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GROUPOIDS AND AN INDEX THEOREM FOR CONICAL

PSEUDO-MANIFOLDS

CLAIRE DEBORD, JEAN-MARIE LESCURE, AND VICTOR NISTOR

Abstract. We define an analytical index map and a topological index map
for conical pseudomanifolds. These constructions generalize the analogous
constructions used by Atiyah and Singer in the proof of their topological in-
dex theorem for a smooth, compact manifold M . A main new ingredient in
our proof is a non-commutative algebra that plays in our setting the role of
C0(T ∗M). We prove a Thom isomorphism between non-commutative alge-
bras which gives a new example of wrong way functoriality in K-theory. We
then give a new proof of the Atiyah-Singer index theorem using deformation
groupoids and show how it generalizes to conical pseudomanifolds. We thus
prove a topological index theorem for conical pseudomanifolds.
2000 Mathematics Subject Classification : 46L80, 58B34, 19K35, 19K58,
58H05.
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Introduction

Let V be a closed, smooth manifold and let P be an elliptic pseudo-differential
operator acting between Sobolev spaces of sections of two vector bundles over V .
The ellipticity of P ensures that P has finite dimensional kernel and cokernel. The
difference

IndP := dim(KerP )− dim(CokerP )

is called the Fredholm index of P and turns out to depend only on the K-theory
class [σ(P )] ∈ K0(T ∗V ) of the principal symbol of P (we always use K-theory with
compact supports). Since every element in K0(T ∗V ) can be represented by the
principal symbol of an elliptic pseudo-differential operator, one obtains in this way
a group morphism

(0.1) IndV
a : K0(T ∗V ) −→ Z, IndV

a (σ(P )) = IndP,
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called the analytical index, first introduced by M. Atiyah and I. Singer [2].

At first sight, the map IndV
a seems to depend essentially on the analysis of elliptic

equations, but the main result in [2] is that the index map can be also defined in
a purely topological terms in terms of embedding of V in Euclidean spaces. This
definition in terms on embeddings leads to the so called topological index of Atiyah
and Singer and the main result of [2] is that the topological index map IndV

t and the

Fredholm index map IndV
a coincide. See [17] for review of these results, including

an extension to non-compact manifolds.
The equality of the topological and Fredholm indices then allowed M. Atiyah

and I. Singer to obtain a formula for the index of an elliptic operator P in terms
of the Chern classes of [σ(P )]. Their formula, the celebrated Atiyah-Singer Index
Formula, involves, in addition to the Chern character of the principal symbol of
P , also a universal characteristic class associated with the manifold, the so called
Todd class of the given manifold.

It is a natural and important question then to search for extensions of the Atiyah–
Singer results. It is not the place here to mention all existing generalizations of
the Atiyah-Singer index theory, but let us mention here the fundamental work on
Connes on foliations [20, 21, 22, 23, 24] as well as [7, 32, 54, 55]. The index theorem
for families and Bismut’s superconnection formalism play an important role in the
study of the so called “anomalies” in physics [9, 10, 11, 30]. A different but related
direction is to extend this theory to singular spaces [3]. An important step in the
index problem on singular manifolds was made by Melrose [44, 45] and Schulze
[60, 61] who have introduced the “right class of pseudodifferential operators” for
index theory on singular spaces. See also [1, 29, 28, 43, 53, 62]. Generalizations
of this theory to singular spaces may turn out to be useful in the development of
efficient numerical methods [6].

In this paper, we shall focus on the case of a pseudomanifold X with isolated
conical singularities. In earlier work [27], the first two authors defined a C∗-algebra
AX that is dual to the algebra of continuous functions on X from the point of view
of K-theory (i.e. AX is a “K-dual of X” in the sense of [22, 24, 37]), which implies
that there exists a natural isomorphism

(0.2) K0(X)
ΣX−→ K0(AX)

between the K-homology of X and the K-theory of T SX . The C∗-algebra AX is
the C∗-algebra of a groupoid denoted T SX .

One of the main results in [40], see also [47, 52, 51, 59] for similar results using
different methods, is that the inverse of the map ΣX of Equation (0.2) can be
realized, as in the smooth case, by a map that assigns to each element in K0(AX)
an elliptic operator. Thus elements of K0(AX) can be viewed as the symbols of
some natural elliptic pseudodifferential operators realizing the K-homology of X .
Of course, in the singular setting, one has to explain what is meant by “elliptic
operator” and by “symbol” on X . An example of a convenient choice of elliptic
operator in our situation is an elliptic pseudodifferential operator in the b-calculus
[44, 60] or Melrose’s c-calculus. As for the symbols, the notion is more or less the
same as in the smooth case. On a manifold V , a symbol is a function on T ∗V . For
us, it will be convenient to view a symbol as a pointwise multiplication operator
on C∞

c (T ∗V ). A Fourier transform will allow us then to see a symbol as a family
of convolution operators on C∞

c (TxV ), x ∈ V . Thus symbols on V appear to
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be pseudo-differential operators on the groupoid TV . This picture generalizes then
right away to our singular setting. In particular, it leads to a good notion of symbol
for conical pseudomanifolds and enables us to interpret 0.2 as the principal symbol
map.

In order to better explain our results, we need to introduce some notation. If G
is an amenable groupoid, we let K0(G) denote K0(C

∗(G)). The analytical index is
then defined exactly as in the regular case by

IndX
a : K0(T SX) → Z

[a] 7→ Ind(Σ−1
X (a)),

where Ind : K0(X)→ Z is the usual Fredholm index on compact spaces. Moreover
one can generalise the tangent groupoid of A. Connes to our situation and get a
nice description of the analytical index.

Following the spirit of [2], we define in this article a topological index IndX
t that

generalizes the classical one and which satisfies the equality:

IndX
a = IndX

t .

In fact, we shall see that all ingredients of the classical topological index have a
natural generalisation to the singular setting.

• Firstly the embedding of a smooth manifold into RN gives rise to a normal
bundle N and a Thom isomorphism K0(T ∗V )→ K0(T ∗N). In the singular setting
we embed X into RN , viewed as the cone over RN−1. This gives rise to a conical
vector bundle which is a conical pseudomanifold called the normal space and we
get an isomorphism: K0(T SX)→ K0(T SN). This map restrict to the usual Thom
isomorphism on the regular part and is called again the Thom isomorphism.
• Secondly, in the smooth case, the normal bundle N identifies with an open subset
of RN , and thus provides an excision map K(TN)→ K(TRN). The same is true
in the singular setting : T SN appears to be an open subgroupoid of T SRN so we
have an excision map K0(T SN)→ K0(T SRN ).
• Finally, using the Bott periodicity K0(T ∗RN ) ≃ K0(R2N ) → Z and a natural
KK-equivalence between T S

R
N with TR

N we obtain an isomorphismK0(T S
R

N)→
Z.

As for the usual definition of the topological index, this allows us to define our
generalisation of the topological Indt for conical manifolds.

This construction of the topological index is inspired from the techniques of
deformation groupoids introduced by M. Hilsum and G. Skandalis in [33]. Moreover,
the demonstration of the equality between Inda and Indt will be the same in the
smooth and in the singular setting with the help of deformation groupoids.

We claim that our index maps are straight generalisations of the classical ones.
To make this claim more concrete, consider a closed smooth manifold V and choose
a point c ∈ V . Take a neighborhood of c diffeomorphic to the unit ball in Rn and
consider it as the cone over Sn−1. This provides V with the structure of a conical
manifold. Then the index maps IndS

∗ : K0(T SV ) → Z and Ind∗ : K0(TV ) → Z

both correspond to the canonical map K0(V ) → Z through the Poincaré duality
K0(V ) ≃ K0(T ∗V ) and K0(V ) ≃ K0(T SV ). In other words both notions of indices
coincide trough the KK-equivalence TV ≃ T SV .

We will investigate the case of general stratifications and the proof of an index
formula in forthcoming papers.
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The paper is organized as follows. In Section 1 we describe the notion of con-
ical pseudomanifolds and conical bundles. Section 2 reviews general facts about
Lie groupoids. Section 3 is devoted to the construction of tangent spaces and tan-
gent groupoids associated to conical pseudomanifolds as well as other deformation
groupoids needed in the subsequent sections. Sections 4 and 5 contain the construc-
tion of analytical and topological indices, and the last section is devoted to the proof
of our topological index theorem for conical pseudomanifolds, that is, the proof of
the equality of analytical and topological indices for conical pseudomanifolds.

1. Cones and stratified bundles

We are interested in studying conical pseudomanifolds, which are special exam-
ples of stratified pseudomanifolds of depth one [31]. We will use the notations and
equivalent descriptions given by A. Verona in [64] or used by J.P. Brasselet, G.
Hector and M. Saralegi in [14]. See [35] for a review of the subject.

1.1. Conical pseudomanifolds. If L is a smooth manifold, the cone over L is,
by definition, the topological space

(1.1) cL := L× [0,+∞[/L× {0}.

Thus L × {0} maps into a single point c of cL. We shall refer to c as the singular
point of L. If z ∈ L and t ∈ [0,+∞[ then [z, t] will denote the image of (z, t) in cL.
We shall denote by

ρcL : cL→ [0,+∞[, ρcL([z, t]) := t

the map induced by the second projection and we call it the defining function of
the cone.

Definition 1.1. A conical stratification is a triplet (X, S, C) where

(i) X is a Hausdorff, locally compact, and secound countable space.
(ii) S ⊂ X is a finite set of points, called the singular set of X , such that X◦ :=

X \ S is a smooth manifold.
(iii) C = {(Ns, ρs, Ls)}s∈S is the set of control data, where Ns is an open neigh-

borhood of s in X and ρs : Ns → [0,+∞[ is a surjective continuous map such
that ρ−1

s (0) = s.
(iv) For each s ∈ S, there exists a homeomorphism ϕs : Ns → cLs, called triv-

ialisation map, such that ρcLs
◦ ϕs = ρs and such that the induced map

Ns \ {s} → Ls×]0,+∞[ is a diffeomorphism. Moreover, if s0, s1 ∈ S then
either Ns0 ∩Ns1 = ∅ or s0 = s1.

Let us notice that it follows from the definition that the connected components
of X◦ are smooth manifolds. These connected components are called the regular
strata of X .

Definition 1.2. Two conical stratifications (X, SX , CX) and (Y, SY , CY ) are called
isomorphic if there is an homeomorphism f : X → Y such that:

(i) f maps SX onto SY ,
(ii) f restricts to a smooth diffeomorphism f◦ : X◦ → Y ◦,
(iii) the defining function ρs of any s ∈ SX is equal to ρf(s) ◦ f , where ρf(s) is the

defining function of f(s) ∈ SY (in particular f(Ns) = Nf(s)).
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An isomorphism class of conical stratifications will be called a conical pseudoman-
ifold.

In other words, a conical pseudomanifold is a locally compact, metrizable, second
countable space X together with a finite set of points S ⊂ X such that X◦ = X \ S

is a smooth manifold and one can find a set of control data C such that (X, S, C) is
a conical stratification.

Let M be a smooth manifold with boundary L := ∂M . An easy way to construct
a conical pseudomanifold is to glue to M the closed cone cL := L × [0, 1]/L× {0}
along the boundary.

c M

L

cL

0 1
Notice that we do not ask the link L to be connected. For example, if M is a
smooth manifold, the space M × S1/M × {p}, p ∈ S1, is a conical pseudomanifold
with L consisting of two disjoint copies of M :

M

c

M

1.2. Conical bundles. We next introduce “conical bundles,” a class of spaces not
to be confused with vector bundles over conical manifolds. Assume that L is a
smooth manifold, cL is the cone over L, πξ : ξ → L is a smooth vector bundle over
L, and cξ is the cone over ξ. We define π : cξ → cL by π([z, t]) = [πξ(z), t] for
(z, t) ∈ ξ × [0,+∞[. The set (cξ, π) is the cone over the vector bundle (ξ, πξ). Let
us notice that the fiber above the singular point of cL is the singular point of cξ.
In particular, cξ is not a vector bundle over cL.

Definition 1.3. Let (X, SX , CX) be a conical stratification. A conical vector bundle
(E, π) over X is a conical stratification (E, SE , CE) together with a continuous
surjective map π : E → X such that:

(1) π induces a bijection between the singular sets SE and SX .
(2) If E◦ := E \ SE , the restriction π◦ : E◦ → X◦ is a smooth vector bundle.
(3) The control data {Mz, ρz, ξz}z∈SE

of E and {Ns, ρs, Ls}s∈SX
of X satisfies:

Mz = π−1(Nπ(z)) and ρz = ρπ(z) ◦ π. Moreover for z ∈ SE and s = π(z) ∈
SX , the restriction πz :Mz → Ns is a cone over the vector bundle ξz. More
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precisely, we have the following commutative diagram

Mz
πz−−−−→ Ns

Ψz

y
yϕs

cξz −−−−→ cLs

where ξz → Ls is a smooth vector bundle over Ls, the bottom horizontal
arrow is the cone over ξz → Ls and Ψz, ϕs are trivialisation maps.

If X is a conical pseudomanifold, the isomorphism class of a conical vector bundle
over a conical stratification (X, SX , CX) will be call again a conical vector bundle
over X .

We are interested in conical vector bundles because they allow us to introduce
the right notion of tubular neighborhood in the class of conical manifolds.

Let L be a compact manifold and cL the cone over L. For N ∈ N large enough,
we can find an embedding jL : L → SN−1 where SN−1 ⊂ RN denotes the unit
sphere. Let VL → L be the normal bundle of this embedding. We let cVL =
VL × [0,+∞[/VL × {0} be the cone over VL; it is a conical vector bundle over cL.
Notice that the cone cSN−1 over SN−1 is isomorphic to RN

• which is RN with 0 as
a singular point. We will say that cL is embedded in RN

• and that cVL is the tubular
neighborhood of this embedding.

Now, letX = (X, S, C) be a compact conical stratification. Let C = {(Ns, ρs, Ls), s ∈
S} be the set of control data, where Ns is a cone over Ls and choose a trivialisation
map ϕs : Ns→cLs for each singular point s . For N ∈ N large enough, one can find
an embedding j : X◦ = X \ S→ RN such that :

• for any s ∈ S, j ◦ ϕ−1
c (Ls × {λ}) lies on a sphere S(Os, λ) centered on Os

and of radius λ for λ ∈]0, 1[,
• the open balls B(Os, 1) centered on Os and of radius 1 are disjoint and,
• for each singular point s there is an embedding jLs

: Ls → S(Oc, 1) ⊂ RN

such that :

ψs ◦ j ◦ ϕ
−1
c |L×]0,1[ = jLs

× Id,

where ψs : B(Os, 1) \ {Os} → S(Os, 1)×]0, 1[ is the canonical diffeomor-
phism.

Let VLs
→ Ls be the normal bundle of the embedding jLs

and V → X◦ be the
normal bundle of the embedding j. Then we can identify the restriction of V to
Ns|]0,1[ := {z ∈ Ns|0 < ρs(z) < 1} with VLs

×]0, 1[. Let cVLs
= VLs

× [0, 1[/VLs×{0}

be the cone over Ls. We define the conical manifold

W = V ∪s∈S cVLs

by glueing with Tϕs the restriction of V over Ns|]0,1[ with cVLs
\ {s}. The conical

manifold W is a conical vector bundle over X . It follows that W is a sub-stratified
pseudomanifold of (RN )S which is RN with {Os}s∈S as singular points. We will say
that W is the tubular neighborhood of the embedding of X in (RN )S.

2. Lie groupoids and their Lie algebroids

We refer to [58, 16, 42] for the classical definitions and construction related to
groupoids and their Lie algebroids.
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2.1. Lie groupoids. Groupoids, and especially differentiable groupoids will play
an important role in what follows, so we recall the basic definitions and results
needed for this paper. Recall first that a groupoid is a small category in which
every morphism is an isomorphism.

Let us make the notion of a groupoid more explicit. Thus, a groupoid G is
a pair (G(0),G(1)) of sets together with structural morphisms u : G(0) → G(1),
s, r : G(1) → G(0), ι : G(1) → G(1), and, especially, the multiplication µ which is
defined for pairs (g, h) ∈ G(1) × G(1) such that s(g) = r(h). Here, the set G(0)

denotes the set of objects (or units) of the groupoid, whereas the set G(1) denotes
the set of morphisms of G. Each object of G can be identified with a morphism of G,
the identity morphism of that object, which leads to an injective map u : G(0) → G.
Each morphism g ∈ G has a “source” and a “range.” We shall denote by s(g) the
source of g and by r(g) the range of g. The inverse of a morphism g is denoted by
g−1 = ι(g). The structural maps satisfy the following properties:

(i) r(gh) = r(g) and s(gh) = s(h), for any pair g, h satisfying s(g) = r(h),
(ii) s(u(x)) = r(u(x)) = x, u(r(g))g = g, gu(s(g)) = g,
(iii) r(g−1) = s(g), s(g−1) = r(g), gg−1 = u(r(g)), and g−1g = u(s(g)),
(iv) the partially defined multiplication µ is associative.

We shall need groupoids with smooth structures.

Definition 2.1. A Lie groupoid is a groupoid

G = (G(0),G(1), s, r, µ, u, ι)

such that G(0) and G(1) are manifolds with corners, the structural maps s, r, µ, u,
and ι are differentiable, the domain map s is a submersion and Gx := s−1(x),
x ∈M , are all Hausdorff manifolds without corners.

The term “differentiable groupoid” was used in the past instead of “Lie groupoid,”
whereas “Lie groupoid” had a more restricted meaning [42]. The usage has changed
however more recently, and our definition reflects this change.

An example of a Lie groupoid that will be used repeatedly below is that of pair
groupoid, which we now define. Let M be a smooth manifold. We let G(0) = M ,
G(1) = M × M , s(x, y) = y, r(x, y) = x, (x, y)(y, z) = (x, z), and embedding
u(x) = (x, x). The inverse is ι(x, y) = (y, x).

The infinitesimal object associated to a Lie groupoid is its “Lie algebroid,” which
we define next.

Definition 2.2. A Lie algebroid A over a manifold M is a vector bundle A→M ,
together with a Lie algebra structure on the space Γ(A) of smooth sections of A and
a bundle map ̺ : A→ TM whose extension to sections of these bundles satisfies

(i) ̺([X,Y ]) = [̺(X), ̺(Y )], and
(ii) [X, fY ] = f [X,Y ] + (̺(X)f)Y ,

for any smooth sections X and Y of A and any smooth function f on M .

The map ̺ is called the anchor map of A. Note that we allow the base M in the
definition above to be a manifold with corners.

The Lie algebroid associated to a differentiable groupoid G is defined as follows
[42]. The vertical tangent bundle (along the fibers of s) of a differentiable groupoid
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G is, as usual,

(2.1) TvertG = ker s∗ =
⋃

x∈M

TGx ⊂ TG.

Then A(G) := TvertG
∣∣
M

, the restriction of the s-vertical tangent bundle to the set

of units, defines the vector bundle structure on A(G).

We now construct the bracket defining the Lie algebra structure on Γ(A(G)).
The right translation by an arrow g ∈ G defines a diffeomorphism

Rg : Gr(g) ∋ g
′ 7−→ g′g ∈ Gd(g).

A vector field X on G is called s-vertical if s∗(X(g)) = 0 for all g. The s-vertical
vector fields are precisely the vector fields on G that can be restricted to vector fields
on the submanifolds Gx. It makes sense then to consider right–invariant vector
fields on G. It is not difficult to see that the sections of A(G) are in one-to-one
correspondence with s–vertical, right–invariant vector fields on G.

The Lie bracket [X,Y ] of two s–vertical, right–invariant vector fields X and Y is
also s–vertical and right–invariant, and hence the Lie bracket induces a Lie algebra
structure on the sections of A(G). To define the action of the sections of A(G) on
functions on M , let us observe that the right invariance property makes sense also
for functions on G, and that C∞(M) may be identified with the subspace of smooth,
right–invariant functions on G. If X is a right–invariant vector field on G and f is
a right–invariant function on G, then X(f) will still be a right invariant function.
This identifies the action of Γ(A(G)) on C∞(M).

2.2. Pull back groupoids. Let G ⇉ M be a groupoid with source s and range
r. If f : N → M is a surjective map, the pull back groupoid ∗f∗(G) ⇉ N of G by
f is by definition the set

∗f∗(G) := {(x, γ, y) ∈ N ×G×N | r(γ) = f(x), s(γ) = f(y)}

with the structural morphisms given by

(1) the unit map x 7→ (x, f(x), x),
(2) the source map (x, γ, y) 7→ y and range map (x, γ, y) 7→ x,
(3) the product (x, γ, y)(y, η, z) = (x, γη, z) and inverse (x, γ, y)−1 = (y, γ−1, x).

The results of [50] apply to show that the groupoids G and ∗f∗(G) are Morita
equivalent.

Let us assume for the rest of this subsection that G is a smooth groupoid and that
f is a surjective submersion, then ∗f∗(G) is also a Lie groupoid. Let (A(G), q, [ , ])
be the Lie algebroid of G (which is defined since G is smooth). Recall that q :
A(G) → TM is the anchor map. Let (A(∗f∗(G)), p, [ , ]) be the Lie algebroid of
∗f∗(G) and Tf : TN → TM be the differential of f . Then we claim that there
exists an isomorphism

A(∗f∗(G)) ≃ {(V, U) ∈ TN ×A(G) | Tf(V ) = q(U) ∈ TM}

under which the anchor map p : A(∗f∗(G)) → TN identifies with the projection
TN × A(G) → TN . In particular, if (U, V ) ∈ A(∗f∗(G)) with U ∈ TxN and
V ∈ Ay(G), then y = f(x).
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2.3. Quasi-graphoid and almost injective Lie algebroid. Our Lie groupoids
arise mostly as Lie groupoids with a given Lie algebroid. This is because often in
Analysis, one is given the set of derivations (differential operators), which forms
a Lie algebra under the commutator. The groupoids are then used to “quantize”
the given Lie algebra of vector fields to algebra of pseudodifferential operators
[1, 45, 48, 57]. This has motivated several works on the integration of Lie algebroids
[25, 26, 56]. We recall here some useful results of the first named author [26] on
the integration of some Lie algebroids. See also [25, 42, 56].

Proposition 2.3. Let G
s

⇉
r
M be a Lie groupoid over the manifold M . Let us

denote by s its domain map, by r its range map, and by u : M −→ G its unit map.
The two following assertions are equivalent:
1. If ν : V −→ G is a local section of s then r ◦ ν = 1V if, and only if, ν = u|V .
2. If N is a manifold, f and g are two smooth maps from N to G such that:

(i) s ◦ f = s ◦ g and r ◦ f = r ◦ g,
(ii) one of the following maps s ◦ f and r ◦ f is a submersion,

then f = g.

Definition 2.4. A Lie groupoid that satisfies one of the two equivalent properties
of Proposition 2.3 will be called a quasi-graphoid.

Suppose that G⇉M is a quasi-graphoid and denote by AG = (p : AG →
TM, [ , ]A) its Lie algebroid. A direct consequence of the previous definition is
that the anchor p of AG is injective when restricted to a dense open subset of the
base space M . In other words the anchor p induces an injective morphism p̃ from
the set of smooth local sections of AG onto the set of smooth local tangent vector
fields over M . In this situation we say that the Lie algebroidAG is almost injective.

A less obvious remarkable property of a quasi-graphoid is that its s-connected
component is determined by its infinitesimal structure. Precisely:

Proposition 2.5. [26] Two s-connected quasi-graphoids having the same space of
units are isomorphic if, and only if, their Lie algebroids are isomorphic.

Note that we are not requiring the groupoids in the above proposition to be
s-simply connected. The main result of [26] is the following:

Theorem 2.6. Every almost injective Lie algebroid is integrable by an s-connected
quasi-graphoid (uniquely by the above proposition).

Finally, let A be a smooth vector bundle over a manifold M and p : A → TM
a morphism. We denote by p̃ the map induced by p from the set of smooth local
section ofA to the set of smooth local vector fields onM . Notice that if p̃ is injective
then A can be equipped with a Lie algebroid structure over M with anchor p if,
and only if, the image of p̃ is stable under the Lie bracket.

Examples 2.7. Regular foliation: A smooth regular foliation F on a manifold
M determines an integrable subbundle F of TM . Such a subbundle is an (almost)
injective Lie algebroid over M . The holonomy groupoid of F is the s-connected
quasi-graphoid which integrates F [66].

Tangent groupoid: One typical example of a quasi-graphoid is the tangent
groupoid of A. Connes [22]. Let us denote by A ⊔ B the disjoint union of the
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sets A and B. If M is a smooth manifold, the tangent groupoid of M is the disjoint
union

Gt
M = TM × {0} ⊔M ×M×]0, 1] ⇉ M × [0, 1].

In order to equip Gt
M with a smooth structure, we choose a riemannian metric on

M and we require that the map

V ⊂ TM × [0, 1] −→ Gt
M

(x, V, t) 7→

{
(x, V, 0) if t = 0
(x, expx(−tV ), t) if t 6= 0

be a smooth diffeomorphism onto its image, where V is open in TM × [0, 1] and
contains TM ×{0}. The tangent groupoid of M is the s-connected quasi-graphoid
which integrates the almost injective Lie algebroid:

pt
M : AGt

M = TM × [0, 1] −→ T (M × [0, 1]) ≃ TM × T [0, 1]
(x, V, t) 7→ (x, tV ; t, 0)

2.4. Deformation of quasi-graphoids. In this paper, we will encounter defor-
mation groupoids. The previous results give easy aguments to get sure that these
deformation groupoids can be equipped with a smooth structure. For example, let
Gi ⇉ M , i = 1, 2, be two s–connected quasi–graphoids over the manifold M and
let AGi = (pi : AGi → TM, [ , ]Ai

) be the corresponding Lie algebroid. Suppose
that:

• The bundles AG1 and AG2 are isomorphic,
• There is a morphism p : A := AG1 × [0, 1]→ TM × T ([0, 1]) of the form:

p(V, 0) = (p1(V ); 0, 0) and p(V, t) = (p2 ◦ Φ(V, t); t, 0) if t 6= 0,

where Φ : AG1×]0, 1] → AG2×]0, 1] is an isomorphism of bundles over
M×]0, 1]. Moreover the image of p̃ is stable under the Lie bracket.

In this situation, A is an almost injective Lie algebroid that can be integrated by
the groupoid H = G1 × {0} ∪ G2×]0, 1] ⇉ M × [0, 1]. In particular, there is a
smooth structure on H compatible with the smooth structure on G1 and G2.

3. A non-commutative tangent space for conical pseudomanifolds

In order to obtain an Atiyah-Singer type topological index theorem for our con-
ical pseudomanifold X , we introduce in this chapter a suitable notion of tangent
space to X and a suitable normal space to an embedding of X in RN+1 that sends
the singular point to 0 and X◦ to {x1 > 0}.

3.1. The S-tangent space and the tangent groupoid of a conical space. We
recall here a construction from [27] that associates to a conical pseudomanifold X
a groupoid T SX that is a replacement of the notion of tangent space of X (for the
purpose of studying K-theory) in the sense the C∗-algebras C∗(T SX) and C(X)
are K-dual [27].

Let (X, S, C) be a conical pseudomanifold. Without loss of generality, we can assume
that X has only one singular point. Thus S = {c} is a single point and C =
{(N , ρ, L)}, where N ≃ cL is a cone over L and ρ is the defining function of the
cone. We set ρ = +∞ outside N . We let X◦ = X \{c}. Recall that X◦ is a smooth
manifold. We denote by OX the open set OX = {z ∈ X◦ | ρ(z) < 1}.
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At the level of sets, the S-tangent space of X is the groupoid:

T SX := TX◦|X◦\OX
⊔OX ×OX ⇉ X◦ .

Here, the groupoid TX◦|X◦\OX
⇉ X◦\OX is the usual tangent vector bundle TX◦

of X◦ restricted to the closed subset X◦ \OX = {z ∈ X◦ | ρ(z) ≥ 1}. The groupoid
OX × OX ⇉ OX is the pair groupoid over OX .

The tangent groupoid of X is, as in the regular case [22], a deformation of its
“tangent space” to the pair groupoid over its units:

Gt
X := T SX × {0} ⊔X◦ ×X◦×]0, 1] ⇉ X◦ × [0, 1].

Here, the groupoid X◦×X◦×]0, 1] ⇉ X◦×]0, 1] is the product of the pair groupoid
on X◦ with the set ]0, 1].

In order to equip Gt
X , and so T SX , with a smooth structure we have to choose

a glueing function. First choose a positive smooth map τ : R → R such that
τ([0,+∞[) = [0, 1], τ−1(0) = [1,+∞[ and τ ′(t) 6= 0 for t < 1. We denote by
τX : X → R the map which assigns τ(ρ(x)) to x ∈ X◦ ∩ N and 0 elsewhere. Thus
τX(X◦) = [0, 1[, τX restricted to OX = {z ∈ N | 0 < ρ(z) < 1} is a submersion
and τ−1

X (0) = X◦ \OX .

Proposition 3.1. [27] There is a unique structure of Lie groupoid on Gt
X such that

its Lie algebroid is the bundle TX◦×[0, 1] whith anchor p : (x, V, t) ∈ TX◦×[0, 1] 7→
(x, (t+ τ2

X(x))V ; t, 0) ∈ TX◦ × T [0, 1].

Let us notice that the map p is injective when restricted to X◦×]0, 1], which is a
dense open subset of X◦ × [0, 1]. Thus there exists one, and only one, structure of
(almost injective) Lie algebroid on TX◦× [0, 1] with p as anchor since the family of
local vector fields on X◦ induced by the image by p of local sections of TX◦× [0, 1]
is stable under the Lie bracket. We know from [26, 56] that such a Lie algebroid
is integrable. Moreover, according to theorem 2.6, there is a unique Lie groupoid
which integrates this algebroid and restricts over X◦×]0, 1] to X◦ × X◦×]0, 1] ⇉

X◦×]0, 1].

Let us give an alternative proof of the previous proposition.

Proof. Recall that the (classical) tangent groupoid of X◦ is

Gt
X◦ = TX◦ × {0} ⊔X◦ ×X◦×]0, 1] ⇉ X◦ × [0, 1]

and that its Lie algebroid is the bundle TX◦ × [0, 1] over X◦ × [0, 1] with anchor
(x, V, t) ∈ TX◦ × [0, 1] 7→ (x, tV, t, 0) ∈ TX◦ × T [0, 1]. Similary, one can equip the
groupoid H = TX◦ × {(0, 0)} ⊔X◦ ×X◦ × [0, 1]2 \ {(0, 0)} with a unique smooth
structure such that its Lie algebroid is the bundle TX◦ × [0, 1]2 with anchor the
map

p : A = TN1 × [0, 1]× [0, 1] → TN1 × T ([0, 1])× T ([0, 1])
(x, V, t, l) 7→ (x, (t+ l)V ; t, 0; l, 0)

Let δ : H → R be the map which sends any γ ∈ H with source s(γ) = (y, t, l) and
range r(γ) = (x, t, l) to δ(γ) = l − τX(x)τX(y). One can check that δ is a smooth
submersion, so Hδ := δ−1(0) is a submanifold ofH . MoreoverHδ := δ−1(0) inherits
from H a structure of Lie groupoid over X◦× [0, 1] whose Lie algebroid is given by

TX◦ × [0, 1] → TX◦ × T ([0, 1])
(x, V, t) 7→ (x, (t+ τ2

X(x))V ; t, 0)



12 CLAIRE DEBORD, JEAN-MARIE LESCURE, AND VICTOR NISTOR

The groupoid Hδ is (obviously isomorphic) to Gt
X . �

We now introduce the tangent groupoid of a stratified pseudomanifold.

Definition 3.2. The groupoid Gt
X equipped with the smooth structure associ-

ated with a glueing function τ as above is called a tangent groupoid of the strati-
fied pseudomanifold (X, S, C). The corresponding S-tangent space is the groupoid
T SX ≃ Gt

X |X◦×{0} equipped with the induced smooth structure.

Remarks 3.3. We will need the following remarks. See [27] for a proof.

(i) If X has more than one singular point, we let, for any s ∈ S,

Os := {z ∈ X◦ ∩ Ns | ρs(z) < 1},

and we define O = ⊔s∈SOs. The S-tangent space to X is then

T SX := TX◦|X◦\O ⊔s∈S Os ×Os ⇉ X◦,

with the analogous smooth structure. In this situation the Lie algebroid of
Gt

X is defined as previously with τX : X → R being the map which assigns
τ(ρs(z)) to z ∈ X◦ ∩ Ns and 0 elsewhere.

(ii) The orbit space of T SX is topologicaly equivalent to X : there is a canonical
isomorphism between the algebras C(X) and C(X/T SX).

(iii) The tangent groupoid and the S-tangent space depend on the glueing. Nev-
ertheless the K-theory of the C∗-algebras C∗(Gt

X) and C∗(T SX) do not.
(iv) The groupoid T SX is a continuous field of amenable groupoids parametrized

by X , thus T SX is amenable as well. It follows that Gt
X is also amenable as

a continuous field of amenable groupoids parametrised by [0, 1]. Hence the
reduced and maximal C∗-algebras of T SX and of Gt

X are equal and they are
nuclear.

Examples 3.4. Here are two basic examples.

(i) When X is a smooth manifold, that is X0 = ∅ and X◦ = X , the previous
construction gives rise to the usual tangent groupoid

Gt
X = TX × {0} ⊔X ×X×]0, 1] ⇉ X × [0, 1].

Moreover, T SX = TX ⇉ X is the usual tangent space.
(ii) Let L be a manifold and consider the (trivial) cone cL = L× [0,+∞[/L×{0}

over L. In this situation X◦ = L×]0,+∞[, OX = L×]0, 1[ and

T SX = T
(
L× [1,+∞[

)
⊔ L× ]0, 1[×L× ]0, 1[︸ ︷︷ ︸

the pair groupoid

⇉ L× ]0,+∞[ ,

where T (L × [1,+∞[) denotes the restriction to L × [1,+∞[ of the tangent
space T (L× R). The general case is always locally of this form.

3.2. The deformation groupoid of a conical vector bundle. Let (E, SE , CE)
be a conical vector bundle over (X, SX , CX) and denote by π : E → X the cor-
responding projection. From the definition, π restricts to a smooth vector bundle
map π◦ : E◦ → X◦. We let π[0,1] = π◦ × id : E◦ × [0, 1]→ X◦ × [0, 1].

We consider the tangent groupoids Gt
X ⇉ X◦ forX and Gt

E ⇉ E◦ for E equipped
with a smooth structure constructed using the same glueing fonction τ (in particular
τX ◦ π = τE). We denote by ∗π∗

[0,1](G
t
X) ⇉ E◦ × [0, 1] the pull back of Gt

X by π[0,1].
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Our next goal is to associate to the conical vector bundle E a deformation
groupoid T t

E using ∗π∗
[0,1](G

t
X) to Gt

E . More precisely, we define:

T t
E := Gt

E × {0} ⊔
∗π∗

[0,1](G
t
X)×]0, 1] ⇉ E◦ × [0, 1]× [0, 1].

In order to equip T t
E with a smooth structure, we first choose a smooth projection

P : TE◦ → Ker(Tπ).

A simple calculation shows that the Lie algebroid of ∗π∗
[0,1](G

t
X) is isomorphic to

the bundle TE◦ × [0, 1] endowed with the almost injective anchor map

(x, V, t) 7→ (x, P (x, V ) + (t+ τE(x)2)(V − P (x, V )); t, 0).

We consider the bundle A = TE◦ × [0, 1] × [0, 1] over E◦ × [0, 1] × [0, 1] and the
almost injective morphism:

p : A = TE◦ × [0, 1]× [0, 1] → TX◦ × T [0, 1]× T [0, 1]
(x, V, t, l) 7→ (x, (t + τ2

E(x))V + lP (x, V )).

The image of p̃ is stable under the Lie bracket, thus A is an almost injective Lie
algebroid. Moreover, the restriction of A to E◦ × [0, 1] × {0} is the Lie algebroid
of Gt

E and its restriction to E◦ × [0, 1]×]0, 1] is isomorphic to the Lie algebroid of
∗π∗

[0,1](G
t
X)×]0, 1]. Thus A can be integrated by T t

E . In particular, T t
E is a smooth

groupoid. In conclusion, the restriction of T t
E to E◦ × {0} × [0, 1] leads to a Lie

groupoid:

HE = T SE × {0} ⊔ ∗π∗(T SX)×]0, 1] ⇉ E◦ × [0, 1],

called a Thom groupoid associated to the conical vector bundle E over X .

The following example explains what these constructions become if there are no
singularities.

Example 3.5. Suppose that p : E →M is a smooth vector bundle over the smooth
manifold M . Then SE = SM = ∅, Gt

E = TE × {0} ⊔ E ×E×]0, 1] ⇉ E × [0, 1] and
Gt

M = TM × {0} ⊔M ×M×]0, 1] ⇉ M × [0, 1] are the usual tangent groupoids.
In these examples associated to a smooth vector bundle, τE is the zero map. The
groupoid T t

E will then be given by

T t
E = TE×{0}×{0}⊔∗p∗(TM)×{0}×]0, 1]⊔E×E×]0, 1]×[0, 1] ⇉ E×[0, 1]×[0, 1]

and is smooth. Similarly, the Thom groupoid will be given by: HE := TE × {0} ⊔
∗p∗(TM)×]0, 1] ⇉ E × [0, 1].

We now return to the general case of a conical vector bundle.

Remark 3.6. The groupoids TE andHE are continuous fields of amenable groupoids
parametrized by [0, 1]. Thus they are amenable, their reduced and maximal C∗-
algebras are equal, and are nuclear.

4. The analytical index

Let X be a conical pseudomanifold, and let

Gt
X = X◦ ×X◦×]0, 1] ⊔ T SX × {0}⇉ X◦ × [0, 1]

be the tangent groupoid (unique up to isomorphism) for X for a given glueing
function. Also, let T SX ⇉ X◦ be the corresponding S-tangent space.
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Since the groupoid Gt
X is a deformation groupoid of amenable groupoids, it

defines a KK-element [27, 33]. More precisely, let

e1 : C∗(Gt
X)→ C∗(Gt

X |X◦×{1}) = K(L2(X◦))

be the evaluation at 1 and let [e1] ∈ KK(C∗(Gt
X),K(L2(X◦)) the element defined

by e1 in Kasparov’s bivariant K–theory. Similarly, the evaluation at 0 defines
a morphism e0 : C∗(Gt

X) → C∗(Gt
X |X◦×{0}) = C∗(T SX) and then an element

[e0] ∈ KK(C∗(Gt
X), C∗(T SX)). The kernel of e0 is contractible and so e0 is KK-

invertible. We let:

∂̃ = [e0]
−1 ⊗ [e1] ∈ KK(C∗(T SX),K),

be the Kasparov product over C∗(Gt
X) of [e1] and the K-inverse of [e0]. Take b to

be a generator of KK(K,C) ≃ Z. We set ∂ = ∂̃ ⊗ b. The element ∂ belongs to
KK(C∗(T SX),C).

Definition 4.1. The map (e0)∗ : K0(C
∗(Gt

X))→ K0(C
∗(T SX)) is an isomorphism

and we define the analytical index map by

(4.1) IndX
a := (e1)∗ ◦ (e0)

−1
∗ : K0(C

∗(T SX))→ K0(K) ≃ Z,

or in other words, as the map defined by the Kasparov product with ∂.

Remarks 4.2. 1. Notice that in the case of a smooth manifold with the usual def-
inition of tangent space and tangent groupoid, this definition leads to the classical
definition of the analytical index map ([22] II.5).
2. One can associate to a Lie groupoid a different analytical map. More pre-
cisely, when G ⇉ M is smooth, one can consider the adiabatic groupoid which is a
deformation groupoid of G on its Lie algebroid AG [57]:

Gt := AG× {0} ⊔G×]0, 1] ⇉ M × [0, 1] .

Under some asumption Gt defines a KK-element in KK(C∗(AG), C∗(G)) and thus
a map from K0(C

∗(AG)) to K0(C
∗(G)).

Now, let X be a conical pseudomanifold and S its set of singular points. Choose
a singular point s ∈ S. Let us denote Xs,+ := X◦ \ Os. The S-tangent space of X
is then

T SX = Os ×Os ⊔ T
SXs,+ ⇉ X◦

where Os×Os ⇉ Os is the pair groupoid and T SXs,+ := T SX |Xs,+ . Then we have
the following exact sequence of C∗-algebras:

0→ C∗(Os ×Os)︸ ︷︷ ︸
= K(L2(Os))

i
−−−−→ C∗(T SX)

r+
−−−−→ C∗(T SXs,+)→ 0,

(4.2)

where i is the inclusion morphism and r+ comes from the restriction of functions.

Proposition 4.3. The exact sequence (4.2) induces the short exact sequence

0→ K0(K) ≃ Z
i∗−−−−→ K0(C

∗(T SX))
(r+)∗
−−−−→ K0(C

∗(T SXs,+))→ 0.

Moreover IndX
a ◦i∗ = IdZ, thus
(

IndX
a , (r+)∗

)
: K0(C

∗(T SX))→ Z⊕K0(C
∗(T SXs,+))

is an isomorphism .
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Proof. In order to prove the first statement, let us first consider the six terms exact
sequence associated to the exact sequence of C∗-algebra of 4.2. Then recall that
K1(K) = 0. It remains to show that i∗ is injective. This point is a consequence of
the second statement which is proved here’after. Let Gt

X ⇉ X◦× [0, 1] be a tangent

groupoid forX . Its restriction Gt
X |Os×[0,1] to Os×[0, 1] is isomorphic to the groupoid

(Os×Os)× [0, 1] ⇉ Os× [0, 1], the pair groupoid of Os parametrized by [0, 1]. The
inclusion of C0(Gt

X |Os×[0,1]) in C0(Gt
X) induces a morphism of C∗-algebras

it : C∗(Gt
X |Os×[0,1]) ≃ K(L2(Os))⊗ C([0, 1])→ C∗(Gt

X).

Moreover, we have the following commutative diagram of C∗-algebras morphisms:

C∗(T SX)
e0←−−−− C∗(Gt

X)
e1−−−−→ K(L2(X◦))

i

x
xit

xiK

K(L2(Os)) ←−−−−
ev0

K(L2(Os))⊗ C([0, 1]) −−−−→
ev1

K(L2(Os))

where iK is the isomorphism induced by the inclusion of the pair groupoid of Os

in the pair groupoid of X◦, and ev0, ev1 are the evaluations map at 0 and 1. The
KK-element [ev0] is invertible and

[ev0]
−1 ⊗ [ev1] = 1 ∈ KK(K(L2(Os)),K(L2(Os))).

Moreover · ⊗ [iK] induces an isomorphism from KK(C,K(L2(Os))) ≃ Z onto

KK(C,K(L2(X◦))) ≃ Z. Thus [i] ⊗ ∂̃ = [iK], which proves that IndX
a ◦i∗ = IdZ

and ensures that i∗ is injective. �

5. The inverse Thom map

Let (E, SE , CE) be a conical vector bundle over (X, SX , CX) and π : E → X the
corresponding projection. We let

(5.1) HE := T SE × {0} ⊔ ∗π∗(T SX)×]0, 1] ⇉ E◦ × [0, 1]

be the Thom groupoid of E, as before. The C∗-algebra of HE is nuclear as well as
the C∗-algebra of T SE. Thus HE defines a KK-element:

(5.2) ∂HE
:= [ǫ0]

−1 ⊗ [ǫ1] ∈ KK(C∗(T SE), C∗(T SX)),

where ǫ1 : C∗(HE) → C∗(HE |E◦×{1}) = C∗(∗π∗(T SX)) is the evaluation map at

1 and ǫ0 : C∗(HE) → C∗(HE |E◦×{0}) = C∗(T SE), the evaluation map at 0 is
K-invertible.

Definition 5.1. The element ∂HE
∈ KK(C∗(T SE), C∗(T SX)) defined by Equa-

tion (5.2) will be called the inverse Thom element.

Definition-Proposition 5.2. Let M be the isomorphism induced by the Morita
equivalence between T SX and ∗π∗(T SX) and let · ⊗ ∂HE

be the right Kasparov
product by ∂HE

over C∗(T SE). Then the following diagram is commutative:

K(C∗(T SE))
IndE

a−−−−→ Z

·⊗∂HE

y
xIndX

a

K(C∗(∗π∗(T SX)))
≃

−−−−→
M

K(C∗(T SX)).

The map Tinv :=M◦ (· ⊗ ∂HE
) is called the inverse Thom map.
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Proof. First consider the deformation groupoid T t
E :

T t
E := Gt

E × {0} ⊔
∗π∗

[0,1](G
t
X)×]0, 1] ⇉ E◦ × [0, 1]× [0, 1] .

One can easily see that

T t
E = T SE × {0} × {0} ⊔ ∗π∗(T SX)× {0}×]0, 1]⊔ E◦ × E◦×]0, 1]× [0, 1]
≃ HE × {0} ⊔ (E◦ × E◦ × [0, 1])×]0, 1] .

The groupoid T t
E is equipped with a smooth structure compatible with the

smooth structures of Gt
E ×{0},

∗π∗
[0,1](G

t
X)×]0, 1] as well as with the smooth struc-

tures of HE and
(
E◦ × E◦ × [0, 1]

)
× ]0, 1].

We therefore have the following commutative diagram of evaluation morphisms
of C∗-algebras of groupoids:

C∗(E◦ × E◦)
ev0←−−−− C∗(E◦ × E◦ × [0, 1])

ev1−−−−→ C∗(E◦ × E◦)

eE
1

x
xq1,·

x∗π∗eX
1

C∗(Gt
E)

q·,0
←−−−− C∗(T t

E)
q·,1
−−−−→ C∗(∗π∗

[0,1](G
t
X))

eE
0

y
yq0,·

y∗π∗eX
0

C∗(T SE) ←−−−−
ǫ0

C∗(HE) −−−−→
ǫ1

C∗(∗π∗(T SX))

In this diagram, the KK-elements [eE
0 ], [∗π∗eX

0 ], [q·,0], [ǫ0], [ev1] and [ev0] are
invertible. LetM : K(C∗(∗π∗(T SX))→ K(C∗(T SX)) be the isomorphism induced
by the Morita equivalence between ∗π∗(T SX) and T SX . Also, let x belong to
K(C∗(∗π∗(T SX))) = KK(C, ∗π∗(T SX)). Then one can easily check the equality

M(x)⊗ ∂̃ = x⊗ [∗π∗eX
0 ]−1 ⊗ [∗π∗eX

1 ].

Of course [ev0]
−1⊗ [ev1] = 1 ∈ KK(C∗(E◦×E◦), C∗(E◦×E◦). Thus the previous

diagram implies that for any x ∈ K(C∗(T SE)) = KK(C, C∗(T SE)) we have:

IndX
a ◦Tinv(x) = x⊗ [ǫ0]

−1 ⊗ [ǫ1]⊗ [∗π∗eX
0 ]−1 ⊗ [∗π∗eX

1 ]⊗ b
= x⊗ [eE

0 ]−1 ⊗ [eE1 ]⊗ [ev0]
−1 ⊗ [ev1]⊗ b

= IndE
a (x)

�

6. Index theorem

In this section, we state and prove our main theorem, namely, a topological index
theorem for conical pseudomanifolds in the setting of groupoids. We begin with an
account of the classical Atiyah-Singer topological index theorem in our groupoid
setting.

6.1. A variant of the proof of Atiyah-Singer index theorem for compact

manifolds using groupoids. Let V be the normal bundle of an embedding of
a smooth manifold M in some euclidean space. In this subsection, we shall first
justify the terminology of “inverse Thom map” we introduced for the map Tinv of
Proposition 5.2 by showing that it coincides with the inverse of the classical Thom
isomorphism when E = TV and X = TM .

In fact, we will define the Thom isomorphism when X is a locally compact space
and E = N ⊗ C is the complexification of a real vector bundle N → X . As a
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consequence, we will derive a simple proof of the Atiyah-Singer index theorem for
closed smooth manifolds. Our approach has the advantage that it extends to the
singular setting.

Let us recall some classical facts [2, 4]. If p : E → X is a complex vector bundle
over a locally compact space X , one can define a Thom map

(6.1) i! : K0(X)→ K0(E),

which turns to be an isomorphism. This Thom map is defined as follows. Let
x ∈ K0(X) be represented by [ξ0; ξ1;α] where ξ0, ξ1 are complex vector bundles
over X and α : ξ0 → ξ1 is an isomorphism outside a compact subset of X . With no
lost of generality, one can assume that ξ0, ξ1 are hermitian and that α is unitary
outside a compact subset of X .

Let us consider next the endomorphism of the vector bundle p∗(ΛE)→ E given
by

(Cω)(v) = C(v)ω(v) =
1√

1 + ‖v‖2
(v ∧ ω(v)− v∗xω(v))

The endomorphism Cω is selfadjoint, of degree 1 with respect to the Z2–grading
Λ0 = ΛevenE,Λ1 = ΛoddE of the space of exterior forms. Moreover, we have that
(Cω)2 → 1 as ω approaches infinity in the fibers of E. Then, as we shall see in
the next Proposition, the Thom morphism i! of Equation (6.1) can be expressed,
in terms of the Kasparov products, as

i!(x) :=

[
ξ0 ⊗ Λ0 ⊕ ξ1 ⊗ Λ1; ξ0 ⊗ Λ1 ⊕ ξ1 ⊗ Λ0; θ =

(
N(1⊗ C) M(α∗ ⊗ 1)
M(α⊗ 1) −N(1⊗ C)

) ]

where M and N are the multiplication operators by the functions M(v) = 1
‖v‖2+1

and N = 1−M , respectively.

Proposition 6.1. Let p : E −→ X be a complex vector bundle over a locally
compact base space X and i! : K0(X) −→ K0(E) the corresponding Thom map.
Denote by T the Kasparov element

T :=
(
C0(E, p

∗(ΛE)), ρ , C
)
∈ KK(C0(X), C0(E))

where ρ is multiplication by functions. Then i!(x) = x⊗ T for any x ∈ K0(X).

Proof. The isomorphismK0(X) ≃ KK(C, C0(X)) is such that to the triple [ξ0; ξ1;α]
there corresponds to the Kasparov module:

x = (C0(X, ξ), 1, α̃) , ξ = ξ0 ⊕ ξ1 and α̃ =

(
0 α∗

α 0

)
.

Similarly, i!(x) corresponds to (E , θ̃) where:

E = C0(X, ξ)⊗
ρ
C0(E, p

∗(ΛE)) ≃ C0(E, p
∗(ξ ⊗ ΛE)) and θ̃ =

(
0 θ∗

θ 0

)
∈ L(E).

We next use the language of [13, 65], where the notion of “connection” in the
framework of Kasparov’s theory was defined. It is easy to check that M(α̃⊗̂1) is a
0-connection on E and N(1⊗̂C) is a C-connection on E (the symbol ⊗̂ denotes the
graded tensor product), which yields that:

θ̃ = M(α̃⊗̂1) +N(1⊗̂C)
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is a C-connection on E . Moreover, for any f ∈ C0(X), we have

f [α̃⊗̂1, θ̃]f∗ = 2M |f |2α̃2⊗̂1 ≥ 0,

which proves that (E , θ̃) represents the Kasparov product of x and T . �

It is known that T is invertible in KK-theory ([36], paragraph 5, theorem 8). We
now give a description of its inverse via a deformation groupoid when the bundle
E is the complexification of a real euclidean bundle N . Hence let us assume that
E = N ⊗ C or, up to a C-linear vector bundle isomorphism, let us assume that
the bundle E is the Withney sum N ⊕ N of two copies of some real euclidean
vector bundle pN : N → X with the complex structure given by J(v, w) = (−w, v),
(v, w) ∈ N ⊕ N . We endow the complex bundle E with the induced hermitian
structure. We then define the Thom groupoid as follows:

IN := E × [0, 1] ⇉ N × [0, 1]

with structural morphism given by

r(v, w, 0) = s(v, w, 0) = (v, 0)

r(v, w, t) = (v, t),

s(v, w, t) = (w, t), t > 0

(v, w, 0) · (v, w′, 0) = (v, w + w′, 0) and

(v, w, t) · (w, u, t) = (v, u, t) t > 0.

Thus, for t = 0, the groupoid structure of E corresponds to the vector bundle
structure given by the first projection E = N ⊕ N → N while for t > 0 the
groupoid structure of E corresponds to the pair groupoid structure in each fiber
Ex = Nx ×Nx.

The topology of IN is inherited from the usual tangent groupoid topology, in
particular IN is a Hausdorff topological groupoid that can be viewed as a continuous
field of groupoids over X with typical fiber the tangent groupoid of the typical fiber
of the vector bundle N → X . More precisely, the topology of IN is such that the
map E × [0, 1]→ IN sending (u, v, t) to (u, u+ tv, t) if t > 0 and equal to identity
if t = 0 is a homeomorphism.

The family of Lebesgue measures on euclidean fibers Nx, x ∈ X , gives rise to a
continuous Haar system on TN that allows us to define the C∗-algebra of IN as a
continuous field of amenable groupoids. Therefore, IN is amenable. We also get
an element of KK(C∗(E), C0(X)), denoted by Tinv and defined as usual by:

Tinv := [e0]
−1 ⊗ [e1]⊗M.

Here, as before, the morphism e0 : C∗(IN )→ C∗(IN |t=0) = C∗(E) is the evaluation
at 0, the morphism e1 : C∗(IN ) → C∗(IN |t=1) is the evaluation at 1, and M is
the natural Morita equivalence between C∗(IN |t=1) and C0(X). For instance, M
is represented by the Kasparov module (H,m, 0) where H is the continuous field
over X of Hilbert spaces Hx = L2(Nx), x ∈ X and m is the action of C∗(IN |t=1) =
C∗(N ×

X
N) by compact operators on H.

We denote T0 = (E0, ρ0, F0) ∈ KK(C0(X), C∗(E)) the element corresponding to
the Thom element T of proposition 6.1 trough the isomorphism C0(E) ≃ C∗(E).
This isomorphism is given by the Fourier transform applied to the second factor in
E = N ⊕ N provided with the groupoid structure of IN |t=0. The C∗(E)-Hilbert
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module E0 = C∗(E,ΛE) is the natural completion of Cc(E, p
∗(ΛE)) (p is the bundle

map E → X). The representation ρ0 of C0(X) and the endomorphism F0 of E0 are
given by

ρ0(f)ω(v, w) = f(x)ω(v, w),

F0ω(v, w) =

∫

(w′,ξ)∈Nx×N∗
x

ei(w−w′).ξC(v + iξ)ω(v, w′)dw′dξ.

In the above formulas, f ∈ C0(X), ω ∈ Cc(E, p
∗(ΛE)) and (v, w) ∈ Ex. We can

therefore state the following result.

Theorem 6.2. The elements Tinv and T0 are inverses to each other in KK–theory.

Proof. We know ([36], paragraph 5, theorem 8) that T , hence T0, is invertible so it
is enough to check that T0 ⊗ Tinv = 1 ∈ KK(C0(X), C0(X)).

Since Tinv := [e0]
−1 ⊗ [e1] ⊗M where et are restriction morphisms at t = 0, 1

in the groupoid IN we first compute T̃ = T0 ⊗ [e0]
−1, that is, we look for T̃ =

(E , ρ, F ) ∈ KK(C0(X), C∗(IN )) such that

(e0)∗(T̃ ) = (E ⊗
e0

C∗(E), ρ, F ⊗ 1) = T0

Let E = C∗(IN ,ΛE) be the C∗(IN )-Hilbert module completion of Cc(IN , (r
′)∗ΛE),

where r′ = p ◦pr1 ◦ r : IN → X . Let us define a representation ρ of C0(X) on E by

ρ(f)ω(v, w, t) = f(p(v))ω(v, w, t) for all f ∈ C0(X), ω ∈ E , (v, w, t) ∈ IN

Let F be the endomorphism of E densely defined on Cc(IN , (r
′)∗ΛE) by

Fω(v, w, t) =

∫

(v′,ξ)∈Nx×N∗
x

ei( v−v′

t
).ξC(v + iξ)ω(v′, w, t)

dv′

tn
dξ,

if t > 0 and by Fω(v, w, 0) = F0ω(v, w, 0) if t = 0. The integer n above is the
rank of the bundle N → X . One can check that the triple (E , ρ, F ) is a Kasparov
(C0(X), C∗(IN ))–module and that under the obvious isomorphism

qE ⊗
e0

C∗(E) ≃ E0,

ρ coincides with ρ0 while F ⊗ 1 coincides with F0.

Next, we evaluate T̃ at t = 1 and T1 := (e1)∗(T̃ ) ∈ KK(C0(X), C∗(N ×
X
N)) is

represented by (E1, ρ1, F1) where E1 = C∗(N ×
X
N,ΛE) is the C∗(N ×

X
N)–Hilbert

module completion of Cc(IN |t=1, (p ◦ r)∗ΛE) and ρ1, F1 are given by the formulas
above where t is replaced by 1.

Now, applying the Morita equivalenceM to T1 gives:

(E1, ρ1, F1)⊗ (H,m, 0) = (HΛE , φ, F1) ,

where HΛE = (L2(Nx,ΛEx))x∈X , φ is the obvious action of C0(X) on HΛE and
F1 is the same operator as above identified with a continuous family of Fredholm
operators acting on L2(Nx,ΛEx):

F1ω(x, v) =

∫

(v′,ξ)∈Nx×N∗
x

ei(v−v′).ξC(v + iξ)ω(x, v′)dv′dξ.

By ([24] lemma 2.4) we know that (HΛE , φ, F1) represents 1 in KK(C0(X), C0(X))
(the key point is again that the equivariant On-index of F1 restricted to even forms
is 1, see also [34]) and the theorem is proved. �
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Now let us consider the vector bundle p : TV −→ TM , where M is a compact
manifold embedded in some RN and V is the normal bundle of the embedding. We
let q : TM → M be the canonical projection and to simplify notations, we denote
again by p the bundle map V →M and by V the pull-back of V to TM via q.

Using the identifications TxM ⊕ Vx ≃ T(x,v)V for all x ∈ M and v ∈ Vx, we get
the isomorphism of vector bundles over TM :

q∗(V ⊕ V) ∋ (x,X, v, w) 7−→ (x, v;X + w) ∈ TV .

It follows that TV inherits a complex structure from V ⊕ V ≃ V ⊗ C and we take
the Atiyah-Singer convention: via the above isomorphism, the first parameter is
real and the second is imaginary.

The previous construction leads to the groupoid IV giving the inverse of the
Thom isomorphism. Actually, we slighty modify to retain the natural groupoid
structure carried by the base space TM of the vector bundle TV (it is important
in the purpose of extending the Thom isomorphism to the singular setting). Thus,
we set:

HV = TV × {0} ⊔ ∗p∗(TM)×]0, 1] ⇉ V × [0, 1] .

This is the Thom groupoid defined in the section 3.2. The groupoids IV and
HV are not isomorphic, but a Fourier transform in the fibers of TM provides an
isomorphism of their C∗-algebras: C∗(IV) ≃ C∗(HV ). Moreover, this isomorphism
is compatible with the restrictions morphisms and we can rewrite the theorem (6.2):

Corollary 6.3. Let ∂HV
= [ǫ0]

−1 ⊗ [ǫ1] be the KK-element associated with the
deformation groupoid HV and let M be the natural Morita equivalence between
C∗(∗p∗(TM)) and C∗(TM). Then Tinv = ∂HV

⊗M ∈ KK(C∗(TV), C∗(TM))
gives the inverse of the Thom isomorphism T ∈ KK(C0(T

∗M), C0(T
∗V) trough

the isomorphisms C0(T
∗M) ≃ C∗(TM) and C0(T

∗V) ≃ C∗(TV).

Remarks 6.4. 1) Let us assume that M is a point and V = RN . The groupoid HV

is equal in that case to the tangent groupoid of the manifold RN and the associated
KK-element ∂HV

⊗M gives the Bott periodicity between the point and R2N .
2) Let M+ be a compact manifold with boundary and M the manifold without
boundary obtained by doubling M+. Keeping the notations above, let V+ be the
restriction of V to M+. All the previous constructions applied to M restrict to M+

and give the inverse T+
inv of the Thom element T+ ∈ KK(C0(T

∗M+), C0(T
∗V+)).

With this description of the (inverse) Thom isomorphism in hand, the equality
between the analytical and topological indices of Atiyah and Singer [2] follows from a
commutative diagram. Let us denote by p[0,1] the map p×Id : V×[0, 1]→M×[0, 1].
We consider the deformation groupoid (cf. example 1. of 3.2)

T t
V = Gt

V ×{0}⊔
∗p∗[0,1](G

t
M ) ≃ HV ×{0}⊔(V×V× [0, 1])×]0, 1] ⇉ V× [0, 1]× [0, 1] .

We use the obvious notation for restriction morphisms (cf. proof of definition-
proposition 5.2) and M for the various (but always obvious) Morita equivalence
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maps. To shorten the diagram, we set K(G) := K0(C
∗(G)) for all the (amenable)

groupoids met below. We have:

(6.2)

K(·)
=

←−−−−− K(·)
[ev0]
←−−−−− K([0, 1])

[ev1]
−−−−−→ K(·)

=
−−−−−→ K(·)

M

x M

x M

x M

x M

x

K(RN
× R

N )
j1

←−−−−− K(V × V)
[ev0]
←−−−−− K(V × V × [0, 1])

[ev1]
−−−−−→ K(V × V)

M
−−−−−→ K(M ×M)

[eR
N

1 ]

x [eV1 ]

x
x[q1,·]

x[∗p∗eM
1 ]

x[eM
1 ]

K(Gt

RN )
j

←−−−−− K(Gt
V)

[q·,0]
←−−−−− K(T t

V)
[q·,1]
−−−−−→ K(∗p∗

[0,1](G
t
M ))

M
−−−−−→ K(Gt

M )

[eR
N

0 ]

y [eV0 ]

y
y[q0,·]

y[∗p∗eM
0 ]

y[eM
0 ]

K(TR
N) ←−−−−−

j0

K(TV) ←−−−−−
[ǫ0]

C∗(HV) −−−−−→
[ǫ1]

K(∗p∗(TM)) −−−−−→
M

K(TM)

The commutativity of this diagram is obvious. From the previous remark we deduce

that the map K(TRN)→ Z associated with [eR
N

0 ]−1⊗ [eR
N

1 ]⊗M on the left column
is equal to the Bott periodicity isomorphism β. Thanks to the corollary (6.3), the
map K(TM) → K(TV) associated with M−1 ⊗ ∂−1

HV
= T0 on the bottom line is

equal to the Thom isomorphism, while j0 is the usual excision map resulting from
the identification of V with an open subset of RN . It follows that composing the
bottom line with the left column produces the map:

β ◦ j0 ◦ T0 : K(TM)→ Z

which is exaclty the Atiyah-Singer’s definition of the topological index map. We
already know that the map K(TM) → Z associated with [eM

0 ]−1 ⊗ [eM
1 ] ⊗M on

the right column is the analytical index map. Finally, the commutativity of the
diagram and the fact that the map associated with [ev0]

−1 ⊗ [ev1] on the top line
is identity, completes our proof of the Atiyah-Singer index theorem.

Another proof of the usual Atiyah-Singer index theorem in the framework of
deformation groupoids can be found in [49].

6.2. An index theorem for conical pseudomanifolds. We define for a conical
manifold a topological index and prove the equality between the topological and
analytical indices. Both indices are straight generalisations of the ones used in the
Atiyah-Singer index theorem: indeed, if we apply our constructions to a smooth
manifold and its tangent space, we find exaclty the classical topological and ana-
lytical indices. Thus, the egality of indices we proove can be presented as the index
theorem for conical manifolds. Moreover, the K-theory of T SX is exhausted by
elliptic symbols associated with pseudo-differential operators in the b-calculus [40]
and the analytical index can be interpreted via the Poincaré duality [27], as their
Fredholm index.

Let X be a compact conical pseudomanifold embedded in (RN )S for some N and
let W be a tubular neighborhood of this embedding as in 1. We first assume that
X has only one singularity. We denote by

HW = T SW × {0} ⊔ ∗π∗(T SX)×]0, 1] ⇉W◦ × [0, 1]
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the Thom groupoid associated with π :W → X and by

H+ = TW+ × {0} ⊔
∗π∗

+(TX+)×]0, 1] ⇉W+ × [0, 1]

the Thom groupoid associated with π+ : W+ → X+. Here W+ = W \ OW =
{(z, V ) ∈ W | ρ(z) ≥ 1} and X+ = X \ OX = {z ∈ X | ρ(z) ≥ 1}, where ρ is
in both case the defining function of the singularity. We denote by Tinv and T+

inv

the respective inverse-Thom elements. Recall (cf. prop. 4.3) that we have the two
following short exact sequences comming from inclusion and restriction morphisms:

0 −→ K(K(L2(OW)))
iV∗−−−−→ K(C∗(T SW))

rW∗−−−−→ K(C∗(TW+)) −→ 0

0 −→ K(K(L2(OX))) −−−−→ K(C∗(T SX)) −−−−→ K(C∗(TX+)) −→ 0

Definition-Proposition 6.5. The following diagram commutes:

(6.3)

0 −→ K(K(L2(OW )))
iW∗−−−−→ K(C∗(T SW))

rW∗−−−−→ K(C∗(TW+)) −→ 0

M

y ·⊗Tinv

y ·⊗T+
inv

y

0 −→ K(K(L2(OX))) −−−−→ K(C∗(T SX)) −−−−→ K(C∗(TX+)) −→ 0

where M is the natural Morita equivalence map. In particular, the map:

(6.4) · ⊗ Tinv : K(C∗(T SW)) −→ K(C∗(T SX))

is an isomorphism. Its inverse is denoted by T and called the Thom isomorphism.

Proof. Let us note again by π the (smooth) vector bundle map W◦ → X◦ and
consider the following diagram:
(6.5)

0→ C∗(OW ×OW ) −−−−→ C∗(T SW)
r+

−−−−→ C∗(TW+)→ 0

ev0

x ev0

x ev0

x

0→ C∗(OW × OW × [0, 1]) −−−−→ C∗(HW)
r+

−−−−→ C∗(H+)→ 0

ev1

y ev1

y ev1

y

0→ C∗(∗π∗(OX ×OX)) −−−−→ C∗(∗π∗(T SX))
r+

−−−−→ C∗(∗π∗(TX+))→ 0

where the (Lie) groupoid isomorphism ∗π∗(OX ×OX) ≃ OW ×OW has been used.
Applying the K functor and Morita equivalence maps to the bottom line to get rid
of the pull back ∗π∗ and using the fact that the long exact sequences in K-theory
associated to the top and bottom lines split in short exact sequences, give the
diagram (6.3). Since M and T+

inv are isomorphisms, the same is true for Tinv. �

Remarks 6.6. 1) When X has several singular points, the invertibility of .⊗ Tinv

remains true. This can be checked thanks to a recursive process on the number k
of singular points. First choose a singular point s ∈ S and call again s its image in
W by the embedding π. Denote by

Hs,+ = TWs,+ × {0} ⊔
∗π∗

s,+(T SXs,+)×]0, 1] ⇉Ws,+ × [0, 1]

the Thom groupoid associated with πs,+ : Ws,+ → Xs,+. Recall that Ws,+ =
{(z, V ) ∈ W | ρs(z) ≥ 1} and Xs,+ = X \ Os = {z ∈ X | ρs(z) ≥ 1}, where

ρs is in both case the defining function associated to s. We denote by T s,+
inv the
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corresponding inverse-Thom element. The same proof as before gives that the
map:

· ⊗ Tinv : K(C∗(T SW)) −→ K(C∗(T SX))

is an isomorphism as soon as

· ⊗ T s,+
inv : K(C∗(T SWs,+)) −→ K(C∗(T SXs,+))

is. But now Xs,+ has k − 1 singular points.
2) The Thom map we define extends the usual one: this is exactly what is said by
the commutativity of the diagram (6.3).

Let us recall that we started with an embedding of X into (RN )S which is RN

with k singular points where k is the cardinal of S. The S-tangent space T SW ofW
is obviously isomorphic to an open subgroupoid of the S-tangent space T S(RN )S.
Thus we get an excision homomorphism:

j : C∗(T SW) −→ C∗(T S(RN )S).

There is a natural identification of the K-theory group K(T S(RN )S) with Z, analog
to the one given by Bott periodicity in the case of TRN = R2N coming from its
tangent groupoid (cf. remark 6.4):

∂(RN )S = [e0]
−1 ⊗ [e1]⊗M : K(T S(RN )S) −→ Z

K(C∗(T S(RN )S))
[e0]
←− K(C∗(Gt

(RN )S)
[e1]
−→ K(K(L2(RN )))

M
→ K(·) ≃ Z

We are now in position to extend the Atiyah-Singer topological index to conical
pseudomanifolds:

Definition 6.7. The topological index of the conical pseudomanifold X is defined
by

IndX
t = ∂(RN )S ◦ [j] ◦ T

Moreover, we obtain the following extension of the Atiyah-Singer Index theorem

Theorem 6.8. If X is a pseudomanifold with conical singularities then

IndX
a = IndX

t

Proof. The proof is similar to our proof of the Atiyah-Singer index theorem. Indeed,
let us write down the analog of the diagram (6.2) for the singular manifold X :

(6.6)

K(·)
=

←−−−−− K(·)
[ev0]
←−−−−− K([0, 1])

[ev1]
−−−−−→ K(·)

=
−−−−−→ K(·)

M

x M

x M

x M

x M

x

K(R2N )
j1

←−−−−− K(W2)
[ev0]
←−−−−− K(W2

× [0, 1])
[ev1]
−−−−−→ K(W2)

M
−−−−−→ K((Xo)2)

[e
(R

N )c

1 ]

x [eW1 ]

x
x[q1,·]

x[∗π∗eX
1 ]

x[eX
1 ]

K(Gt

(RN )S)
j

←−−−−− K(Gt
W)

[q·,0]
←−−−−− K(T t

W )
[q·,1]
−−−−−→ K(∗π∗

[0,1](G
t
X))

M
−−−−−→ K(Gt

X)

[e
(R

N )c

0 ]

y [eW0 ]

y
y[q0,·]

y[∗π∗eX
0 ]

y[eX
0 ]

K(T S(RN)S) ←−−−−−
j0

K(T S
W) ←−−−−−

[ǫ0]
C∗(HW) −−−−−→

[ǫ1]
K(∗π∗(T SX)) −−−−−→

M
K(T SX)



24 CLAIRE DEBORD, JEAN-MARIE LESCURE, AND VICTOR NISTOR

This diagram involves various deformation groupoids associated to X and its em-
bedding into (RN )S. The commutativity is obvious since everything comes from
morphisms of algebras or from explicit Morita equivalences. As before, the con-
vention K(G) = K0(C

∗(G)) is used to shorten the diagram and intuitive notations
are chosen to name the various restriction morphisms. Starting from the bottom
right corner and following the right column gives the analytical index map. Start-
ing from the bottom right corner and following the bottom line and next the left
column gives the topological index map. �

6.3. Signification of the index map. In the sequel we suppose that X has only
one singularity.
In [27], a Poincaré duality in bivariant K-theory between C(X) and C∗(T SX) is
proved. Taking the Kasparov product with the dual-Dirac element involved in this
duality provides an isomorphism:

(6.7) K0(X)
ΣX−→ K0(T SX)

When a K-homology class of X and a K-theory class of T SX coincide trough this
isomorphism, we say that they are Poincaré dual.

If p : X → · is the trivial map, then (6.7) satisfies [40]:

(6.8) IndX
a ◦ΣX = p∗ : K0(X) −→ Z ≃ K0(·)

Remember that cycles of K0(Y ), for a compact Hausdorff space Y , are given by
triples (H,π, F ) where H = H+ ⊕ H− is a Z2-graded Hilbert space, π a degree
0 homomorphism of C(Y ) into the algebra of bounded operators on H and F =(

0 F−

F+ 0

)
a bounded operator on H of degree 1 such that F 2 − 1 and [π, F ] are

compact. Since:

p∗(H,π, F ) = Fredholm-Index(P ),

the equality (6.8) implies that IndX
a produces indices of Fredholm operators. To

make things more concrete and see what Fredholm operators come into the play,
one needs to compute explicitely (6.7), or mimeting the case of smooth manifolds,
interpret it as a symbol map associating K-theory classes of the tangent space to
elliptic pseudodifferential operators. This is done in full details, and summarized
below, for the 0-order case in [40]. We give also an account of the unbounded case,
necessary to compare our index with the ones computed in [18, 15, 19, 39].

6.3.1. K-homology of the conical pseudomanifold and elliptic operators. Let Ψ∗
b be

the algebra of the b-calculus [44] on X◦ (the obvious compactification of X◦ into
a manifold with boundary). A b-pseudodifferential operator P is said to be fully

elliptic if its principal symbol σint(P ) , regarded as an ordinary pseudodifferential

operator on X◦ is invertible and the indicial family (P̂ (τ))τ∈R is everywhere invert-

ible [44] (that is, for all τ ∈ R, the pseudodifferential operator P̂ (τ) on L = ∂X◦ is
invertible). A full parametrix of P is then another b-operator Q such that PQ and
QP are equal to 1 modulo a negative order b-operator with vanishing indicial fam-
ily. When P is a zero order fully elliptic b-operator, it is Fredholm on the Hilbert
space L2,b := L2(X◦, dµb) for the natural measure dµb = dh

h dy coming with an
exact b-metric [44], and we get a canonically defined K-homology class of X :

(6.9) [P ] := [(Hb, π,P)] ∈ K0(X)
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where P =

(
0 Q
P 0

)
, Hb = L2,b ⊕ L2,b and π : C(X) → B(Hb) is the homomor-

phism given by pointwise multiplication (for all f ∈ C∞
c (X◦) ⊕ C, [π(f),P] has

negative order and vanishing indicial family, thus it is a compact operator on Hb

[44] ; since C∞
c (X◦) ⊕ C is dense in C(X), it proves that the commutators [π,P]

are compact and [P ] is well defined).

6.3.2. K-theory of the noncommutative tangent space and symbols. To compute the
Poincaré dual of K-classes given by (6.9), one uses a slightly different, but KK-
equivalent, definition of T SX :

(6.10) T SX := T ]0, 1[×L× L ⊔ TX+ ⇉ Xo

The KK-equivalence between both definitions is explicit ([40]) and allows us to
translate all the previous constructions to this variant of the tangent space.

Roughly speaking, a noncommutative symbol on the pseudomanifold X is a
pseudodifferential operator, in the groupoid sense ([48, 57]), on T SX . For technical
reasons, one asks to these objects to be smooth up to h = 0, in other words we
define the algebra of noncommutative symbols as:

(6.11) S∗(X) = Ψ∗(T SX)

where T SX = {0} × R × L × L ∪ T SX and the letter Ψ is reserved for the space
of pseudodifferential operators on the indicated groupoid. See [40] for the precise
assumptions on the Schwartz kernels of the operators in (6.11). Considering the

closed saturated subspace L = ∂X◦ of the space of units X◦ of T SX , we get a
restriction homomorphism:

(6.12) S∗(X) = Ψ∗(T SX)
ρ
−→ Ψ∗(R× L× L) ≃ Ψ∗

susp(L)

where Ψ∗
susp(L) denotes the space of suspended pseudodifferential operators of R.

Melrose [46]. A noncommutative symbol a ∈ Sm(X) is fully elliptic if there exists
b ∈ S−m(X) such that ab and ba are equal to 1 modulo S−1(X)∩ker ρ =: J . Fully
elliptic symbols a ∈ S0(X) give canonically K-classes of the tangent space T SX :

(6.13) [a] = [E ,a] ∈ KK(C, C∗(T SX)) = K0(T SX)

where a =

(
0 b
a 0

)
, b any inverse of a modulo J and E = C∗(T SX)⊕ C∗(T SX).

6.3.3. IndS

a as a Fredholm index. The main result of [40] is:

Theorem 6.9. There exists a surjective linear map σX : Ψ∗
b → S∗ such that:

• P ∈ Ψ∗
b is fully elliptic if and only if σX(P ) is fully elliptic,

• For all zero order fully elliptic operator P ,

(6.14) ΣX([P ]) = [σX(P )]

See also [38] for a thorough study of the property of full ellipticity in b-calculus
in the framework of groupoids.

Remarks 6.10.

Allowing vectors bundles E over X◦ and defining the algebra of b-operators Ψ∗
b(E)

and the algebra of noncommutative symbols S∗(X,E) accordingly, we get a full
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description of K0(X) in terms of b-operators and of K0(T SX) in terms of noncom-
mutative symbols. This is also proved in [40]. Thus, for any x ∈ K0(T SX), we
have:

IndX
a (x) = Fredholm-index(Px)

where Px is any b-operator such that [σX(Px)] = x.
The reader should not be surprised by our definition of (noncommutative) symbols:
if V is smooth manifold, the algebra of ordinary symbols is isomorphic to the al-
gebra of pseudodifferential operators, for a suitable choice of regularizing operators
imposed by the use of the Fourier transform, on the groupoid TV .

6.3.4. The unbounded case and geometric operators. The symbol map σX con-
structed in [40] makes sense on differential b-operators. It turns out that natural
geometric operators on X , when provided with a conical metric, can be written as
b-differential operators with singular coefficients at h = 0, or, in the terminology of
[39], Fuchs type operators. We explain in this paragraph how to relate the analysis
of these operators ([18, 15, 19, 39]) to our K-theoritic constructions, for the case of
a Dirac operator on X even dimensional with one conical point s.

Let g be a riemmannian metric on X◦ which is conical on OX =]0, 1[×L, that is:
g = dh2+h2gL. We assume to simplify the computations that the riemannian metric
gL on L is independant of h when h ≤ 1. We denote by dvolX the corresponding
volume form.

Let E = E+ ⊕ E− be a Clifford module and c the corresponding Clifford multi-
plication ([8]).

If X◦ has a spin structure, then there exists a (Z2-graded) vector bundleW such
that E ≃ W ⊗ S where S = S+ ⊕ S− is the spinor bundle.

In the case of a spin structure, using the canonical metric structure and Clifford
connection ∇S of the spinor bundle, and using on W a metric structure of product
type on Ox and a compatible connection ∇W , we get on E a metric structure,
such that E+ ⊥ E− and c(v)∗ = −c(v) for unitary tangent vectors v ∈ TX◦, and a
Clifford connection ∇E such that the corresponding Dirac operator D is symmetric,
when considered as an unbounded operator on L2(E) with domain the space C∞

c (E)
of compactly supported sections. Recall that D is defined locally by the formula:

s ∈ C∞(E), Ds =

n∑

i=1

c(ei)∇
E
ei
s,

where (e1, . . . , en) is a local basis of TX◦.
IfX◦ has no spin structure, then the isomorphism E ≃ W⊗S remains true locally.

Thus, one can still construct locally on E metrics and connections with the previous
properties and then patch them with a partition of unity (Ui, φi) on X (that is (Ui)
is a finite open covering of X◦ by open charts, φi ∈ C∞(Ui) ∩ Cc(Ui ∪ {s}) and∑

i φ(x) = 1, ∀x ∈ X◦). The resulting Dirac operator is again symmetric, and all
subsequent computations are exactly the same with or without spin structure.

Although the Hilbert space L2(E), whose scalar product is given by

(6.15) (s, t) =

∫

X◦

(s(x), t(x))Ex
dvolX

is the most natural Hilbert space with respect to the given geometric data, com-
putations are easier with Hb(E) which is defined as, if π : X◦ → X+ denotes the
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obvious retraction map and Ẽ = E|L, the completion of C∞
c (π∗(E|X+)) for the scalar

product:

(6.16) (s, t)b =

∫

X+

(s(x), t(x))Ex
dvolX +

∫

x=(h,y)∈OX

(s(x), t(x))Ẽ
dh

h
dvolY (y)

One can choose an isometry U : Hb(E) → L2(E) such that U : C∞(π∗(E|X+)) →

C∞(E) is equal to identity on the complement of some open neighborhood of OX

and given on OX by

U(s)(h, y) = h−
n
2 θE(1,y)→(h,y)s(h, y)

where θE(1,y)→(h,y) : E(1,y) → E(h,y) is the parallel transport associated with the

connection and the canonical identification C∞(π∗(E|X+)|OX
) ≃ C∞(]0, 1[, C∞(Ẽ))

have been used.
Then, a straight computation shows that ([12, 19, 41]) the following holds for

sections s supported on OX :

(6.17) U−1DUs = c(e1) ·
∂s

∂h
+

1

h

(
D̃ −

e1
2

)
s

where (e1 = ∂
∂h , e2, . . . , en) is a local orthonormal basis in TOX and D̃ is the differ-

ential operator on L, acting on the sections of Ẽ , given by D̃u =
∑n

i=2 c(ẽi)∇Ẽ
ẽi
u,

where ẽi(y) = ei(1, y) and ∇Ẽ is the connection on Ẽ induced by ∇E . Moreover
we have E− = c(e1) · E+, and the operator U−1DU is given by the matrix , in the
decomposition E = E+ ⊕ c(e1) · E+ ≃ E2

+,

(6.18)

(
0 − ∂

∂h + 1
h (S + 1

2 )
∂

∂h + 1
h(S − 1

2 ) 0

)

where S =
∑n

i=2 c(ẽiẽ1)∇Ẽ
ẽi

is again a symmetric Dirac operator on the Clifford

module Ẽ+ over L.
It is of course equivalent to study D on L2(E) or T = U−1DU on Hb(E). If we

used dh instead of dh
h in (6.16), which leads to the Hilbert space used in [15, 39] to

study Fuchs type operators, S would appear without the extra terms ± 1
2 in (6.18).

The deformation process of [40] used to associate noncommutative symbols to
b-pseudodifferential operators, can be applied to T and gives a family (Tt)0≤t≤1

where t > 0, Tt ∈
1
h .Ψ

1
b(E) and T0 ∈

1
h .S

1(X, E) have the following expression on
OX :

(6.19) t > 0, Tt =

(
0 −t ∂

∂h + 1
h (S + t

2 )
t ∂

∂h + 1
h (S − t

2 ) 0

)

and

(6.20) σX(T ) := T0 =
1

h

(
0 − ∂

∂λ + S
∂

∂λ + S 0

)

Observe that the family Dt := UTtU
−1 coincides for t > 0 with the one given by

the deformation of the conical metric dh2

t2 + h2gL ([12]).
The natural questions are then: does the noncommutative symbol T0 give canon-

ically a K-theory element of T SX ? does the operator T give canonically a K-
homology class on X ? Are the corresponding classes Poincaré dual ?
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The answer to the first two questions is negative in general, but becomes affir-
mative under some conditions on the spectrum of S and in that case the answer to
the last question is affirmative too. Let us explain these phenomena.

Firstly, the noncommutative symbol a := hT0 is fully elliptic if and only if

(6.21) 0 6∈ specS

We assume in the sequel that this condition is satisfied. Using the ellipticity of

a as a pseudodifferential operator on T SX and the invertibility of a|h=0, we can
proove thanks to [63] that (1 + σX(T )2)−1 ∈ h2 · S−2(X, E) ⊂ K(C∗(T SX, E)).
This implies that the closure of σX(T ) as an unbounded operator on the C∗(T SX)-
Hilbert module C∗(T SX, E) with domain C∞(T SX, E) is selfadoint, regular and
provides an unbounded (C, C∗(T SX))-Kasparov bimodule ([5, 63]). We thus get
here a well defined, canonical, element [σX(T )] ∈ K0(T SX).

We turn back now to the operators Tt, 1 ≥ t > 0. It is well known that they
always have a selfadjoint extension, not unique in general ([15, 19, 39]). Adpating
for instance the computations of [15] to our particular choice of Hilbert spaceHb(E),
we see that Tt, t > 0, with domain C∞

c (E) is essentially self-adjoint if and only if
spec(S)∩]− t

2 ,
t
2 [= ∅. Otherwise, any choice of an orthogonal decomposition of:

(6.22) Wt =
⊕

−t/2<u<t/2

C.eu

where the eu’s describe an orthonormal system of eigenvectors of S, allows to define
a self-adjoint extension of T ([15]).

Thus, for α small enough, thanks to the assumption (6.21), Tα is essentially
self-adjoint. It is also Fredholm by ([15]), so Tα gives an unbounded (C(X),C)-
Kasparov bimodule, in other words a K-homology class [Tα] ∈ K0(X), and we
have:

ΣX([Tα]) = [σX(T )]

To check this, one shows that the Woronowicz transform q(Tα) = Tα.(1 + T 2
α)−1/2

([63, 5]) of Tα can be represented in K-homology by a zero order b-operator
with noncommutative symbol equal to the Woronowicz transform q(σX(T )) =
σX(T ).(1 + σX(T )2)−1/2 of σX(T ), and then the theorem 6.9 applies.

In particular:

dimker(Tα)+ − dim ker(Tα)− = IndX
a ([σX(T )])

In general, T = T1 has several selfadjoint extensions, but using the splitness of

0 −→ C −→ K0(X) −→ K0(X
◦) −→ 0

one shows that two given selfadjoint extensions of T give the same K-homology
class if and only if their Fredholm index is the same. Thus a selfadjoint extension
TZ , given by a choice of a decomposition Z ⊕ Z⊥ of (6.22), produces the same K-
homology class as Tα (and then, is Poincaré dual to its noncommutative symbol) if
and only if 2 dimZ = dimW1.

Let us say a word about the case 0 ∈ specS. For small t, the selfadjoint extensions
of Tt are classified by the orthogonal decompositions of kerS. There is a priori no
canonical choice. On the other hand, the noncommutative symbol σX(T ) is not fully
elliptic. We conjecture that the selfadjoint extensions of σX(T ), as an unbounded
operator on the Hilbert module C∗(T SX, E), are again classified by the orthogonal
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decomposition of kerS and give unbounded Kasparov modules which are in one-
to-one correspondance, via Poincaré duality, with the selfadjoint extensions of Tt.
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[53] V. E. Nazăıkinskĭı, A. Yu. Savin, B. Yu. Sternin, and B.-W. Shulze. On the index of elliptic
operators on manifolds with edges. Mat. Sb., 196(9):23–58, 2005.

[54] V. Nistor. The index of operators on foliated bundles. J. Funct. Anal., 141(2):421–434, 1996.



GROUPOIDS AND AN INDEX THEOREM FOR CONICAL PSEUDO-MANIFOLDS 31

[55] V. Nistor. Higher index theorems and the boundary map in cyclic cohomology. Doc. Math.,
2:263–295 (electronic), 1997.

[56] V. Nistor. Groupoids and the integration of Lie algebroids. J. Math. Soc. Japan, 52:847–868,
2000.

[57] V. Nistor, A. Weinstein, and P. Xu. Pseudodifferential operators on differential groupoids.
Pacific J. of Math., 181(1):117–152, 1999.

[58] J. Renault. A groupoid approach to C∗-algebras, volume 793 of Lecture Notes in Math.
Springer-Verlag, 1980.

[59] A. Savin. Elliptic operators on manifolds with singularities and K-homology. K-Theory,
34(1):71–98, 2005.

[60] B.-W. Schulze. Pseudo-differential operators on manifolds with singularities, volume 24 of
Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam,
1991.

[61] B.-W. Schulze. Pseudodifferential boundary value problems, conical singularities, and asymp-
totics, volume 4 of mathematical topics. Akademie Verlag, 1994.

[62] B.-W. Schulze, B. Sternin, and V. Shatalov. On the index of differential operators on mani-
folds with conical singularities. Ann. Global Anal. Geom., 16(2):141–172, 1998.
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cézeaux, 63177 Aubière Cedex, France

E-mail address: debord@math.univ-bpclermont.fr
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