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INRIA Rhône-Alpes, 655, av. de l’Europe

38334 St. Ismier cedex, France.

Abstract

In this paper, we consider structure and motion recovery for scenes consist-
ing of static and dynamic features. More particularly, we consider a single
moving uncalibrated camera observing a scene consisting of points moving
along straight lines converging to a unique point and lying on a motion plane.
This scenario may describe a roadway observed by a moving camera whose
motion is unknown.

We show that there exist matching tensors similar to fundamental ma-
trices. We derive the link between dynamic and static structure and motion
and show how the equation of the motion plane (or equivalently the plane
homographies it induces between images) may be recovered from dynamic
features only.

Experimental results on real images are provided, in particular on a 60-
frames video sequence.

1 Introduction
Most existing works on the geometry of multiple images rely on the assumption that
the observed scene is rigid. The rigidity constraint allows to derive matching relations
among two or more images, represented by e.g. the fundamental matrix or trifocal ten-
sors. These matching tensors encapsulate the motion and the intrinsic parameters of the
cameras which took the underlying images, and thus all the geometric information needed
to perform 3D reconstruction. Matching tensors for rigid scenes can also be employed for
scenes composed of multiple, independently moving objects [3, 5, 15], which requires
however that enough features be extracted for each object, making segmentation, at least
implicitly, possible.

On the other hand, there is a growing body of literature [1, 6, 7, 10, 11, 14, 16] deal-
ing with the case of independently moving features, often termed as dynamic features.
The goal of these works is to provide algorithms for dynamic structure and motion re-
covery as well as matching tensors for images of dynamic features. General, as well as



highly constrained, dynamic scenarios, involving monocular or stereo views, have been
investigated.

In this paper, we consider that the observed scene has both a static and a dynamic
part. The static part is unconstrained (but has to be 3D) whereas on the other hand, as
in [1, 6, 7, 11, 14, 16], we consider that dynamic features move along straight lines,
termed motion lines. To further constrain the scenario, we consider that all motion lines
lie on a motion plane and converge to an incidence point. Figure 2 illustrates this setting.
Note that no assumption is made about the camera motion, which rules out background
subtraction techniques, and that the camera is not assumed to be calibrated. A real-world
instance of this scenario may be the motion of points arising from roadways seen from
above, as for instance, by a moving surveillance video camera, see figure 1.

Figure 1: Selected frames of a video sequence consisting of 60 frames. Modeling the
geometry of images provided by a moving camera observing a roadway is one application
of our scenario. The difficulties of handling such sequences come from the fact that the
scene consists of both static and dynamic features and that there is no constraint on the
unknown camera motion.

This scenario fits into less constrained cases previously examined [1, 6, 7, 11, 14, 16].
The corresponding dynamic structure-and-motion algorithms and matching tensors may
therefore be used. The main drawback is that they require, in general, a number of point
correspondences that may not be well-adapted for e.g. robust estimation based on random
sampling techniques, that is most of the time required to devise practical systems.

Moreover, the following drawbacks arise. The method proposed in [1] requires that
the camera motion is known and that point correspondences over 5 images are provided.
The solutions proposed in [6, 7] rely on the fact that observed features have constant
velocity, as well as most applications, apart from segmentation tensors, provided in [14].
In [11, 16], 3D views of the scene are required, which implies the use of two or more
synchronized cameras. The H-tensor of [10] necessitates at least 3 images of static or
dynamic points to be computed.

We show that much simpler matching tensors and dynamic structure and motion al-
gorithms may be derived for the case studied in this paper.

Firstly, in §3, we examine the purely dynamic case, i.e. when only dynamic points are
observed and when camera motion is unknown. We show that in the two-view case, dy-
namic structure and motion may be described by a fundamental matrix-like tensor that we
call the C-tensor. Standard techniques, such as robust estimation [12] and maximum like-
lihood estimation through bundle adjustment [13] can then be applied in a straightforward
manner to recover this tensor. We then show how dynamic motion in the multiple-view
case can be modeled using a network of constrained C-tensors. A means to consistently
estimate this geometry is provided. Dynamic structure in this case is also examined.

Secondly, in §4, we investigate the links between the previously-derived dynamic
structure and motion and the projective registration (i.e. static motion) of the images.
We give means for constrained estimation of camera motion.



Experimental results on real images may be seen throughout the paper and in §5.
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Figure 2: The dynamic scenario considered in this paper — unconstrained static points
and points moving independently in a pencil of lines converging to the incidence point and
lying on the motion plane. The motion plane and the incidence point are assumed to be
static. However, most results derived in this paper are still valid without this assumption.
In most practical cases, the incidence point lies at infinity since motion lines are parallel.

2 Background and Notation
We consider sets of 3D points, each of them denoted as U , that may be split into dynamic
and static points respectively denoted as X and Q. Corresponding time-varying 3D co-
ordinates are respectively denoted by U,U′,U′′, . . . , X,X′,X′′, . . . and Q. Images of
these points are respectively denoted by u,u′,u′′, . . . , x,x′,x′′, . . . and q,q′,q′′, . . . .
Figure 2 illustrates some of these notations. The incidence point is denoted by B. It has
coordinates B and projects to b,b′,b′′, . . . . It lies on the motion plane π that has coor-
dinates π

T ∼ (π̄ 1). The projective space of dimension d is denoted by P
d. Everything

is homogeneous (i.e. defined up to scale).

3 Purely Dynamic Views
Here we restrict to the case where only dynamic points can be observed from the scene.
We assume that the different views are not registered, i.e. projection matrices are not
available. We derive dynamic matching tensors for the two- then the multiple-view case.
Figure 3 shows a toy example overlaid with dynamic features.

3.1 Two Views: The 7-dof C-Tensor
Derivation. We propose a way to derive the C-tensor, encapsulating the dynamic two-
view motion. Alternatively, other means could be used, such as P

3 → P
2 projection



Figure 3: Dynamic points used for the experiments on the toy images. Note that four
points are lying on a car which overtakes another one in the second image, and therefore
do not fulfill the dynamic motion associated to the other points.

matrices within the framework of [14] or similarly to the join tensors of [16].
Let H be the unknown homography induced by the motion plane between the two

views considered. Using H, we may predict the projection x̃′ of X in the second view if
X was static as x̃′ ∼ Hx. The image line m′ of the motion line associated to X can then
be obtained in the second view as the line joining b′ and x̃′: m′ ∼ [b′]

×
Hx, where [b′]

×

is the (3×3) skew-symmetric cross-product matrix. Obviously, a necessary condition for
X and X′ to be instances of the same dynamic point X is that x′ lies on m′, which yields:

x′TCx with C ∼ [b′]
×

H, (1)

where we call C the 7-dof C-tensor (see below). It encapsulates the image signature of the
dynamic two-view motion for the scenario previously described.

It is straightforward to see that the C-tensor has the same algebraic structure as the
fundamental matrix. More precisely, the following analogy may be established. The
projections of the incidence point play the roles of the epipoles while the 1D homography
between the two motion line pencils corresponds to the epipolar transformation.

Properties. From the above-proposed analogy, several properties of the C-tensor may
be easily derived. The C-tensor is rank-2 and has 7 dof. The projection of the indidence
point in the first image, respectively in the second image, is the right null-space, respec-
tively the left null-space, of the C-tensor: Cb = CTb′ = 0(3×1). The extended motion
line transformation G (a 5-dof 2D line-to-line homography relating the motion line pen-
cils) is linked to the C-tensor as:

G ∼ C [b]
×

and C ∼ G [b]
×

. (2)

To understand the above expressions, consider a motion line m in the first image: [b]
×

m

is a point on this line (b is interpreted as a line that does not contain the point b) and
C [b]

×
is the corresponding motion line in the other image. A similar reasoning may be

done to understand the expression of C from G.
Similarly, a canonic plane homography, denoted as H? can be recovered as well as a

3-dimensional set of 2D homographies Ha consistent with C:

H
? ∼ [b′]

×
C and Ha ∼ H

? + b′aT. (3)



Note that Ha is a set of 2D homographies containing the plane homography H induced by
the motion plane. We will see in §4.1 that when the fundamental matrix F (weak calibra-
tion of the cameras) is available, it is possible to recover the unknown H by computing
the intersection of the family Ha and the 3-dimensional family of plane homographies
defined by F.

Estimation. Another consequence of the analogy between the C-tensor and the fun-
damental matrix is that one can apply any two-view projective structure and motion al-
gorithm to estimate C. For instance, we use the 8 point algorithm [9] embedded in a
RANSAC-based robust estimation scheme [4] to compute an initial guess of C, that we
further refine using uncalibrated two-view bundle adjustment. In this case, the projective
depths of points represent in fact their displacement along the motion lines. Figure 4
shows the result of computing pair-wise C-tensors.

Figure 4: Motion line pencils estimated using two-view projective bundle adjustment. For
the middle image, we compute the motion line pencils with respect to two C-tensors (with
the first and with the third images). Note the significant discrepancy between them. This
discrepancy will be eliminated by a consistent parameterization of the multiple-view case,
see §3.2. Note also that points lying on the overtaking car have been discarded as outiers.

3.2 Multiple Views: The 5-dof C-Tensor
We show that the relationships between n unregistered dynamic views are contained in
n − 1 C-tensors submitted to some additional consistency constraints, which express the
fact that the incidence point is unique, regardless of the current time instant.

Degrees-of-freedom analysis and derivation. From the previous section, we already
know that for n = 2 views, the dynamic geometry has 7 dof and is represented by a 7-
dof C-tensor, say C. Consider now a third view of the same scene which shares dynamic
features with at least one of the two other views, say the second one. One can compute
the C-tensor C′ between the second and the third view. However, one has to remember
that for a given time instant, the incidence point has a fixed position. Therefore, C and
C′ have to share the second image b′ of the incidence point for being consistent, which
provides 2 constraints and leaves 7+7−2 = 12 dof for the dynamic geometry for n = 3.
It is then straightforward to derive that the n-view case has 7 + 5(n − 2) = 5n − 3 dof.

The dynamic geometry of a set of n images can therefore be conveniently modeled by
a 7-dof C-tensor between two reference views and a network of n− 2 5-dof C-tensors. A



5-dof C-tensor is a C-tensor with one constrained incidence point. A means to compute
such a constrained C-tensor, given its right kernel, is provided in the next paragraph.

Concerning the dynamic structure, each point has 2 + (n − 1) = n + 1 dof corre-
sponding to its position in the motion plane and n − 1 motions along its motion line.

Threading C-tensors. Once a solution has been obtained for the 7-dof C-tensor mod-
eling the dynamic geometry of two particular images, subsequent 5-dof C-tensors have
to be computed given one projection of the incidence point, e.g. with their left or right
kernel known. Enforcing these consistency constraints when threading C-tensors is im-
portant since only 5 point correspondences instead of 7 are necessary to solve for the
constrained tensor, as shown below. Moreover, the solution obtained is consistent and
may be refined directly without prior correction using non-linear methods to obtain, e.g.
a maximum likelihood solution.

We propose a linear algorithm inspired by [8] for estimating 5-dof C-tensors using 5 or
more point correspondences while enforcing the consistency constraints. Using equation
(1) and the factorization (2) of the C-tensor, we may write:

x′T
G [b]

×
x = 0, (4)

where G contains the unknown motion line pencil transformation and b is the known
projection of the incidence point in the first image. Let us see how to solve for G. Let
[b]

×
∼ UΣVT be a singular value decomposition of [b]

×
where Σ = diag(1, σ, 0). An

efficient solution to obtain this decomposition is given in [8]. By replacing into equation
(4), we obtain: x′T

Ḡȳ = 0 with ( Ḡ(3×2) 0(3×1)) = GUΣ and (ȳT

(2×1) y) = V
Tx. Note

that Ḡ is defined by 6 homogeneous parameters ḡ ∈ P
5, which is consistent with the fact

that G has 5 dof1. Expanding this equation leads to an homogeneous linear system for ḡ.
Note that 5 equations (hence 5 point correspondences) are sufficient to solve for ḡ in the
least squares sense. From Ḡ, one can further obtain C as: C ∼ ( Ḡ(3×2) 0(3×1))V

T.

Figure 5: Motion line pencils estimated using two-view projective bundle adjustment
between the first and the second views and constrained estimation of a 5-dof C-tensor
between the second and third views. Note that the motion lines pencils are perfectly
aligned in the second image.

Estimation. The 7-dof C-tensor between two particular views may be estimated using
the 8 point algorithm. Other 5-dof C-tensors may be computed using the above-described

1
ḡ is the row-wise vectorization of Ḡ.



constrained method, possibly embedded in a RANSAC-based robust estimation process
[4]. Figure 5 shows the result of such a constrained computation. This provides an initial
guess of the dynamic registration, which may be refined as follows.

As in the case of multiple-view bundle adjustment, minimizing the reprojection error,
i.e. the discrepancy between measured and predicted features yields the maximum likeli-
hood estimator. We employed such a means directly for the two-view case since there was
a direct analogy. For the multiple-view case however, one can not directly use standard
bundle adjustment techniques for the following reasons. Firstly, the projective multiple-
view motion has 11n− 15 dof whereas dynamic motion involves 5n− 3 dof. Secondly, a
reconstructed static point has 3 dof whereas a dynamic point has n + 1 dof (provided it is
visible in every image considered). Therefore, the problem must be specifically parame-
terized.

4 Mixing Static and Dynamic Features
In this section, we consider that enough static points may be used to perform a weak
calibration of the cameras, i.e. to projectively register them. A classical means for such
a registration is to compute static structure and motion between two particular views and
iteratively register the other views using 3D-to-2D point correspondences. We derive the
links between the dynamic structure and motion given in §3 and classical static structure
and motion and show how the above-mentioned registration algorithm can be constrained
by known C-tensors.

4.1 Two Views
We represent the projective two-view motion by the fundamental matrix F. Firstly, we
investigate the link between F and the C-tensor C. Secondly, we show that if F and C

are known, the plane homography H induced by the motion plane may be recovered and
we give a closed-form solution in terms of F and C as well as a means to use standard
homography estimation algorithms.

4.1.1 The Link Between C and F

To establish this link, we consider the plane homography H induced by the motion plane.
This homography can be written in terms of the C-tensor as Ha, see equation (3), where
the unknown 3-vector a is used to span the space of 2D homographies consistent with C.
The fundamental matrix can be formed from any plane homography as F ∼ [e′]

×
H and

in particular Ha which yields:

F ∼ [e′]
×

([b′]
×
C + b′aT). (5)

This equation, that we call the F-C-consistency constraint, shows that F has only 5 dof
corresponding to the right epipole and the equation a of the motion plane. It is equivalent
to the fact that F and C share a 2D homography. Therefore, given C, 5 point correspon-
dences should be enough to estimate F. However, due to the non-linearity of equation
(5) for the unknowns e′ and a, we can not estimate F linearly using 5 point correspon-
dences. Another solution is to use the fact that the incidence point B is a static point
and that therefore, b and b′ give one constraint on F through the fundamental equation
b′TFb = 0. A minimum of 6 other static points are then sufficient to estimate F.



4.1.2 Retrieving H

Given the C-tensor and the epipolar geometry, it is possible to recover the plane homog-
raphy induced by the motion plane π. The following two paragraphs give respectively
a closed-form solution in terms of the C-tensor and the fundamental matrix and a more
physically meaningful solution taking feature positions into account.

A closed-form solution. Let x, x̃′ be the projections of a 3D point X ∈ π. Obviously,
x̃′ lies at the intersection of the motion line and the epipolar line associated to x:

x̃′ ∼ (Cx) × (Fx). (6)

We claim that H can be recovered as:

H ∼ (C × F) · diag

(
(C × F)

−1

[
∑

i

ci

]

×

(
∑

i

fi

))
, (7)

where C × F is the column-wise cross-product of C and F. The proof of this result is
omitted and may be found in [2].

Figure 6: Dynamic points transferred between images using plane homographies associ-
ated with the motion plane, i.e. as if they were static. These plane homographies have
been estimated by hallucinating point correspondences (see text) and minimizing the sym-
metric squared distance between measured and transferred features. The final error is 0.35
pixels while the initial guess provided by the closed-form solution (not shown here) has
an error of 2.77 pixels.

A physically meaningful solution. More physically meaningful means to estimate H,
but more computationally expensive, can be obtained by hallucinating static point corre-
spondences that lie on the plane using equation (6). Any standard method can then be
used to solve for H by minimizing a given criterion, see e.g. [9]:

1. hallucinate point correspondences as:
{
(x, (Cx) × (Fx)) ,

(
x′, (CTx′) × (FTx′)

)}

2. use any standard method to estimate H.

For example, we have chosen to non-linearly optimize the following cost function using
the Levenberg-Marquardt algorithm initialized by the previously-given closed-form so-
lution: minH

∑
x↔x

′

(
d2 (Hx, (Cx) × (Fx)) + d2

(
H−1x′, (CTx′) × (FTx′)

))
. Experi-

mental results can be seen on figure 6.



4.2 Multiple Views
In the registered case, 2 views entirely fix the dynamic motion, since the incidence point
and the motion plane may be determined uniquely. On the other hand, each additional
view of a dynamic point adds 1 dof, corresponding to its position on its motion line at the
time instant the picture was taken, as in the purely dynamic case. More details are given
in [2], in particular, the link between C and P via the P-C-consistency constraint and the
consistent estimation of these entities are investigated.

5 Experimental Results Using Real Images
We compute dynamic and static structure and motion on a 60-frame sequence from which
sample images are shown on figure 1. We select dynamic and static features by hand on
the first image and automatically track them through the sequence using a correlation-
based technique. We then used key frames 0, 10, 20, . . . shown on figure 1.

We first perform dynamic structure and motion by sequentially computing C-tensors
as described in §3.2. We then perform constrained static structure and motion as described
in §4. Lastly, we use these results to recover the plane homographies associated to the
motion plane between key frames, as indicated in §4.1.2. Such homographies allow to
transfer dynamic features and predict their position in another camera position and another
time instant as if they were static. The result of such transfers is shown on figure 7.

Figure 7: Plane homographies recovered using dynamic and static structure and motion
allow to transfer vehicle positions from one key frame to the others as if they were static.
The last two images are zooms on frames 0 and 10 respectively. The first one shows
manually clicked static points (lying on the motion plane) while the second one shows the
transfer of these points using the recovered plane homography (computed using dynamic
points only).



Figure 7 also shows that the first homography (i.e. between frames 0 and 10) is rela-
tively accurate since static point positions after transfer seem visually good.

The main problem that we encountered was the computation of the initial 7-dof C-
tensor between the two first frames. Indeed, one may observe that all vehicles have
roughly the same speed, which therefore induces a point-to-point homography between
dynamic features of these two frames. There was therefore a 2-dof ambiguity on the com-
putation of the 7-dof C-tensor. Instead, we computed a 5-dof C-tensor constrained by
the projection of the incidence point in the first image. This projection was obtained by
intersecting support lines of white bands on the ground.

6 Conclusion
We addressed the case of a specific dynamic scenario describing the motion of point
features along lines converging to the same point and lying onto a motion plane. We
show that very simple matching tensors that we call C-tensors, similar to fundamental
matrices, exist. We show how to constrain static structure and motion by its dynamic
counterpart. Plane homographies associated with the motion plane can then be recovered
from dynamic features only. Experimental results show that this approach is feasible in
practice and may be used to model e.g. surveillance video cameras observing roadways.

We believe that these geometrical features may be successfully used to devise com-
pletely automatic systems for vehicule tracking and camera motion estimation. Among
issues for further work, self-calibration of the camera by considering that in practice the
incidence lies most of the time at infinity, could be examined.

More details may be found in [2].
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