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Summary. This paper is about the problem of structure and motion recovery
from NN views of a rigid scene. Especially, we deal with the case of scenes containing
planes, i.e. sets of coplanar points and focus on structure and motion estimation,
which is one of the major steps of any reconstruction system. In more detail, we
explore the strong constraint of multi-coplanarity, exploited only in a sub-optimal
manner by most existing works. A typical example is to estimate an unconstrained
structure and motion and then to fit planes and maybe correct 8D point positions
to make them coplanar. In this paper, we present an approach to estimate cam-
era motion and piecewise planar structure simultaneously and optimally: the result
minimizes reprojection error, while satisfying the multi-coplanarity. The estimation
problem is consistently parameterized using mixed 2D/8D entities. Experimental
results show that the reconstruction is of clearly superior quality compared to tra-
ditional methods based only on points, even if the scene is not perfectly piecewise
planar, and more accurate compared to other plane-based methods.

1 Introduction

The recovery of structure and motion from images is one of the key goals in
photogrammetry and computer vision. The special case of piecewise planar
reconstruction is particularly important due to the large number of such
scenes in man-made environments (e.g. buildings, floors, ceilings, roads, walls,
furniture, etc.). Especially, they are characteristic of architectural scenes.
Piecewise planar structures constitute very strong geometric constraints from
which we can expect better reconstruction results than from unconstrained
(i.e. general) structure and motion methods.

Among all the different modules that compose such a specific reconstruc-
tion system (image point matching, plane detection, structure and motion
recovery, etc.), we focus in this paper on that of constrained structure and
motion recovery. In other words, we study a consistent representation of struc-
ture which incorporates the geometric constraints of piecewise planarity. The
set of constraints given by a piecewise planar configuration is the multi-
coplanarity of points, which means that a point is subject to lie on none,
one or several planes. Most of the existing works [9,3,11,8] do not take these
constraints into account using a specific representation of structure which
results in sub-optimal reconstruction estimations.
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We propose a projective framework including the MLE (Maximum Likeli-
hood Estimator) for constrained structure and motion recovery from N views
of a piecewise planar scene, which provides the flexibility of working with un-
calibrated or partially calibrated images. This estimator is entirely based on
the consistent representation of structure defined in this paper.

The consistency of a representation reflects its property to express exactly
the number of essential dof (degrees of freedom) of what it represents. In
overparameterized cases, this is achieved provided an appropriate number
of additional constraints. In our case, the analysis of the algebraic entities
reveals that in general the number of algebraic dof is higher than that of
essential dof while the additional constraints can not be easily incorporated,
which results in overparameterizations. For example, a coplanarity constraint
leaves only 2 dof to a 8D projective point but is not directly incorporable to
the usual homogeneous 4-vector that represents this point.

The same problem arises when representing the motion. For example, the
projective motion between two views has 7 essential dof but 9 algebraic ones
when expressed via the fundamental matrix. The additional homogeneity and
null determinant contraints that might be used can not be incorporated to
obtain a unique expression for the fundamental matrix.

In the following two paragraphs, we review existing work and give some
preliminaries and the paper organization.

Previous work: The method proposed in [9] consists in reconstructing pla-
nar patches from two images. The structure obtained is not optimal (in the
sense of maximum likelihood) since the proposed criterion, photometric- and
geometric-based, does not correspond to that of the direct method [10]. An-
other algorithm proposed in [3] yields sub-optimal results for the same reason.

The solution established in [11] consists in modeling the structure as a
general set of 8D points and in minimizing the residual of the reprojection
based on plane homographies induced by scene planes. Points may not sat-
isfy the piecewise coplanarity, even if this constraint is used to estimate the
residual.

This constraint is taken into account in [8] where the authors add penalty
terms to a criterion close to that of [11]. These penalty terms are devised to
make the general recovered structure converge to the desired piecewise planar
configuration. The drawbacks of this approach is that the overparameteriza-
tion leads only to an approximate piecewise planarity and that the penalty
terms, heavily weighted, might affect numerical stability.

The major drawback of these works is that the piecewise coplanarity of
the scene is not explicitly taken into account using a parameterization of the
structure. Moreover, the images used are supposed calibrated.

The method given in [2] is based on geometric primitives more complex
than planes (boxes, prisms and surfaces of revolution). Weaknesses of this
method are that the set of real scenes that it can deal with is more restricted
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that when modeling basic planes, and that the recovered structure is not
optimal. Moreover, only the minimum number of points if taken into account.

In [1] the parameterization of the structure takes explicitly into account
the coplanarity (a point lying on one plane). This allows to devise an optimal
estimator for structure and motion. The multi-coplanarity is not taken into
account which results in artefacts on the obtained reconstruction.

Contributions, paper organization: The principal result given in this paper
is a parameterization of the structure expressing the multi-coplanarity geo-
metric constraints and being therefore consistent. This parameterization is
based on mixed 3D/2D entities. We address the cases where a point is un-
constrained (does not lie on any modeled plane), or lies on one, two or three
planes. The cases where a point lies on more than three planes are rare so
not very interesting to address. We derive the MLE for constrained structure
and motion and examine experimentally how reconstruction results behave
when the observed surfaces are only approximately planar.

We first give some preliminaries in §2, mainly describing the motion pa-
rameterization we use. Structure parameterization is described in §3 and the
corresponding MLE is derived and validated on synthetic data in §4. The
global method is then validated using real images in §5.

2 Preliminaries and Notations

We describe the multiple view geometry, from the camera model for one
view to the relationship between N views, and how this leads to a motion
parameterization. Our main notations are explained throughout this section.

One view: We model a camera using the perspective projection described

by a 3x4 homogeneous matrix P. Physical entities (points, planes, etc.)
are typeset using italic fonts (X, 7, etc.) and their corresponding homo-
geneous coordinate vectors using the same letters in bold fonts (X,
etc.). Homogeneous (x) and inhomogeneous coordinate vectors (X) are
related by xT ~ (x71)T.
A point X in projective 3-space, modeled using an homogeneous 4-vector
is projected onto the image plane via x ~ PX. The image point z is
represented by an homogeneous 3-vector. The notation ~ represents the
equality up to a non-null scale factor. The projection matrix P has 11
essential dof.

Two views: The geometry of two views is described by the epipolar ge-
ometry, contained in the 3x3 rank-deficient fundamental matrix F. A
pair of camera matrices define a projective basis for the reconstruction.
Among the multiple pairs of camera matrices compatible with F, one
can extract those corresponding to the canonic projective basis, given by
P ~ (I|0) and P' ~ (Hale') [5].
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The second epipole €' is the projection of the first camera center onto
the second image plane and is defined by FTe’ = 0 where T is the trans-
position. The matrix H, is any plane homography charaterized by the
inhomogeneous 3-vector a and given by H, ~ [e']«F + e’awhere [.]« de-
notes the matrix associated with the cross product, i.e. [v]xq = vx q. Let
us define the canonic plane homography H for a = 0 by H ~ Hg ~ [€'] (F.
It can be extracted from any plane homography Ha by H ~ [e/]3H, and
is characterized by the constraint HTe’ = 0 [5]. We use the canonic plane
homography in conjunction with the second epipole to parameterize the
motion between two views.

Three or more views: Two or more views completely fix the projective
basis. Consequently, when adding a supplementary view, in the general
case its camera matrix does not have any special form and has to be
entirely parameterized.

2.1 Summary of Motion Parameterization

Our motion parameterization, denoted by p is consistent but not minimal.
The two view relation is described by the canonic plane homography and the
epipole in the second view (the fundamental matrix can be constructed from
these). Each supplementary view is then modeled by a complete perspective
projection matrix. This is summarized in table 1. Gauge constraints [10]

F#views #dof #param. parameters gauge constraints
N=2 7 12 Hoe [HPF=e|>=1He =0
N>3 74+11(N—-2) 12(N—-1) +P; P> =1,k€3...N

Table 1. Motion parameterization.

are necessary to fix the parameters’ internal freedoms. Their number is the
difference between the number of parameters of the model and the number of
essential dof. They are used in the optimization process for the MLE described
in §4.

3 Structure Parameterization

In this section, we give our parameterization of the structure. We assume
that it is composed of planar patches and model it by a set of planes and
a set of points, each one represented according to the number of modeled
planes it lies on (from zero up to three).

We first give a representation of planes, in 8D and then show that mini-
mally representing points on planes can be achieved in 2D.
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3.1 Planes

A plane 7 is modeled using its equation 7 in the canonical basis. As 7 is an
homogeneous 4-vector, an additional constraint is needed to reflect well the 3
dof of the plane and to be therefore a consistent parameterization. A solution
is to fix the scale factor of 7 using the additional constraint ||||? = 1.

3.2 Points

Unconstrained points: In our case, unconstrained means that the point X
considered does not belong to any modeled plane. Consequently, its number
of dof is 3. In the projective space P3, a general representation of X with
only 3 parameters is not possible without restriction. On the other hand,
parameterizing X on the image level with 3 parameters is possible. Let us
see how this can be done.

Let z and z' be two reprojections of X. They are not independent but
related by the epipolar constraint, which emphasizes their 4-1=3 dof. This
constraint is represented by a fundamental matrix F between the two images,
derived from their projection matrices [5]. Unfortunately, this constraint is
bilinear in the points coordinates and can not be used easily to reduce the
number of dof of the points.

On the other hand, we can use the interpretation of the epipolar con-
straint. Indeed z lies on [, its associated epipolar line in the first image, given
by 1~ [e]xx ~ FTx'. This reduces the number of dof of z from 2 to 1.

The problem is now to parameterize a finite point on a given line, differ-
ent from the line at infinity, with 1 parameter. This can be done using the
construction of figure 1: the point z is represented by its signed distance A
from a reference point b of [. The correspondence between A and z is then
given by:

_ _ !
A 2
XN(Il)>+)\AlN b+l%+l% (—ll) 5

1

where 4; is the normalized direction of I given by A; = % The point
b can be freely chosen along I. A convenient one is given by the orthogonal
projection of o, the center of the image coordinate system, which yields:

LR | Is l
b~ (0 |1||21> Rz_( 3+13 <l2) where o' ~ (8,1)" ~ (0,0,1)".
1

An unconstrained point X is represented by its reprojections z and z' into
two images. The reprojection x is parameterized on its epipolar line using one
parameter, A\ and z’ using its two image coordinates. Recovering the point
X can then be achieved using any triangulation method [4].
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z

T

Fig. 1. Principle of parameterizing a point on a line in E2.

Single-coplanar points: Such a point, constrained to lie on a plane 7 has
2 dof. Given one of its reprojections z, the corresponding &D point X can
be recovered using the plane equation 7 and the camera matrix P. Indeed,
the following equations hold: x ~ PX and 77X = 0. This conducts to the
following closed-form solution for X:

1 (X P
X~A; (0> where A, (,TT)' (3)

Consequently, we choose to represent this kind of point by its reprojection
in an image which has the adequat 2 dof. The 3D point is directly obtained
from the projection matrix and the plane equation.

Multi-coplanar points, two planes: Such a point X, constrained to lie on the
intersection line of planes 7 and 7' has only 1 dof. Let = be a reprojection
in an image, P the corresponding camera matrix and [ the reprojection of
the intersection line of 7 and #’. The problem is similar to the unconstrained
case: we have to represent an image point lying on an image line with 1
parameter. We choose the same solution as that established previously, i.e. =
is represented by its signed distance with a reference point lying on [.

The corresponding 3D point X is then obtained, as for the previous one
plane case, using equation (3) (the result does not depend on which plane 7
or 7' is used to reconstruct).

The line I can be obtained from 7 and #«'. Using equation (3) for both
planes, we obtain the equality:

x x —1 Csx3 ds
(0) NB(O)VmelwhereBNA,ﬂAﬂ ~( ol a)'

The line [ can then be extracted directly from B as 1 ~ c. This can be
demonstrated using the fact that B(x" 0)T ~ (xTCT ¢™x)T ~ (xT 0)T which
implies ¢"x=0. Let ' be another point of [.We obtain similarly ¢"x'=0.
These two equalities mean that ¢ ~ x x x’ [.
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Multi-coplanar points, three planes: Such a point X does not have any dof.
Indeed, the intersection of three planes is, in general, a point. Recovering the
corresponding 3D point is straightforward. Let the three planes containing
X be w, 7' and 7. We have the three equations 7' X = 7#'TX = #"TX =0
which yield X = ker(D) where DT ~ (7|7'|7").

3.3 Summary of Structure Parameterization

Our structure parameterization, denoted by v, relies on mixed 2D/38D en-
tities. Planes are represented by their equations in the canonic projective
basis whereas the representation of points is image-based, depending on the
number of planes they lie on. This is summarized in table 2. For the image-

X €  #dof param. comments
P? 3 A, x signed distance and 2D point
i 2 x 2D point
w7 1 A signed distance
w7 0 0 intersection of three planes

Table 2. Structure parameterization for points.

based parameterization of points, we could have used any image, especially
that with camera matrix P ~ (I|0) to simplify expressions. However, it is
important that the reprojection used for each point is in the image because
of numerical stability and to avoid the special case of infinity. Consequently,
each point is represented in an image where it is visible (two images for the
unconstrained case).

4 Optimal Estimation

In this section, we derive the MLE for constrained structure and motion. We
first describe how to initialize the previously given parameterization from a
general structure and then give details about the MLE.

4.1 Constrained Structure Initialization

The initialization is done from a previously estimated unconstrained structure
and motion. A clustering of points into multi-coplanar sets is also given.

Planes: A plane is fitted to the points of each coplanar group. Let X be a
point of the plane , the linear constraint X7 = 0 holds. By stacking
the equations for all points lying on 7, a linear system is obtained for 7
and solved using an SVD [6].
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Unconstrained points: Such points are taken directly from the structure
obtained previously. Indeed they are not subject to modeled geometric
constraint relative to planes.

Single-coplanar points: We use the reprojection of each point in a single
view without modification. This introduces a bias which, in general, will
be small and without consequence after the final optimization.

Multi-coplanar points, two planes: We project orthogonally the repro-
jection of X on the reprojection of the line of intersection of the two
planes containing X . This gives the initialization of A.

Multi-coplanar points, three planes: Such a point does not have any
dof and consequently, does not need any initialization.

4.2 Maximum Likelihood Estimation

This consists in minimizing the cost function denoted by C corresponding to
the reprojection residual. This is also called the direct approach [10]. The
value of the cost function C depends on measured (automatically detected or
user-provided) image points z and on the reprojected structure points . It
is defined by (d(.,.) is the Euclidean distance):

N M
Clu,v) =YY wij d(ij, &),

i=1 j=1

where w;; = 1 if and only if the j-th point appears in the i-th image
and 0 otherwise and M is the number of points. The structure is extracted
from the parameterization 7 (see §3.3) and reprojected using camera ma-
trices extracted from ji (see §2.1) to obtain the reprojections #. The opti-
mal structure and motion are then given by the minimization of C via the
Levenberg-Marquardt algorithm [6] using numerical differentiation: {f, 7} =

argminC(u,v). The image coordinates are normalized so that they lie in
12214
[-1...1]. Gauge constraints on motion (see §2.1) and planes (see §3.1) are

enforced at each step of the optimization process.

4.3 Experimental Results Using Simulated Data

We compare the results obtained using our parameterization to those ob-
tained with other existing methods. The test bench consists in a cube of one
meter side at different distances of a set of cameras. Points are generated on
the cube according to the following distribution: 50 points on each face, 10
points on each edge and 1 point per vertex. These points are projected onto
the image planes and a Gaussian centered noise is added.

The quality of a reconstruction X is measured using the 8D residual of the

Euclidean distance to the true one X: E3 = \/ ﬁ Z]Ail d?(H3X, X), where




Constrained S&M from N Views of a Piecewise Planar Scene 9

H; is a 8D homography (mapping the projective to the Euclidean structure)
estimated using non-linear minimization of Fs. In the following experiments,
two cameras have been simulated.

The estimators compared can be divided into two sets. Those that do not
use the coplanarity information. Their names begin with Po-, which stands
for points. The others, using the piecewise planarity, i.e. based on planes and
points on plane reconstruction. Their names begin with Pl-, which stands for
planes. In more detail:

e Po-ML: optimal structure and motion [4];

e Po-trueM: optimal reconstruction based on a bundle adjustement using
the true camera matrices;

e Pl-wt: use additional equations to model multi-coplanarity. This is method
[8] adapted to a projective framework;

e PI-1: use an explicit structure parameterization to model coplanarity [1];

e PI-3: similar to PI-1, but takes into account multi-coplanarity as described
in this paper;

e Pl-truer: similar to PI-3, but uses the true plane equations.

-<-  PoML e -<a-  Po-ML /
0009 Po-trueM e 0045 Po-lrueM /
—&—  Plut p 2 —a—  Plut
ooosf-| —— Pl o ooaf| —— PLI
PL3 »* PL3
Pliruex

—*—  Pltruer 7 —

g

3D residual (meters)
8

05

1 15 p T4 s 6 7
Noise standard deviation (pixels) Planes unflatness (%)

(a) (b)

Fig. 2. Comparison of the different methods using the 3D residual E3, for perfectly
(a) or approximately coplanar points (b).

The first experiment, figure 2a, shows that when points are perfectly
coplanar, methods Po- based on individual points reconstruction give results
of a quality lower than methods PI- modeling also planes. In more detail, we
can say that the explicit parameterization of the geometric constraints (meth-
ods PIl-1 and PI-8) improves the results obtained using additional equations
(method Pl-wt). Taking into account the multi-coplanarity (method PI-8) in-
stead of only the coplanarity (method PI-1) does not significantly improve
the results.

The second experiment, figure 2b, shows the results obtained when sim-
ulated points are offset vertically from their planes by a random distance
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(Gaussian noise with standard deviation between 0 and 0.1 meters). We ob-
serve that there is a threshold on the plane unflatness where methods PI-
begin to perform worse than methods Po-. At this point, it is interesting to
measure the ratio between the plane unflatness and the size of the simulated
planar surface. This value is called the breakdown ratio and is denoted by
e. In the case of figure 2b, e=6%. Table 3 shows the value of ¢ established
experimentally for different cases. The less stable the configuration is (large

3m. 10 m. 20 m.
1 pixel [0.5% 2% 4%
3 pixels| 2% 6% 9%

Table 3. Breakdown ratio ¢ for different combinations of distance scene/cameras
and noise level.

noise and/or high distance scene/cameras), the higher is ¢, i.e. the more im-
portant is the incorporation of piecewise planarity constraints, even if the
scene is not perfectly piecewise planar.

The values of one or several percent in table 3 represent relatively large
variations which are superior to those of a great majority of approximately
planar real surfaces. Consequently, we can say that there are a lot of cases
when a method using piecewise planarity will perform better than any method
based on individual point reconstruction.

5 Results Using Real Images

In this section, we present the reconstruction results obtained using the im-
ages of figure 3. Similar results have been obtained with other images (on the
images shown in [1] for example). We describe the different steps necessary
to perform a complete reconstruction, from the images to the 8D textured
model. This process reflects the modular organization of our implementa-
tion. The computational time needed to reconstruct such a scene is about
five minutes.

Fig. 3. Images (3 out of 4) used to validate the method.
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Structure and motion initialization: This has been obtained using im-
age point matches given manually. We perform a partial reconstruction
from two images using the method [7] and incrementally add the others
to obtain the complete structure and motion. We then run a bundle ad-
justment to minimize the reprojection error and to obtain the maximum
likelihood estimate for an unconstrained structure.

Multi-coplanarity: These relationships are established semi-automatically
using plane homographies. The user provides three image points matched
in at least one other view to obtain a first guess for the plane. The other
points lying on this plane are then automatically detected. The user may
interact to correct badly clustered points and add points visible in only
one view.

Constrained refinement of structure and motion: From the previous
data, the structure is parameterized as described in this paper and the
maximum likelihood estimate for constrained structure and motion is
computed.

Structure completion: Points appearing in only one view but on at least
one modeled plane are automatically reconstructed using equation (3).

Calibration: The metric structure is obtained via a calibration process
relying on the definition of a Euclidean base, i.e. the user provides the
Euclidean coordinates of five reconstructed points. Alternatively, self-
calibration methods could be used, but this is not the topic of this paper.

Texture maps: The texture mapping requires the user to provide a polyg-
onal delineation for each planar facet in one of the images. The texture
maps are then extracted and perspectively corrected using calibrated pro-
jection matrices. Figure 4 shows different views of the recovered textured
model.

Fig. 4. Different views of the reconstructed model.
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6 Conclusions and Perspectives

We have presented an MLE for the complete structure and motion from N
uncalibrated views of a piecewise planar scene. The structure is consistently
represented while incorporating multi-coplanarity relationships, correspond-
ing to the geometric constraints given by the observation of such a scene.

Experimental results on simulated data show that the quality of the re-
construction obtained with plane-based methods is clearly superior to those
of methods that reconstruct points individually and that this conclusion is
true even if the surfaces are only approximately planar, up to unflatness ratios
higher than those of approximately planar world surfaces. Experiments also
show that our method improves the accuracy of reconstruction compared to
other existing plane-based methods. Real images have been used to validate
the approach.

We are currently investigating the complete automatization of the image-
based steps of the reconstruction system, i.e. the plane detection and the
plane-based image matching. We also plan to use an autocalibration process
to upgrade the reconstruction to metric.
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