar binary tree. Then its image ψ(T ) is the
inverse of the product of factors dim(v) over all inner vertices v of T .

For instance, the image of the tree T of Fig. 1 is

ψ(T ) = 1/ (u1...3u2u2...3u1...7u5u5...7u7) . (23)

Proof. The proof is by induction on n. The proposition is true for n = 1 or 2.
Assume that the Proposition is true up to degree n. Let T be a planar binary

tree in Y(n + 1). By picking a top vertex of T (any inner vertex of maximal
height), one can find a tree S in Y(n) and an index i such that T = S ◦i or
T = S ◦i .

Then one can check that the description given above has the correct behavior
with respect to such compositions in Mould and in Dend.

Let us now introduce a classical map π from permutations of {1, . . . , n} to
planar binary trees in Y(n). First, note that one can use the standard numbering
as in Fig. 1 to label the inner vertices of a planar binary tree from 1 to n from
left to right. Then each tree T induces a natural partial order ≤T on {1, . . . , n}
by saying that i ≤T j if the inner vertex i is below (i.e. is an ancestor of) the
inner vertex j. The map π is characterized by the property that π(σ) = T if and
only if the total order σ(1) < σ(2) < · · · < σ(n) is an extension of the partial
order ≤T . In particular, σ(1) must be the index of the bottom inner vertex of
T . The map π is surjective and has a standard construction by induction, see
for example [LR98]. For instance, the images by π of the permutations 4163527
and 4651372 are both the tree of Fig. 1.

Let us define the multi-residue of an element in Mould(n) according to a
permutation σ ∈ Sn:

∮

σ

f = (2iπ)−n

∮

u
σ(1)

. . .

∮

u
σ(n)

f. (24)

Proposition 3.3 For a planar binary tree T in Y(n) and a permutation σ ∈
Sn, the multi-residue

∮

σ
ψ(T ) does not vanish if and only if π(σ) = T .

Proof. The proof is by induction. The statement is clear if n = 1. Let k be
σ(n).

Let us assume that π(σ) = T . By the discussion above on the properties
of π, this implies that the vertex k is a top vertex of T (a maximal element
for ≤T ). Then by computing the innermost residue with respect to uk, the
multi-residue

∮

σ
ψ(T ) reduces to the multi-residue of the function obtained by

replacing uk by 0 in ukψ(T ), with respect to indices {1, . . . , n} but k, in some
order. By renumbering the variables, this multi-residue is just

∮

σ′
ψ(T ′) where

T ′ is obtained by removing the top vertex k from T and σ′ is the induced
permutation of {1, . . . , n − 1}. It is clear that π(σ′) = T ′, hence the residue
∮

σ′
ψ(T ′) is not zero by induction and therefore the residue

∮

σ
ψ(T ) is not zero

too.
Let us now assume that π(σ) 6= T . If the vertex numbered k is not a top

vertex , then the residue with respect to uk is zero, as uk is not a pole of ψ(T ).
If the vertex number k is a top vertex, then, with the same notations as above,
one necessarily has that π(σ′) 6= T ′. Hence by induction

∮

σ′
ψ(T ′) = 0 and

therefore
∮

σ
ψ(T ) = 0.
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Theorem 3.4 The morphism ψ is injective.

Proof. It is enough to prove that the the functions ψ(T ) for all planar bi-
nary trees in Y(n) are linearly independent. This follows from the previous
proposition.

3.1 The Associative operad

It is known that the Associative operad is the suboperad of the Dendriform
operad generated by + . Furthermore, the basis of the one-dimensional
space Assoc(n) is mapped in Dend to the sum of all planar binary trees.

Inside the Mould operad, as the image of + is 1/(u1u2), one can check by
induction that the image of the basis of Assoc(n) is the inverse of the product
u1 . . . un.

Remark 3.5 the Associative operad is not stable for the anticyclic structure,
though. The smallest anticyclic suboperad of Mould containing Assoc is Dend.

3.2 The graded Tridendriform operad

Several generalizations of the Dendriform operad have been introduced in [Cha02]
and [LR04]. They all share the common point that they have in degree n a basis
indexed by all planar trees instead of just planar binary trees.

Let us consider among them the operad grTriDend which is the associated
graded operad of the Tridendriform operad (which is a filtered operad). It has
been considered both in [Cha02] and [LR04] and contains as a suboperad the
Dendriform operad. The operad grTriDend is generated by the dendriform
generators together with another associative operation in degree 2. One can
deduce from the results of [LR04] a presentation by generators and relations of
grTriDend. It consists of the associativity relations for , of the 3 relations for
the dendriform generators and given at the beginning of §3, and of 3 more
relations:

◦1 = ◦2 , (25)

◦1 = ◦2 , (26)

◦1 = ◦2 . (27)

Proposition 3.6 By extending the morphism ψ by 7→ 1
u1+u2

, one gets a
morphism (still denoted by ψ) of operads from grTriDend to Mould.

Proof. This is an immediate verification.

We will not check here whether or not this morphism is injective. This may
follow from the same kind of arguments as for the Dendriform operad. Indeed,
the image of a planar tree by ψ has a simple description given by an obvious
extension of Prop. 3.2.

Remark 3.7 There is no known cyclic or anticyclic structure on grTriDend.
The image of grTriDend by ψ is not closed for the action of τ . One may ask
for a description of the closure of grTriDend in the anticyclic operad Mould.
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4 Free algebra on one generator

Let us consider the free algebra on one generator for the operad Mould. This
can be identified with the direct sum of all spaces Mould(n), which will also be
denoted by Mould.

4.1 Dendriform products

The inclusion of the operad Dend in Mould defines the structure of a dendri-
form algebra on the free Mould algebra on one generator: we have two binary
operations ≻ and ≺ defined for f ∈ Mould(m) and g ∈ Mould(n) by

f ≻ g =

(

1

u1u1...2
◦2 g

)

◦1 f = f(u1, . . . , um)g(um+1, . . . , um+n)
um+1...m+n

u1...m+n

(28)
and

f ≺ g =

(

1

u1...2u2
◦2 g

)

◦1 f = f(u1, . . . , um)g(um+1, . . . , um+n)
u1...m

u1...m+n

.

(29)

Proposition 4.1 If f and g are vegetal, then so are f ≻ g and f ≺ g.

Proof. Let us do the proof for f ≻ g, the other case being similar. One has to
compute

u1 . . . um+n

u1...m+n

∑

σ∈Sm+n

f(t uσ(1), . . . , t uσ(m))g(t uσ(m+1), . . . , t uσ(m+n))

(uσ(m+1) + · · · + uσ(m+n)). (30)

Let us introduce the set E = {σ(m+ 1), . . . , σ(m+ n)}. Then one can rewrite
the previous sum as

u1 . . . um+n

u1...m+n

∑

E

(

∑

i∈E

ui

)

∑

σ

f(t uσ′(1), . . . , t uσ′(m))

∑

σ′′

g(t uσ′′(m+1), . . . , t uσ′′(m+n)), (31)

where E runs over the set of subsets of cardinal n of {1, . . . ,m + n}, σ′ is a
bijection from {1, . . . , n} to the complement of E and σ′′ is a bijection from
{m + 1, . . . ,m + n} to E. Using the vegetal property of f and g, this reduces
to

m!n!

u1...m+n

f(t, . . . , t)g(t, . . . , t)
∑

E

∑

i∈E

ui. (32)

Reversing summations, this gives

(m+ n− 1)!nf(t . . . , t)g(t . . . , t), (33)

which is (m+ n)!(f ≻ g)(t, . . . , t). Hence f ≻ g is vegetal.

8



4.2 Associative product

The inclusion of the Associative operad in the Mould operad implies that the
formula

MU(f, g) =

(

1

u1u2
◦2 g

)

◦1 f (34)

defines an associative product on the free Mould-algebra on one generator. One
can check that this associative product is exactly the product called MU in the
terminology of moulds, see (3). Hence the associated bracket is the so-called
LIMU bracket. Note also that f ≻ g + f ≺ g = MU(f, g).

As a consequence of Prop. 4.1, one has

Corollary 4.2 If f and g are vegetal, then so are MU(f, g) and LIMU(f, g).

4.3 Pre-Lie product

Recall that a pre-Lie product on a vector space V is a bilinear map x from V
to V such that

(x x y) x z − x x (y x z) = (x x z) x y − x x (z x y). (35)

This notion is related to manifolds with affine structures and to groups with
left-invariant affine structures. As for associative algebras, the corresponding
antisymmetric bracket [x, y] = x x y − y x x is a Lie bracket. For a reference
on pre-Lie algebras, the reader may consult [CL01].

As there is a injective morphism from the PreLie operad to the symmetric
version of the Dendriform operad, hence also to the symmetric version of the
Mould operad, one gets a pre-Lie product on the free Mould algebra on one
generator and an injective map from the free Pre-Lie algebra on one generator
to the free Mould algebra on one generator.

The pre-Lie product is defined by the formula

f x g =

(

1

u1u1...2
◦2 f

)

◦1 g −

(

1

u1...2u2
◦2 g

)

◦1 f. (36)

or just as g ≻ f − f ≺ g. More explicitly, it is given by

f(u1, . . . , um)g(um+1, . . . , um+n)
um+1...m+n

u1...m+n

− g(u1, . . . , un)f(un+1, . . . , um+n)
u1...n

u1...m+n

. (37)

Theorem 4.3 The pre-Lie product x preserves alternality: if f and g are
alternal, then so is f x g.

Proof. Let f ∈ Mould(m) and g ∈ Mould(n). Let us fix j ∈ {1, . . . ,m+n−1}.
One has to check that

∑

σ∈Sh(j,m+n−j)

(f x g)(uσ(1), . . . , uσ(m+n)) = 0. (38)

Let us compute the first half of this sum:
∑

σ∈Sh(j,m+n−j)

(g ≻ f)(uσ(1), . . . , uσ(m+n)). (39)
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This is

1

u1...m+n

∑

σ∈Sh(j,m+n−j)

f(uσ(1), . . . , uσ(m))

g(uσ(m+1), . . . , uσ(m+n))(uσ(m+1) + · · · + uσ(m+n)). (40)

Let us introduce the set E′ = {σ(1), . . . , σ(m)} and let E′′ be its complement.
Then, by standard properties of shuffles, one can rewrite the previous sum as

1

u1...m+n

∑

E′

∑

σ′

f(uσ′)

(

∑

k∈E′′

uk

)

∑

σ′′

g(uσ′′), (41)

where E′ runs over the set of subsets of {1, . . . ,m + n} of cardinal m, σ′ is
a shuffle of E′ ∩ {1, . . . , j} and E′ ∩ {j + 1, . . . ,m + n} and σ′′ is a shuffle of
E′′ ∩ {1, . . . , j} and E′′ ∩ {j + 1, . . . ,m+ n}. Here we have used the shorthand
notation introduced at the end of §1.

Using the alternality of f and g, this sum reduces to the terms where E′ is
either included in {1, . . . , j} or in {j + 1, . . . ,m+ n} and E′′ is either included
in {1, . . . , j} or in {j + 1, . . . ,m+ n}. Hence, the sum reduces to

1

u1...m+n

(f(u1, . . . , uj)g(uj+1, . . . , um+n)(uj+1 + · · · + um+n)

+ f(uj+1, . . . , um+n)g(u1, . . . , uj)(u1 + · · · + uj)), (42)

where the first term is present if j = m and the second one if j = n.
One can compute in the same way the other half of the sum:

∑

σ∈Sh(j,m+n−j)

(f ≺ g)(uσ(1), . . . , uσ(m+n)) (43)

and find exactly the same result. Hence the full sum vanishes as expected.

Corollary 4.4 The image of the free pre-Lie algebra on one generator is con-
tained in the intersection of the free dendriform algebra with set of alternal
elements in Mould.

It seems moreover that this inclusion could be an equality.

Remark 4.5 It follows also from the definition of x given above that the Lie
bracket LIMU associated to the associative product MU is also the bracket
associated to the pre-Lie product x.

5 Suboperads in the category of sets

The aim of this section is to describe two small suboperads of the image of Dend
in Mould. The key point is that we work here in the category of sets rather
than in the category of vector spaces as usual.

10
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Figure 2: a non-crossing tree and a non-crossing plant

5.1 Combinatorics of non-crossing trees and plants

Let n ≥ 2 be an integer. Consider the set of vertices of a regular polygon with
n + 1 sides. One of these sides will be placed at the bottom and called the
base side. The other sides are then numbered from 1 to n from left to right.
A diagonal is a line segment drawn between any two vertices of the regular
polygon. Two diagonals are crossing if they are distinct and meet at some
point in the interior of the convex polygon.

An non-crossing plant consists of two disjoint subsets of the set of diago-
nals: the set of numerator diagonals (pictured dashed and red) and the set of
denominator diagonals (pictured plain and black) with the following properties:

• any two diagonals in the union of these subsets are non-crossing,

• the simplicial complex made by the denominator diagonals is connected
and contains all vertices,

• any numerator diagonal is contained in a closed cycle of denominator
diagonals,

• any closed cycle of denominator diagonals contains exactly one numerator
diagonal.

In the sequel, a diagonal will always mean implicitly a denominator diagonal,
unless explicitly stated otherwise. Note that a side can only be a denominator
diagonal.

Let us call based non-crossing plant a non-crossing plant that includes the
base side of the regular polygon.

If there is no numerator diagonal, then a non-crossing plant is a non-crossing
tree, i.e. a maximal set of pairwise non-crossing diagonals whose union is a
connected and simply connected simplicial complex (i.e. a tree).

Non-crossing trees and based non-crossing trees are well-known combinato-
rial objects, see [Noy98] for example. Non-crossing plants seem not to have been
considered before. Fig. 2 displays a based non-crossing tree on the left and a
non-crossing plant on the right.

We need a precise recursive description of non-crossing plants. One has to
distinguish three sorts of them, as depicted in Fig. 3.

The first kind (I) is when the plant is based and the base side is contained
in a cycle of denominator diagonals, necessarily of length at least 4, as it must
contain a numerator diagonal. For each other diagonal in this cycle, one can

11
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Figure 3: the 3 sorts of non-crossing plants

consider diagonals that are in the connected region (the one not containing the
inner part of the cycle) between this diagonal and the boundary of the regular
polygon. This defines a based non-crossing plant. Conversely, one can pick any
list of length at least 3 of based non-crossing plants and put them on the sides
of a closed cycle containing the base side and choose a numerator diagonal in
this cycle.

The second kind (II) is when the plant is based, but the base side is not
contained in a cycle of diagonals. Then there exists a unique side which is not
in the plant and which bounds the same region as the base side. To the left and
to the right of the square formed by this side and the base side, one can define
two non-crossing plants. This also includes some degenerate cases, where one
or both sides are empty. In these cases, the square becomes a triangle or just
the base side and there is only one associated non-crossing plant (on the left or
on the right) or none.

The third and last kind (III) is when the plant is not based. Consider the
unique cycle (of length at least 3) that would be created by adding the base side.
Just as in kind (I), one can define, by looking at the outer regions bounded by
this cycle, a list of based non-crossing plants of length at least 2.

Let us now translate this trichotomy in terms of generating series and sketch
the enumeration of non-crossing plants. We will use the generating series

P =
∑

n≥1

pnx
n = x+ 3x2 + 14x3 + 80x4 + . . . , (44)

and
Q =

∑

n≥1

qnx
n = x+ 2x2 + 9x3 + 51x4 + . . . , (45)

where pn (resp. qn) is the number of non-crossing plants (resp. based non-
crossing plants) in the regular polygon with n+ 1 sides.

A non-crossing plant is either based or not. If it is not, it is of kind (III) and
can be described using a list (of length greater than 2) of based non-crossing
plants. Hence one has

P = Q+ (Q2/(1 −Q)) = Q/(1 −Q). (46)

For a based non-crossing plant, either its base side is contained in a cycle or
not. In the first case, it is of kind (I) and can be described using a list (of length
k at least 3) of based non-crossing plants and the choice of an inner diagonal in

12



a cycle of length k+1. In the second case, it is of type (II) and can be described
by a pair of non-crossing plants or empty sides. Hence one has

Q =
∑

k≥3

(k + 1)(k − 2)

2
Qk + x(1 + P )2. (47)

From these equations, one gets that P satisfies the algebraic relation:

x− P + xP 2 + 2xP + P 2 + P 3 = 0. (48)

Therefore P has a simple functional inverse:

x =
P − P 2 − P 3

(1 + P )2
. (49)

One can remark that this series appear as example (g) in [Lod06].
Let us now introduce the following notions, used in the next section.
A peeling point of a non-crossing plant is a vertex (not in the base side) such

that the only incident diagonals are sides. In Figure 2, the non-crossing plant
on the right has 2 peeling points between sides 3 and 4 and between sides 5 and
6.

Lemma 5.1 There is always at least one peeling point in a non-crossing plant
in the n+ 1 polygon, for n ≥ 2.

Proof. By induction on n ≥ 2. This is true for all 3 non-crossing plants , ,
in a triangle by inspection. Let us distinguish three cases, as before.
(I) The base side belongs to a cycle of diagonals.
If there is something else than the cycle, there is a peeling point by induction

in one of the sub-non-crossing plants bounding the cycle. This gives a peeling
point in the whole non-crossing plant.

If there is just a cycle, one can pick any vertex not in the base and not
contained in the numerator diagonal. This vertex is a peeling point.

(II) The base side is a diagonal, but does not belong to a cycle of diagonals.
One can consider the left or right sub-non-crossing plant, which contains a

peeling point by induction. This provides a peeling point in the full non-crossing
plant.

(III) The base side is not a diagonal.
If there is something else than the would-be cycle (see the description of

kind (III)), there is a peeling point by induction in one of the sub-non-crossing
plants bounding this would-be cycle. This is also a peeling point in the full
non-crossing plant.

If there is just a would-be cycle, one can pick as peeling point any vertex
not in the base.

A border leaf is a peeling point in a based non-crossing tree that has only
one incident side. In Figure 2, there are 3 border leaves between sides 2 and 3,
sides 4 and 5 and sides 6 and 7 in the non-crossing tree on the left.

Lemma 5.2 There is always at least one border leaf in a based non-crossing
tree in the n+ 1 polygon, for n ≥ 2.

13



Proof. By induction on n ≥ 2. This is clear if n = 2, for the based non-crossing
trees and . Assume that n ≥ 3. In any based non-crossing tree, one can
define a left and a right subtree, as the connected components of the tree minus
its base side (every based non-crossing tree is of kind (II) as a non-crossing
plant). At least one of them is not empty. It is enough to prove that there is a
border leaf in one of them. One can therefore assume for instance that only the
right subtree is not empty.

Then consider the leftmost diagonal (other than the base side) emanating
from the right vertex of the base side. Either there is a non-empty non-crossing
tree to its right, hence a border leaf inside it by induction, or it has nothing to
its right (it is a side). In this case, one can build a new non-crossing tree by
shrinking the base side to a point and taking the side to its right as new base
side. By induction, this new non-crossing tree has a border leaf. This implies
that the initial tree has one too.

5.2 The operad of non-crossing plants

Each diagonal is mapped to a linear function in variables u1, . . . , un as follows:
the base side is mapped to u1...n. The other sides are mapped to u1, . . . , un in
the clockwise order. For diagonals which are not sides, one considers the half
plane not containing the base side, with respect to this diagonal. This diagonal
is mapped to the sum of the values of the sides that are in this half-plane.

To each non-crossing plant, one can then associate a rational function in
Mould which is the product of the linear functions associated to its numerator
diagonals divided by the product of the linear functions associated to its de-
nominator diagonals. For instance, for the non-crossing tree in the example of
Fig. 2, one gets

1/ (u1...7u2u2...3u4...7u5u6u6...7) , (50)

and for the non-crossing plant on the right of the same figure,

u1...4/ (u1...6u1u2...4u3...4u4u5u6u7) . (51)

The 3 non-crossing plants in a triangle , and are mapped to 1/(u1u1...2),
1/(u1...2u2) and 1/(u1u2) in Mould.

This mapping from the set of non-crossing plants to Mould is obviously
injective, as one can recover the non-crossing plant from the factorization of its
image. Therefore, we will from now on identify non-crossing plants with their
images in Mould.

One can check, using the the definition of the composition in Mould, that
the set of non-crossing plants is closed under composition. Let us give a combi-
natorial description of the composition of non-crossing plants. Given two non-
crossing plants f and g in some regular polygons and a side i of the polygon
containing f , one has to define a new non-crossing plant in the grafted polygon
as in Fig 4. This is simply the union of f and g, with some modification along
the grafting diagonal. If this diagonal is present in both f and g, then it is kept
in f ◦i g. If it is present in exactly one of f and g, then it is not kept in f ◦i g.
If it is present in neither f or g, then it becomes a numerator diagonal in f ◦i g.

Theorem 5.3 The non-crossing plants form a suboperad NCP in the category
of sets, which is contained in the image of Dend. This operad has the following

14
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Figure 4: grafting of non-crossing plants: deformation of polygons

presentation: three generators , and , subject only to the relations:

◦2 = ◦1 , (52)

◦1 = ◦2 , (53)

◦1 = ◦2 , (54)

◦2 = ◦1 . (55)

Proof. The inclusion in the image of Dend will follow from the presentation by
generators and relations, with generators , and that are the images of
the elements , and + of Dend in Mould.

There remains to prove the presentation. Let us define an operad NCP′ by
the presentation above, with , and replaced by symbols L, R and M .
As the relations are satisfied in NCP, there is a unique morphism of operads ∇
from NCP′ to NCP sending the generators L, R and M to , and . Let
us prove by induction that there is an inverse ∆ to ∇.

Note that, whenever this makes sense, ∆ is of course a morphism of operads.
The existence of ∆ is clear for n = 2. Assume that n ≥ 3 and let T be in NCP(n).
By Lemma 5.1, there is a peeling point in the non-crossing plant T . Let i be
the index of the side of the polygon which is left to this leaf. Then T can be
written S ◦i δ where δ is either , or and S ∈ NCP(n− 1).

Let us define
∆(T ) = ∆(S) ◦i ∆(δ). (56)

One has to prove that this definition does not depend on the choice of the
peeling point. Let us assume that there is another peeling point. Without
further restriction, one can assume that it is at the right of side j with i < j.
Thus T can also be written S′ ◦j δ

′ where δ′ is either , or and S′ ∈
NCP(n− 1). One then has to distinguish two cases.

Far case

If i + 1 < j, then there is still a peeling point in S′ at the right of edge i,
hence there exists S′′ ∈ NCP(n− 2) such that T can be written as

S′ ◦j δ
′ = (S′′ ◦i δ) ◦j δ

′ = (S′′ ◦j−1 δ
′) ◦i δ = S ◦i δ, (57)

where the second equality is an axiom of operads. This implies that both choices
of peeling point in T leads to the same value for ∆(T ):

∆(S′) ◦j ∆(δ′) = (∆(S′′) ◦i ∆(δ)) ◦j ∆(δ′)

= (∆(S′′) ◦j−1 ∆(δ′)) ◦i ∆(δ) = ∆(S) ◦i ∆(δ). (58)

Near cases
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If i+1 = j, then one can distinguish 4 cases. Either all three sides i, i+1, i+2
are diagonals, or just two of them are. The other possibilities are excluded by
the second condition in the definition of non-crossing plants.

Let us consider the first case. Necessarily T can be written, for some S′′ ∈
NCP(n− 2), as

(S′′ ◦i ) ◦i+1 = S′′ ◦i ( ◦2 ) = S′′ ◦i ( ◦1 ) = (S′′ ◦i ) ◦i . (59)

This implies that both choices of peeling point give the same value for ∆(T ):

∆(S′′◦i )◦i+1M = (∆(S′′)◦iM)◦i+1M = (∆(S′′)◦iM)◦iM = ∆(S′′◦i )◦iM,
(60)

where the middle equality follows from relation (53) for the generators L, R and
M .

The three other cases are similar to this one, each one of them using one of
the relations (52), (54) and (55) for the generators L, R and M .

Hence ∆ is well-defined. Then, one has for all T in NCP(n),

∇(∆(T )) = ∇(∆(S) ◦i ∆(δ)) = S ◦i δ = T, (61)

by induction hypothesis and because ∇ is a morphism of operad. Let x be in
NCP′(n). Then x can written y◦id for some y in NCP′(n−1) and d ∈ {L,R,M}.
Then

∆(∇(x)) = ∆(∇(y) ◦i ∇(d)) = ∆(∇(y)) ◦i ∆(∇(d)) = y ◦i d = x. (62)

Here for the computation of ∆ we choose the peeling point corresponding to
∇(d). We have proved that ∆ is the inverse of ∇ up to order n. This concludes
the induction step.

Remark 5.4 By adding the opposite of each non-crossing plant, one can get
an anticyclic operad in the category of sets. The cyclic action is just given by
the rotation of the regular polygon, up to sign.

5.3 The operad of based non-crossing trees

It is not hard to see, using the combinatorial description of the composition
given above, that based non-crossing trees are closed under composition.

Proposition 5.5 The suboperad of NCP generated by and is exactly the
suboperad of based non-crossing-trees. These generators are only subject to the
relation (52).

Proof. As and are based non-crossing trees, the operad they generate is
contained in the suboperad of non-crossing trees.

To prove the reverse inclusion, one proceeds by induction. By Lemma 5.2,
there is a border leaf in any non-crossing tree T . Let i be the index of the side
of the polygon which is left to this leaf of T . Then T can be written S ◦i δ where
δ is either or and S is a smaller based non-crossing tree. This implies the
inclusion in the suboperad generated by and .

The presentation is a consequence of that of the bigger operad NCP.
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From results of Loday in [Lod02], one can deduce that

Proposition 5.6 For any non-crossing plant T of degree n, the inverse image
of T in Dend is a sum without multiplicities in Dend(n) and can therefore be
considered as a subset of Y(n).

We would like to draw the attention on the following conjecture, which has
been checked in low degrees. Recall that the Tamari poset [FT67] is a partial
order on the set Y(n) which indexes a basis of Dend(n).

Conjecture 5.7 For any non-crossing tree T of degree n (not necessarily based)
in Mould, the inverse image of T in Dend is

∑

t∈I

t, (63)

where I is some interval in the Tamari poset Y(n).

6 Other structures

Let us consider some other operations on the free Mould algebra on one gener-
ator.

6.1 Over and Under operations

Loday and Ronco have introduced in [LR02] two other associative products
on the free dendriform algebra on one generator, called Over and Under and
denoted by / and \. They are usually defined as simple combinatorial operations
on planar binary trees, but can be restated using the Dendriform operad as
follows:

f/g = (g ◦1 ) ◦1 f (64)

and
f\g = (f ◦m ) ◦m+1 g, (65)

where f is assumed to be of degree m. One can use this to extend these opera-
tions to the free Mould algebra on one generator. Explicitly, restated inside the
Mould operad, these products are given by

(f/g)(u1, . . . , um+n) = f(u1, . . . , un)g(u1...n+1, un+2, . . . , um+n) (66)

and

(f\g)(u1, . . . , um+n) = f(u1, . . . , un−1, un...m+n)g(un+1, . . . , um+n). (67)

6.2 Structures associated to the operad structure

The fact that Mould is an operad implies that one can define other operations on
the free Mould algebra on one generator, namely a pre-Lie product ◦ (not to be
confused with the one introduced before and denoted by x) and the associated
Lie bracket and group law.
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The pre-Lie product ◦ is defined for f ∈ Mould(m) and g ∈ Mould(n) by

f ◦ g =

m
∑

i=1

f ◦i g. (68)

More explicitly, f ◦ g is given by

m
∑

i=1

f(u1, . . . , ui−1, ui...i+n−1, ui+n, . . . , um+n−1)g(ui, . . . , ui+n−1)ui...i+n−1.

(69)
This construction is clearly functorial from the category of operads to the

category of pre-Lie algebras. Note that the product f ◦g is in Mould(m+n−1).

Theorem 6.1 The pre-Lie product ◦ preserves alternality, that is f ◦ g is al-
ternal as soon as f and g are.

Proof. Let f be in Mould(m) and g ∈ Mould(n). Let us fix j ∈ {1, . . . ,m +
n− 2}. One has to check that

∑

σ∈Sh(j,m+n−1−j)

(f ◦ g)(uσ(1), . . . , uσ(m+n−1)) = 0. (70)

The sum to be computed is

m
∑

i=1

∑

σ∈Sh(j,m+n−1−j)

f(uσ(1), . . . , uσ(i) + · · · + uσ(i+n−1), . . . , uσ(m+n−1))

g(uσ(i), . . . , uσ(i+n−1))(uσ(i) + · · · + uσ(i+n−1)). (71)

Let us introduce the sets E′ = {σ(1), . . . , σ(i − 1)} of cardinal i− 1 and E′′ =
{σ(i+n), . . . , σ(m+n−1)} of cardinalm−i. They have the following properties:

• E′ ∩ {1, . . . , j} is an initial subset of {1, . . . , j},

• E′ ∩ {j + 1, . . . ,m+ n− 1} is an initial subset of {j + 1, . . . ,m+ n− 1},

• E′′ ∩ {1, . . . , j} is a final subset of {1, . . . , j},

• E′′ ∩ {j + 1, . . . ,m+ n− 1} is a final subset of {j + 1, . . . ,m+ n− 1}.

Let E = {σ(i), . . . , σ(i+ n− 1)} be the complement of E′ ∪E′′. It follows from
the conditions above that E ∩ {1, . . . , j} and E ∩ {j + 1, . . . ,m + n − 1} are
sub-intervals.

Using standard properties of the set of shuffles, and the shorthand notation
uσ introduced at the end of §1, one can then rewrite the previous sum as

m
∑

i=1

∑

E′,E′′

∑

σ′,σ′′

f(uσ′ ,
∑

k∈E

uk, uσ′′)
∑

ν

g(uµ)

(

∑

k∈E

uk

)

, (72)

where E′ of cardinal i− 1 and E′′ of cardinal m− i are subsets with the above
properties, σ′ is a shuffle of E′ ∩ {1, . . . , j} and E′ ∩ {j + 1, . . . ,m+ n− 1}, σ′′

is a shuffle of E′′ ∩ {1, . . . , j} and E′′ ∩ {j + 1, . . . ,m+ n− 1} and ν is a shuffle
of E ∩ {1, . . . , j} and E ∩ {j + 1, . . . ,m+ n− 1}.
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Using the alternality of g, one can see that the sum reduces to the cases
when E ⊂ {1, . . . , j} or E ⊂ {j + 1, . . . ,m+ n − 1}. Let us show that each of
these two terms vanishes. As the proof is similar, we treat only the case when
E ⊂ {1, . . . , j}. In this case, there exists k such that E = {k, . . . , k + n − 1}.
The corresponding term is

m
∑

i=1

∑

E′,E′′

∑

σ′,σ′′

f(uσ′ , uk...k+n−1, uσ′′)g(uk, . . . , uk+n−1)uk...k+n−1, (73)

where E′ and E′′ runs over the appropriate sets.
Once again by the usual properties of shuffles, this can be rewritten as

∑

k

g(uk, . . . , uk+n−1)(uk...k+n−1)
∑

µ

f(uµ), (74)

where 1 ≤ k ≤ k+n−1 ≤ j and µ is a shuffle of {1, . . . , k − 1, (k . . . k + n− 1), k + n, . . . , j}
and {j + 1, . . . ,m + n − 1}, with the abuse of notation made in considering
(k . . . k + n− 1) as an index. This sum is zero because f is alternal.

Proposition 6.2 If f and g are vegetal, then so is f ◦ g.

Proof. One has to compute

∑

σ∈Sm+n−1

m
∑

i=1

f(t uσ(1), . . . , t(uσ(i) + · · · + uσ(i+n−1)), . . . , t uσ(m+n−1))

u1 . . . um+n−1g(t uσ(i), . . . , t uσ(i+n−1))t (uσ(i) + · · · + uσ(i+n−1)). (75)

Let us introduce the set E = {σ(i), . . . , σ(i+ n− 1)}. One can then rewrite the
previous sum as

u1 . . . um+n−1 t
∑

E

(
∑

j∈E

uj)

m
∑

i=1

∑

σ′

f(t uσ′(1), . . . , t(
∑

j∈E

uj), . . . , t uσ′(m+n−1))

∑

σ′′

g(t uσ′′(i), . . . , t uσ′′(i+n−1)), (76)

where E runs over the set of subsets of cardinal n of {1, . . . ,m+ n− 1}, σ′ is a
bijection from {1, . . . , i − 1} ⊔ {i+ n, . . . ,m + n − 1} to the complement of E
and σ′′ is a bijection from {i, . . . , i+ n− 1} to E.

Using first the vegetal property of g, one gets

u1 . . . um+n−1t
∑

E

∑

j∈E uj
∏

j∈E uj

m
∑

i=1

∑

σ′

f(t uσ′(1), . . . , t





∑

j∈E

uj



 , . . . , t uσ′(m))

n!g(t, . . . , t). (77)

Then, this can be rewritten as

n!tg(t, . . . , t)
∑

E





∑

j∈E

uj





∑

θ

f(t θ(1), . . . , t θ(m))
∏

j 6∈E

uj. (78)
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where θ is a bijection from {1, . . . ,m} to {uj}j 6∈E ⊔ {
∑

j∈E uj}. By using the
vegetal property of f , this becomes

n!

(

m+ n− 1

n

)

m!f(t, . . . , t)g(t, . . . , t)t. (79)

Using once again the vegetal property of f in the special case u1 = n and
u2 = · · · = um = 1, one gets

(m+ n− 1)!

m
∑

i=1

f(t, . . . , nt, . . . , t) g(t, . . . , t)nt, (80)

which is (m+ n− 1)!(f ◦ g)(t, . . . , t). Hence f ◦ g is vegetal.

6.3 Forgetful morphism to formal vector fields

The aim of this section is to define a map F of pre-Lie algebras from moulds
satisfying appropriate conditions to formal power series in one variable x, or
rather to formal vector fields.

Let us consider here only moulds f such that fn is homogeneous of weight
−n and has only poles at some ui...j with arbitrary multiplicity (nice poles).
From Remarks 2.2 and 2.4, this subspace is a anticyclic suboperad, hence it is
closed for ◦ by functoriality. Let us consider its intersection with the subspace
of vegetal moulds, which is also closed for ◦ by Prop. 6.2. Let us note that this
intersection contains the image of Dend by Prop. 4.1 and Prop. 3.2.

Let us recall that the usual pre-Lie product, also denoted by ◦, on vector
fields is given by

F (x)∂x ◦G(x)∂x = (∂xF (x))G(x)∂x. (81)

Theorem 6.3 The substitution ui 7→ 1/x induces a morphism F of pre-Lie al-
gebras f 7→ f(x−1, . . . , x−1)∂x from Mould (restricted as above to homogeneous
vegetal moulds with nice poles) with the pre-Lie product ◦ to the pre-Lie algebra
of vector fields in the variable x with formal power series in x as coefficients.

Proof. Let f ∈ Mould(m) and g ∈ Mould(n) satisfying the additional condi-
tions stated before. One has to prove that

∂xf(x−1, . . . , x−1)g(x−1, . . . , x−1)

=

m
∑

i=1

nx−1f(x−1, . . . , nx−1, . . . , x−1)g(x−1, . . . , x−1), (82)

where we have used the assumed shape of the poles of f and g to ensure that
the substitution makes sense. It is therefore enough to prove that

x∂xf(x−1, . . . , x−1) =

m
∑

i=1

nf(x−1, . . . , nx−1, . . . , x−1). (83)

From the homogeneity of f , one has to prove that

mf(x−1, . . . , x−1) =
m
∑

i=1

nf(x−1, . . . , nx−1, . . . , x−1), (84)
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which is a special case of the vegetal property of f , with t = x−1, u1 = n and
u2 = · · · = um = 1.

As the group law associated to the usual pre-Lie product on formal power
series is the classical composition of power series, one can see the group structure
on moulds corresponding to ◦ as some kind of generalized composition.

Remark 6.4 From (3), it is quite obvious that the associative product MU is
mapped by F to the usual commutative product of formal power series.

6.4 Derivation

Let us introduce a map ∂ on moulds, which decreases the degree by 1.
For a mould f ∈ Mould(m), ∂f is the element of Mould(m− 1) defined by

∂f(u1, . . . , um−1) =

m
∑

j=1

Rest=0 f(u1, . . . , uj−1, t, uj, . . . , um−1), (85)

where Res is the residue.
The main motivation for this map is the following property.

Proposition 6.5 The map ∂ is sent by the forgetful map F to the partial
derivative with respect to x, i.e. for any f ∈ Mould(m) which is homogeneous,
vegetal and has nice poles, one has F (∂f) = ∂xF (f).

Proof. Let f ∈ Mould(m). By homogeneity, F (f) = f(x−1, . . . , x−1) =
xmf(1, . . . , 1). Hence ∂xF (f) = mxm−1f(1, . . . , 1).

On the other hand, F (∂f) is

Rest=0

m
∑

j=1

f(x−1, . . . , t, . . . , x−1), (86)

where t is in the jth position. By the vegetal property of f , this is

Rest=0m
xm−1

t
f(1, . . . , 1). (87)

This proves the expected equality.

Remark 6.6 If f is alternal and of degree at least 2, then ∂f = 0. This is
obvious once the definition of ∂ is rewritten as the residue of a sum over shuffles
of t with {u1, . . . , um−1}.

Proposition 6.7 The map ∂ is a derivation for the products ≺,≻,x, MU and
LIMU. It is also a derivation for ◦, under the restriction that functions have
nice poles.

Proof. It is enough to prove this for ≻ and ◦. The case of ≺ is similar to the
case of ≻ and the other cases can be deduced from these ones.
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Let us consider the case of ≻. Let f ∈ Mould(m) and g ∈ Mould(n). One
has to compute

m
∑

j=1

Rest=0

(

f(u1, . . . , t, uj, . . . , um−1)g(um, . . . , um+n−1)
um...m+n−1

u1...m+n−1 + t

)

+

m+n
∑

j=m+1

Rest=0

(

f(u1, . . . , um)g(um+1, . . . , t, uj, . . . , um+n−1)
um+1...m+n−1 + t

u1...m+n−1 + t
.

)

.

(88)

By the properties of the residue, this becomes

m
∑

j=1

Rest=0 (f(u1, . . . , t, uj, . . . , um−1)) g(um, . . . , um+n−1)
um...m+n−1

u1...m+n−1
+

m+n
∑

j=m+1

f(u1, . . . , um)Rest=0 (g(um+1, . . . , t, uj, . . . , um+n−1))
um+1...m+n−1

u1...m+n−1
.

(89)

This is ∂f ≻ g + f ≻ ∂g, which proves that ∂ is a derivation of ≻.
Let us now consider the case of ◦. One has to compute

m
∑

i=1

i−1
∑

j=1

Rest=0(f(u1, . . . , t, uj, . . . , ui−2, ui−1...i+n−2, ui+n−1, . . . , um+n−2)

g(ui−1, . . . , ui+n−2)ui−1...i+n−2)+

m
∑

i=1

i+n−1
∑

j=i

Rest=0(f(u1, . . . , ui−1, ui...i+n−2+t, ui+n−1, . . . , um+n−2)

g(ui, . . . , t, uj, . . . , ui+n−2)(ui...i+n−2 + t))+

m
∑

i=1

m+n−1
∑

j=i+n

Rest=0(f(u1, . . . , ui−1, ui...i+n−1, ui+n, . . . , t, uj, . . . , um+n−2)

g(ui, . . . , ui+n−1)ui...i+n−1). (90)

By the properties of residues, and the assumption that f and g have nice poles,
this becomes

m
∑

i=1

i−1
∑

j=1

Rest=0 (f(u1, . . . , t, uj, . . . , ui−2, ui−1...i+n−2, ui+n−1, . . . , um+n−2))

g(ui−1, . . . , ui+n−2)ui−1...i+n−2+

m
∑

i=1

m+n−1
∑

j=i+n

Rest=0 (f(u1, . . . , ui−1, ui...i+n−1, ui+n, . . . , t, uj, . . . , um+n−2))

g(ui, . . . , ui+n−1)ui...i+n−1+

m
∑

i=1

i+n−1
∑

j=i

f(u1, . . . , ui−1, ui...i+n−2, ui+n−1, . . . , um+n−2)

Rest=0 (g(ui, . . . , t, uj , . . . , ui+n−2)) ui...i+n−2. (91)
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The first two terms give ∂f ◦ g and the third one gives f ◦ ∂g.

As a corollary of Prop. 6.7, the map ∂ preserves the image by ψ of the free
Dendriform algebra on one generator. One can be more precise: the action of
∂ is by vertex-removal, in the following sense. From the description of ψ(T ) for
a planar binary tree T in Prop. 3.2, one can see that taking the residue with
respect to one of the variables and then renumbering correspond to the removal
of a top vertex in T . Hence ∂ψ(T ) is the sum over all top vertices of T of the
image by ψ of some smaller binary tree.

6.5 The products ARIT and ARI

Let us define two other bilinear products on the free Mould algebra on one
generator, denoted by ARIT and ARI:

ARIT(f, g) = f ◦ (g/Y ) − f ◦ (Y \g) (92)

and
ARI(f, g) = ARIT(f, g) − ARIT(g, f) + LIMU(f, g). (93)

One can check, by writing the explicit expression for these products, that
they do indeed reproduce the ARIT and ARI maps introduced by Ecalle in
his study of moulds. In particular, it is known that ARI is a Lie bracket that
preserves alternality. Note that we have defined as ARIT(f, g) what Ecalle
denotes by ARIT(g)f .

Lemma 6.8 There holds ∂(f/Y ) = (∂f)/Y and ∂(Y \f) = Y \(∂f).

Proof. Let us consider only the first case, the other one being similar. Let
f ∈ Mould(n). As

f/Y = ◦1 f =
1

u1...n+1
f(u1, . . . , un), (94)

one has to compute

n
∑

i=1

Rest=0
1

u1...n + t
f(u1, . . . , ui−1, t, ui, . . . , un−1)+Rest=0

1

u1...n + t
f(u1, . . . , un).

(95)
The second term vanishes, and what remains is

1

u1...n

n
∑

i=1

Rest=0 f(u1, . . . , ui−1, t, ui, . . . , un−1), (96)

which is exactly (∂f)/Y .

Corollary 6.9 The map ∂ is a derivation for ARIT and ARI.

Proof. As ∂ is a derivation of ◦ by Prop. 6.7, one has

∂(ARIT(f, g)) = ∂(f) ◦ (g/Y ) + f ◦ ∂(g/Y )− ∂(f) ◦ (Y \g)− f ◦ ∂(Y \g). (97)

One can then conclude for ARIT using Lemma 6.8. The proof for ARI follows
from this and from Prop. 6.7.
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Let us now state some properties of the ARI and ARIT products.

Proposition 6.10 The free dendriform algebra in Mould is closed under ARIT
and ARI. The products ARIT and ARI preserves the vegetal property.

Proof. For the first statement, it is enough to look at the definition of ARIT.
One already knows that the Over and Under operations are defined on the
dendriform subspace. The product ◦ has the same property, because it is a
functorial construction on operads.

Let us prove the second statement. It is enough to prove this for ARIT, by
Prop. 4.2. As this property is already known for ◦ by Prop. 6.2, it is enough
to prove that f/Y and Y \f are vegetal if f is so. Let us consider only the first
case, as the other one is just the same.

Let f be in Mould(n). One has to compute

∑

σ∈Sn+1

f(uσ(1), . . . , uσ(n))
1

u1...n+1 t
. (98)

One can separate the sum according to the value of σ(n+ 1), obtaining

1

u1...n+1 t

n+1
∑

i=1

∑

σ′

f(uσ′(1), . . . , uσ′(n)), (99)

where σ′ runs over the bijections from {1, . . . , n} to {1, . . . , n+ 1} \ {i}. Using
then the vegetal property of f , this becomes

1

u1...n+1 t

n+1
∑

i=1

ui

u1 . . . un+1
n!f(t, . . . , t). (100)

This gives
f(t, . . . , t)(n+ 1)!

u1 . . . un+1 (n+ 1) t
, (101)

which proves the expected vegetal property.

7 Examples of moulds

Let us describe the image in Mould of some special and nice elements of Dend.

Let AS be the mould defined by ASn = 1/(u1 . . . un). The components of
this mould provide the basis of the Associative suboperad. Hence it is in the
image of the Dendriform operad in the Mould operad. On the other hand, it is
known that the basis of the Associative suboperad of the Dendriform operad is
given by the sum of all planar binary trees. Hence, one has

ASn = ψ





∑

t∈Y(n)

T



 =
1

u1 . . . un

. (102)

On can note that the image by F of the mould AS is x/(1 − x).
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Let us say that a planar binary tree is of type (p,q) if its left subtree has
p+ 1 leaves and its right subtree has q+ 1 leaves. The sum over binary trees of
type (p,q) is

up

u1 . . . un(u1...n)
. (103)

This is an easy consequence of the previous result, using for instance the Over
and Under products.

Let TY be the mould defined by

TYn =

∑n
i=1 t

i−1ui

u1 . . . unu1...n

, (104)

with a parameter t. By the preceding discussion, the mould TY is also in the
image of the Dendriform operad. The image of TY by F is

1

1 − t
log

(

1 − tx

1 − x

)

. (105)

Another interesting mould has the following components:

∑n
i=1 i ui

u1 . . . unu1...n

. (106)

By the same argument as above, this mould belongs to the image of the Den-
driform operad. This mould should be related to the series indexed by planar
binary trees considered in [Cha06]. Its image by F is

x(2 − x)

2(1 − x)2
. (107)

One can also compute the image of the Connes-Moscovici series. Let us first
recall its definition. In the free pre-Lie algebra on one generator, where the
product is denoted by x, let CM1 be the generator and let

CMn = CMn−1 x CM1. (108)

One can consider these objects as elements of the free dendriform algebra
on one generator, endowed with the pre-Lie product x. It follows from Prop.
4.3 that these elements are alternal.

Proposition 7.1 One has

ψ(CMn) =
1

u1 . . . unu1...n

n
∑

k=1

(−1)n+k

(

n

k

)

uk. (109)

The image of ψ(CM) by F is x.

Proof. The proof is by induction. By definition of the pre-Lie operation x in
the Dendriform operad, one has

CMn+1 = ◦2 CMn − ◦1 CMn. (110)

25



Hence, in Mould, one gets

ψ(CMn+1) =
1

u1u1...2
◦2 ψ(CMn) −

1

u1...2u2
◦1 ψ(CMn). (111)

Explicitly, ψ(CMn+1) is given by

u2...n+1

u1u1...n+1
ψ(CMn)(u2, . . . , un+1) −

u1...n

u1...n+1un+1
ψ(CMn). (112)

Then one can use the addition rule for binomial coefficients and the induction
hypothesis.

Another interesting and natural mould PO has the following components:

POn =

∏n
i=2 u1...i−1 + t ui

u1

∏n

i=2(uiu1...i)
, (113)

with a parameter t. This mould also belongs to the image of the Dendriform
operad, as it satisfies the following equation:

POn+1 = tPOn ≻ 1/u1 + POn ≺ 1/u1. (114)

Obviously, its image by F is given by the well-known exponential generating
series for the Stirling numbers of the first kind:

(1 − x)−t − 1

t
. (115)

8 Relation with quivers and tilting modules

There is a nice relationship with the theory of tilting modules for the equi-
oriented quivers of type A (in the classical list of simply-laced Dynkin diagrams).
Some properties of this special case may be true in the general case of a Dynkin
quiver.

Let Q be the equi-oriented quiver of type An. It is known by a theorem of
Gabriel that there is a bijection between indecomposable modules for Q and
positive roots for the root system of type An. These positive roots are the sums
αi + · · · + αj for 1 ≤ i ≤ j ≤ n, where α1, . . . , αn are the simple roots. There
is an obvious bijection dim from the set of positive roots to the set of linear
functions ui...j for 1 ≤ i ≤ j ≤ n, which is induced by the bijection αi 7→ ui.

A tilting module T for the quiver Q is a direct sum of n pairwise non-
isomorphic indecomposable modules such that T has no self-extension. One can
therefore describe a tilting module T as a set of positive roots, satisfying some
condition. Taking the inverse of the product over the corresponding set of linear
functions in the variables u, one gets a rational function ψ(T ) for each tilting
module T . One can check that this set of rational functions is exactly the image
in Mould of the set of planar binary trees in Dend by the operad morphism ψ.
This gives a natural bijection between tilting modules and planar binary trees.

By this correspondence between tilting modules and trees, the action of
the anticyclic rotation τ on the vector space Dend(n) is mapped to the action
induced on the set of roots by the Auslander-Reiten functor on the derived
category of the quiver Q.
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On the other hand, the action of the anticyclic rotation τ on the vector space
Dend(n) has been related in [Cha05b] to the square of the Auslander-Reiten
translation for the derived category of the Tamari poset, which is a classical
partial order on the set of planar binary trees. The Tamari poset also has a
very natural interpretation in the setting of tilting modules, as a special case of
the natural partial order defined by Riedtmann and Schofield [RS91] on the set
of tilting modules of a finite-dimensional algebra.

One can try and generalize this to any quiver Q of finite Dynkin type, that is
any quiver whose underlying graph is a Dynkin diagram of type A, D or E. The
theorem of Gabriel still holds, hence there is a bijection between indecomposable
modules and positive roots. One can similarly map positive roots to linear
functions in variables u using the decomposition in the basis of simple roots.
For an indecomposable module M , the corresponding linear function is

dim(M) =
n
∑

i=1

dimMi ui. (116)

There is a finite set of tilting modules for Q. One can, just as above, define
a rational function for each tilting module T , as the inverse of the product of
the linear functions over the summands of T . For a tilting module T = ⊕jMj,
one gets

ψ(T ) = 1/
∏

j

dim(Mj) (117)

Then, one can ask the following questions:
Question 1: are the functions ψ(T ) for all tilting modules T linearly inde-

pendent ?
Let VQ be the vector space spanned by the ψ(T ) for all tilting modules T .
Question 2: is VQ stable by the action induced by the action of the Auslander-

Reiten translation τ for Q on the set of positive roots ?
Question 3: if so, is this action of the Auslander-Reiten translation for Q

related to the Auslander-Reiten translation for the poset of tilting modules for
Q defined by Riedtmann and Schofield [RS91, HU05].

Let us note a result in the same spirit, that we have learned from L. Hille
[Hil06]: for any Dynkin quiver Q, one has

∑

T

ψ(T ) = 1/u1 . . . un, (118)

where the sum runs over the set of isomorphism classes of tilting modules. This
identity comes from a fan related to tilting modules.
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de treillis finis induite par une loi demi-associative. J. Combinatorial
Theory, 2:215–242, 1967.

[Hil06] L. Hille. On the volume of a tilting module. preprint, 2006.

[HU05] D. Happel and L. Unger. On a partial order of tilting modules. Algebr.
Represent. Theory, 8(2):147–156, 2005.

[Lod06] J.-L. Loday. Inversion of integral series enumerating planar trees.
Sém. Lothar. Combin., 53:Art. B53d, 16 pp. (electronic), 2004/06.

[Lod01] J.-L. Loday. Dialgebras. In Dialgebras and related operads, volume
1763 of Lecture Notes in Math., pages 7–66. Springer, Berlin, 2001.

[Lod02] J.-L. Loday. Arithmetree. J. Algebra, 258(1):275–309, 2002. Special
issue in celebration of Claudio Procesi’s 60th birthday.

[LR98] J.-L. Loday and M. O. Ronco. Hopf algebra of the planar binary trees.
Adv. Math., 139(2):293–309, 1998.

[LR02] J.-L. Loday and M. O. Ronco. Order structure on the algebra of
permutations and of planar binary trees. J. Algebraic Combin.,
15(3):253–270, 2002.

[LR04] J.-L. Loday and M. O. Ronco. Trialgebras and families of polytopes.
In Homotopy theory: relations with algebraic geometry, group coho-
mology, and algebraic K-theory, volume 346 of Contemp. Math., pages
369–398. Amer. Math. Soc., Providence, RI, 2004.

[Mar99] M. Markl. Cyclic operads and homology of graph complexes. Rend.
Circ. Mat. Palermo (2) Suppl., (59):161–170, 1999. The 18th Winter
School “Geometry and Physics” (Srńı, 1998).
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