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Abstract

In this paper, we address the problem of structure and
motion recovery from two views of a scene containing
planes, i.e. sets of coplanar points. Most of the exist-
ing works do only exploit this constraint in a sub-optimal
manner. We propose to parameterize the structure of such
scenes with planes and points on planes and derive the
MLE (Maximum Likelihood Estimator) using a minimal pa-
rameterization based on 2D entities. The result is the es-
timation of camera motion and 3D structure in projective
space, that minimizes reprojection error, while satisfying
the piecewise planarity. We propose a quasi-linear esti-
mator that provides reliable initialization values for plane
equations. Experimental results show that the reconstruc-
tion is of clearly superior quality compared to traditional
methods based only on points, even if the scene is not per-
fectly piecewise planar.

1. Introduction

The recovery of structure and motion from images is one
of the key goals in photogrammetry and computer vision.
The special case of piecewise planar reconstruction is par-
ticularly important due to the large number of such scenes in
man-made environments. Piecewise planar structures con-
stitute very strong geometric constraints from which we can
expect better reconstruction results than from the traditional
methods based only on points.

We propose a projective framework including the MLE
(Maximum Likelihood Estimator) for structure and motion
recovery from two views of a piecewise planar scene, which
provides the flexibility of working with uncalibrated or par-
tially calibrated images.

Such an estimator needs an algebraic representation of
geometric structures, either in 3D or image-based. Both ap-
proaches have advantages and drawbacks. In the 3D case, it
is difficult to enforce geometric constraints (e.g. express a
point that belongs to a plane, using only two parameters),
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especially in a projective framework. In [11] for exam-
ple, the structure is corrected to be quasi-piecewise planar
during bundle adjustment via heavily weighted additional
equations. So, on the one hand, the problem is overpa-
rameterized, on the other hand large terms enter the equa-
tion system, which might affect numerical stability. As for
the image-based approach, 3D geometric entities are usu-
ally represented indirectly (e.g. an homography matrix for
a plane), consistent modeling can thus be non-trivial, espe-
cially if the number of images is not small.

On ther other hand, the algebraic entities on the image
level are easier to minimally parameterize (e.g. an image
point for a point lying on a plane).

The main result of this paper, §2 is a consistent param-
eterization on the image level expressing the entire scene
geometry. This provides the material to devise the MLE
in §3. A method to obtain reliable initialization values for
plane parameters is described in §4. Experimental results
are presented in §§3 and 4 and §5 for simulated data and
real images respectively followed by our conclusions and
perspectives. In the following two paragraphs, we review
existing work and give some preliminaries.

1.1. Previous Work

Maybe the first attempt to give a minimal parameteriza-
tion of camera motion in the case of two uncalibrated views
is [7] where the author addresses the particular case of finite
epipoles and devises a minimal parameter set, called a map,
for the epipolar geometry. This work has been extended to
the general case in [16] where the author devises all 36 pos-
sible maps (different ways of parameterizing rank-2-ness of
the fundamental matrix and of dealing with the scale un-
certainty). The optimization procedure is costly because of
a step by step choice of the appropriate map and the prac-
tical interest is limited due to the high number of possible
maps. The link with plane homographies has not been made
in these two works.

In [3, 12], two different methods for structure and motion
in a piecewise planar environment are proposed for the case
of calibrated images. They do not include an image level
representation and do not yield an MLE.



The constraint of coplanarity has been studied in [11,
15]. The 3D representation of structures does not permit to
model points on planes (see above). The results obtained in
[11] show that the accuracy of the reconstruction is not bet-
ter compared to not using coplanarity information but that
it appears visually smoother when using planar structures.

In our approach, where all geometric entities are ex-
pressed on the image level, points on planes are minimally
parameterized so that they really lie on planes. The MLE is
then obtained without using superfluous equations.

1.2. Preliminaries

We use perspective projection to model cameras. In this
case, two projections x and x′ of the same 3D point X are
related via x′TFx = 0 where F is the 3×3 rank deficient
fundamental matrix representing the epipolar geometry [7].
The two epipoles e and e′ are defined as Fe = FTe′ = 0.
The epipolar geometry can be decomposed as e, e′ and the
epipolar transformation h̃, a P

1 homography relating corre-
sponding epipolar lines [7, 16].

If the point X lies on a plane, x and x′ are related via
x′ ∼ Hx where H is a full rank (in general) 3×3 matrix
representing a plane homography. Any plane homography
H is linked to the fundamental matrix via F ∼ [e′]×H where
[.]× denotes the matrix associated with the cross product,
i.e. [v]×q = v × q. This implies that if we fix a reference
plane homography Hr, H can be written [9]:

H ∼ Hr + e′aT, (1)

where a is an inhomogeneous 3-vector. The equation of
the plane π inducing H is (aT,−1)T in the projective basis
defined by the projection matrices P ∼ (I3|03) and P′ ∼
(Hr|e

′). In this basis, the coordinates of a point X lying on
the plane π, given e.g. its projection x in the first image,
are:

XT ∼ (xT,xTa). (2)

We define an algebraic distance da between two points x

and y of the Euclidean plane E
2 by d2

a(x,y) = ||S(x ×
y)||2 where S = (I2|02). The relation with the Euclidean
distance d is via a scalar w depending only on the last ele-
ments of x and y:

d2(x,y) = w d2
a(x,y) where w =

1

(x3y3)2
. (3)

Throughout this paper, we use the Levenberg-Marquardt al-
gorithm [10] to conduct non-linear optimization processes.

2 A Consistent Structure and Motion Param-
eterization

In this section, we define a consistent image level repre-
sentation for the structure and motion of a piecewise planar
scene. This parameterization is consistent in the sense that

its number of dof strictly corresponds to the number of es-
sential dof of the geometry, namely 7 for the epipolar ge-
ometry, 3 for each modeled plane and 2 for each point on a
modeled plane. More details can be found in [1].

For that purpose, we first introduce what we call the ex-
tended epipolar transformation, a singular P

2 homography
relating particular points on corresponding epipolar lines.

We then construct a parameterization of a reference ho-
mography and of the fundamental matrix. Finally, we con-
sider the problem of selecting the most appropriate map.

2.1. The Extended Epipolar Transformation

Let us define points p and p′ as the intersections of two
corresponding epipolar lines and respectively two lines d

and d′ not containing the epipoles. These points, see figure
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Figure 1. The role of the extended epipolar transforma-

tion.

1, are related by the extended epipolar transformation H̃,
whose structure depends on both d and d′. The choice for
d and d′ is explained below.

Let us derive in detail the case when both epipoles are
finite. The only lines that never contain e and e′ are the
lines at infinity in each image, hence d ∼ d′ ∼ (0, 0, 1)T.
The intersection points take the form p ∼ (p̄, 0)T and
p′ ∼ (p̄′, 0)T. Consequently, the extended epipolar trans-

formation writes H̃ ∼

(
h̃

q
0T

2

)
where q is any 3-vector,

chosen here as q = 0 and h̃ the epipolar transformation.
There also exist particular two view configurations [14]

where the extended epipolar transformation might take a
simplified form. The principle of parameterization devel-
oped here can easily be applied to them.

Table 1 summarizes the 3 basic cases that have to be pa-
rameterized. Note that the number of essential dof is not
the same for each case because a finite epipole has 2 but an
infinite one has only 1. The minimal set of parameters is
designated by ν. When an epipole is at infinity, e.g. e, we
ensure that it can be parameterized using its second element
e2 by using an appropriate image rotation (which leaves the
residual invariant).

case e e
′ #dof ν

1 —∞ —∞ 7 h̃, e1 , e2 , e′1 , e′2
2 —∞ ∞ 6 h̃, e1 , e2 , e′2
3 ∞ ∞ 5 h̃, e2 , e′2

Table 1. The 3 basic cases that have to be parameterized.



2.2. Construction of the Reference Homography

This section aims at giving the expression of a reference
homography Hr in terms of the parameters ν of the epipolar
geometry. As any regular plane homography can be used,
we choose a practical form in the 3 parameters space.

Let us start by giving a general formula to express plane
homographies via H̃. For a given point x in the left image,
we find the corresponding epipolar line and intersect it with
the line d to get the point p. Using H̃, we retrieve the point
p′ of the right image. Plane homographies are then obtained
by adding the term e′aT where the inhomogeneous 3-vector
a parameterizes the family [9]. This yields the formula:

Ha ∼ H̃[d]×[e]× + e′aT. (4)

When fixing a, the above expression gives a reference
homography. Table 2 shows the derivation for the 3 basic
cases. These expressions are practical in the sense that Hr

is regular (det(Hr) = −det(h̃) in all cases) and that their
forms are affine-like (a row with two zeros and a one) and
so handled easily, e.g. for the computation of H−1

r .
We derive in detail the case 1. In this case, we have

d ∼ l∞ ∼ (0, 0, 1)T. Using the formulation established
previously for H̃, we deduced from equation (4):

Hr ∼ H̃[l∞]×[e]×+e′aT ∼

(
−h̃ h̃(e1, e2)

T

0T

2 0

)
+e′aT.

Choosing a = (0, 0, 1)T yields the affine expression given
in table 2.

case a Hr

1 (0, 0, 1)T

(
−h̃ h̃(e1, e2)T + (e′1, e′2)T

0
T
2 1

)

2 (0, 0, 1)T

(
0

T
2 1

−h̃ h̃(e1, e2)T + (e′2, 0)T

)

3 (1, 0, 0)T

(
1 0

T
2

h̃(e2, 0)T + (e′2, 0)T −h̃

)

Table 2. Parameterization of a reference plane homogra-

phy Hr for the 3 basic cases defined in table 1.

2.3. Construction of the Fundamental Matrix

Let us give the general formulation of the fundamental
matrix using the same reasoning as above. Given a point
x in the left image, we know how to associate to it a point
p′ lying on its associated epipolar line in the right image.
The last step to obtain this epipolar line is then to link p′

and e′. The fundamental matrix is then expressed by F ∼

[e′]×H̃[d]×[e]× . The resulting form of F for the 3 basic
cases is given in table 3. The expression for case 1 coincides
with that given in [7, 16].

2.4. Choosing the Best Map

A method to choose the best map for the fundamental
matrix is given in [16]. Provided an initial guess, it consists

case F

1




c d −ce1 − de2
−a −b ae1 + be2

ae′2 − ce′1 be′2 − de′1 k




with k = (ce1 + de2)e′1 − (ae1 + be2)e′2

2




−ce′2 −de′2 (ce1 + de2)e′2
c d −ce1 − de2

−a −b ae1 + be2




3




ce2e′2 −ce′2 −de′2
−ce2 c d

ae2 −a −b




Table 3. Fundamental matrix parameterization for the 3

basic cases defined in table 1. The scalars a, b, c and d

are the coefficients of the epipolar transformation h̃.

in selecting the map that locally is the least singular. The
major drawback of this criterion is that, as it is local, it has
to be included in the optimization loop. Consequently, all
36 maps are tried at each step of the optimization process,
which represents a non negligible cost. Moreover, this does
not take into account that the number of dof is not the same
for all maps. Consequently, it might be very appropriate to
use a model selection criterion such as MDL or AIC [6] and
not at every step of the optimization process.

3. Optimal Estimation

In this section, we derive a criterion to compute the opti-
mal structure and motion of a piecewise planar scene. Opti-
mal is taken in the sense of the maximum likelihood under
the assumption of i.i.d. centered Gaussian noise in mea-
sured image point coordinates.

Two functions give respectively the fundamental matrix
F ∼ f(ν) and any plane homography Hj ∼ h(ν, aj) from
the parameters ν of the epipolar geometry and a plane equa-
tion aj (according to the expressions in tables 2 and 3 and
equation (1)).

3.1. A Criterion for the MLE

Each point lying on a modeled plane is parameterized
in the left image. Its corresponding point in the right im-
age is given by applying the adequate plane homography.
For a given map, the residual to minimize is then given by
RHj

=
∑

{(x↔x′)∈πj}

(
d2(x, x̂) + d2(x′, Hj x̂)

)
, where πj

denotes the plane of equation aj corresponding to the plane
homography Hj .

The optimal parameters are obtained as:

{F, a1, . . . , am, {x̂}} = argmin
ν∪{a1,...,am}∪{x̂}

m∑

j=1

RHj
, (5)

under the constraints F ∼ f(ν) and Hj ∼ h(ν, aj). Note
that maximum likelihood estimates are achieved only in the
case when each point belongs to only one plane (e.g. if
x ∈ π1 and x ∈ π2, we can not guarantee that H1x̂ ∼
H2x̂). The epipolar geometry is implicitly estimated via
plane homographies.

Note that this is very different from estimating individual plane homo-



It is also possible to make points {y ↔ y′} that do not
belong to any plane, contribute to the estimation by adding
the residual RF =

∑
{y↔y′}

(
d2(y, ŷ) + d2(y′, ŷ′)

)
to

equation (5), plus the constraints ŷ′TFŷ = 0 so that points
satisfy exactly the epipolar geometry.

3.2. Experimental Results

In this section, we compare our MLE to various others
that use or do not use coplanarity information, using sim-
ulated data. Our experimental results concern case 1 of §2
(both epipoles are finite).

The test bench consists of a one meter cube at various
distances from two cameras. A number of 50 points ly-
ing on each of three faces of the cube are projected onto
the images. Gaussian centered noise is added to the image
points. We evaluate the methods by assessing the quality of
3D reconstructions that are based on the image level estima-
tion results. 3D reconstruction is achieved using triangula-
tion [5] in the general case, and equation (2) for points on
planes. The quality measure is the RMS 3D Euclidean dis-

tance E3 =
√

1
n

∑
{X↔X̄} d2(H3X, X̄), where {X} is the

estimated projective reconstruction and {X̄} the true Eu-
clidean one. The 3D homography H3 is estimated via non-
linear minimization of E3.

The estimators compared are divided into two sets.
Epipolar geometry-based estimators, Methods F [5]:

• FLin+BA: the normalized 8 point algorithm for the
epipolar geometry and a bundle adjustment;

• FML: the MLE for the epipolar geometry and the im-
age points;

• trueF+BA: bundle adjustment of points using the true
epipolar geometry.

Plane-based estimators, Methods H:

• HiML+FML: maximum likelihood estimation of plane
homographies [5] and then the method FML;

• consHiML: the consistent approach developed in this
paper (equation (5));

• trueHi+BA: bundle adjustment of points [5] using the
true plane homographies.

We have carried out two sets of experiments, where 3D
points lie in either perfectly or nearly coplanar groups.

The first set of experiments (see figure 2a) show that
when 3D points are perfectly coplanar, Methods H perform
better (the residual is two times lower) than Methods F. In

graphies, and subsequently F from these [8], which is known to be rather
unstable. Here, the epipolar geometry and all plane homographies are es-
timated simultaneously.
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Figure 2. Comparison of the different methods using the

3D residual E3, for a distance scene/cameras of 10 me-

ters and versus (a): image noise and (b): planes unflat-

ness under a 3 pixels image noise.

3 m. 10 m. 20 m.

1 pixel 0.5% 2% 4%
3 pixels 2% 6% 9%

Table 4. Breakdown ratio ε for different combinations of

distance scene/cameras and noise level.

more detail, we can say for Methods F that trueF+BA per-
forms better than FML which itself performs better than
FLin+BA, and the same for Methods H, trueHi+BA per-
forms better than consHiML which itself performs bet-
ter than HiML+FML. When the distance scene/cameras or
noise level increase, Methods F diverge, whereas Methods
H do not.

Now, let us investigate the second set of experiments.
In this case, the 3D points are offset vertically from their
planes by a random distance (Gaussian noise with standard
deviation between 0 and 0.1 meters). Once again, the be-
haviour of the tested methods can be divided into the same
two sets as above. Let us denote the breakdown ratio ε as the
ratio between the planes unflatness and the size of the sim-
ulated planar surface where Methods H begin to perform
worse than Methods F, e.g. for figure 2b, ε=6%. Table 4
shows the value of ε established experimentally for differ-
ent cases. The less stable the configuration is (large noise
and/or a high distance scene/cameras), the higher is ε, i.e.
the more important is the consistent incorporation of copla-
narity constraints, even if the scene is not perfectly piece-
wise planar.

The values of one or several percent in table 4 represent
relatively large variations which are superior to those of a
great majority of approximately planar real surfaces. Con-
sequently, we can say that there are a lot of cases when a
plane-based method will perform better than any method
based only on points.

Now, let us see an efficient way of initializing the values
of the plane parameters for the MLE.



4. Initialization of Plane Equations
In this section, we aim at finding a suitable initialization

of the modeled scene planes required by the MLE of §3. At
this point, we assume that the image points are clustered
into coplanar groups (see §5). The choice of an accurate es-
timator is important since the result will be used to detect
and add point correspondences that belong to the observed
planes. Moreover, this is essential to prevent the non-linear
optimization process of the MLE falling into a local opti-
mum.

Given the epipolar geometry, one can extract a reference
plane homography Hr and the right epipole e′ as proposed
in §2. The plane equations are then given from plane homo-
graphies using equation 1. However, an estimated homog-
raphy does not correspond to a world plane in general. We
show how to constrain the estimation so that the estimated
homography really corresponds to a world plane.

We have chosen to follow the reduced approach [13]
which consists in minimizing a geometric residual in both
images. This criterion is known to give stable results and
involves only the parameters of the model (here a plane
homography) into the optimization whereas the direct ap-
proach [13] also involves the data. The drawback of such
a criterion is that it is non-linear due to the use of the Eu-
clidean distance and the need to compute the inverse ho-
mography. We show that it can be quasi-linearly optimized.

Let us start from the inconsistent criterion correspond-
ing to any 2D homography for the reduced approach: H ∼
argminHR(H) where the residual R is given by R(H) =∑

{x↔x′}

(
d2(x′, Hx) + d2(x, H−1x′)

)
. The scale ambi-

guity of H is fixed using ||H||2 = 1.
Now, we want to ensure that the result is a plane homog-

raphy. This can be done by introducing equation (1) in the
inconsistent criterion:

H ∼ Hr + e′(argmin
a

R(Hr + e′aT))
T

, (6)

where a corresponds to the plane equation.
The next step consists in finding an expression for R(H)

that is linear in the unknowns a. In our consistent situation,
there exists a linear expression for the inverse homography:

H
−1 ∼ eaT

H
−1
r − (1 + aTe)H−1

r . (7)

The reader can easily check its validity by doing the product
(Hr+e′aT)(eaTH−1

r −(1+aTe)H−1
r ) ∼ I3. Note that e′ =

Hre and not just e′ ∼ Hre is required and that Hr has to
be full-rank. This expression is derived from the Sherman-
Morrison non-linear formula [5].

The non-linear distance d can be replaced by the bilinear
one da, weighted as indicated by equation (3). The two
terms inside the sum in the residual R then become, after
some algebraic manipulations:

d2(x′, Hx) = w||S[x′]×e′xTa + S[x′]×Hrx||
2

d2(x, H−1x′) = w′||S[x]×
(
[[H−1

r x′]×e]×a − H
−1
r x′

)
||2.

The residual R can then be rewritten to form a linear
system in terms of a, where each point correspondence ac-
counts for two linearly dependent equations. This allows to
iteratively solve for a using the following quasi-linear opti-
mization process:

1. initialization: set w = w′ = 1 for all matches;

2. estimation: estimate a then H from equation (6) using
standard weighted least squares;

3. weighting: use H to update weights w and w′ accord-
ing to equation (3);

4. iteration: iterate steps 2. and 3. until convergence (see
below).

Convergence is achieved when the relative difference be-
tween two consecutive residuals vanishes. This estima-
tor can be used with a minimum of three point correspon-
dences.

We have conducted a set of experiments to compare three
estimators:

• NLin: non-linear minimization of the residual R. The
resulting homography does in general not correspond
to a world plane;

• QLinC: the above quasi-linear algorithm (C stands for
Consistent, i.e. the resulting homography corresponds
to a world plane);

• NLinC: non-linear minimization of the residual R with
the consistency constraint enforced.

The test bench is the same as in §3. A number of 50 points
lying on each of three faces of the cube are projected onto
the images. Gaussian centered noise is added to the image
points. The maximum likelihood estimate of the epipolar
geometry is computed from all points and an homography
is estimated from the points of only one face of the cube.

A first experiment shows that all methods minimize
roughly equally well the residual R for various noise lev-
els and distances scene/cameras.

We then measure the Frobenius norm between the nor-
malized versions of the estimated homography and the true
one. The values are obtained as the median for 100 trials.
Figure 3 shows that the quality achieved by the inconsistent
method NLin is worse compared to those achieved by the
consistent ones. The best quality is achieved by the estima-
tor NLinC, closely followed by QLinC.

Other experiments not shown here permit to say that the
quality increases with the number of points or when using
the true fundamental matrix instead of an estimated one.
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Figure 3. Comparison of the different methods using the

Frobenius norm, for different distances scene/cameras

and a 1 pixel noise level.

The number of linear systems solved during the opti-
mization process reflects the cost of each algorithm, [2 . . . 8]
for QLinC and [2 . . . 20] for NLin and NLinC.

The other advantages that make us choose QLinC are its
easy implementation and its low cost.

5. Results Using Real Images
In this section, we present the reconstruction results that

we obtained using the real images of figure 4a. We use the
technique given in [16] to obtain a first guess for structure
and motion in terms of points and a RANSAC-like [4] algo-
rithm to semi-automatically cluster these points into copla-
nar groups, provided the LinC estimator (see §4) for the ran-
dom sampling and QLinC to further refine plane equations.
The MLE of §3 is then run. Finally, the user provides a de-
lineation of each plane in an image so that texture maps can
be extracted and perspectively corrected. Textured render-
ings are visible in figure 4b and 4c for the perspective and
metric models respectively. The latter is obtained via the
autocalibration process described in [2].

(a)

(b) (c)

Figure 4. (a): the Game System stereo image pair and

textured rendering of the recovered model, (b): projec-

tive and (c): metric.

6. Conclusions and Perspectives
We have presented an MLE for the complete structure

and motion from two uncalibrated views of a piecewise pla-
nar scene. The geometric structures are consistently repre-
sented on the image level by a fundamental matrix, a set of
plane equations and points on planes.

The initialization of the MLE is provided by the 8 point
algorithm for the epipolar geometry. The plane equations
are then estimated via 2D homographies constrained to cor-
respond to a world plane. The estimator is quasi-linear and
follows the reduced approach [13].

Experimental results on both simulated data and real im-
ages show that the reconstruction quality obtained with our
consistent plane-based approach is clearly superior to those
of methods that only reconstruct the individual points, even
if the scene is not perfectly piecewise planar.

We are currently investigating the use of model selec-
tion criteria for the choice of the most appropriate map for
a given fundamental matrix. We also plan to extend the ap-
proach to more than two images.
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