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The Geometry of Dynamic Scenes -On Coplanar and Convergent Linear Motions Embedded in 3D Static Scenes

In this paper, we consider structure and motion recovery for scenes consisting of static and dynamic features. More particularly, we consider a single moving uncalibrated camera observing a scene consisting of points moving along straight lines converging to a unique point and lying on a motion plane. This scenario may describe a roadway observed by a moving camera whose motion is unknown.

We show that there exist matching tensors similar to fundamental matrices. We derive the link between dynamic and static structure and motion and show how the equation of the motion plane (or equivalently the plane homographies it induces between images) may be recovered from dynamic features only.

Experimental results on real images are provided, in particular on a 60frames video sequence.

Introduction

Most existing works on the geometry of multiple images rely on the assumption that the observed scene is rigid. The rigidity constraint allows to derive matching relations among two or more images, represented by e.g. the fundamental matrix or trifocal tensors. These matching tensors encapsulate the motion and the intrinsic parameters of the cameras which took the underlying images, and thus all the geometric information needed to perform 3D reconstruction. Matching tensors for rigid scenes can also be employed for scenes composed of multiple, independently moving objects [START_REF] Costeira | A multi-body factorization method for motion analysis[END_REF][START_REF] Fitzgibbon | Multibody structure and motion: 3-D reconstruction of independently moving objects[END_REF][START_REF] Wolf | Two-body segmentation from two perspective views[END_REF], which requires however that enough features be extracted for each object, making segmentation, at least implicitly, possible.

On the other hand, there is a growing body of literature [START_REF] Avidan | Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence[END_REF][START_REF] Han | Reconstruction of a scene with multiple linearly moving objects[END_REF][START_REF] Han | Multiple motion scene reconstruction from uncalibrated views[END_REF][START_REF] Shashua | Homography tensors: On algebraic entities that represent three views of static or moving planar points[END_REF][START_REF] Sturm | Structure and motion for dynamic scenes -the case of points moving in planes[END_REF][START_REF] Wolf | On projection matrices P k → P 2 , k = 3, • • • , 6, and their applications in computer vision[END_REF][START_REF] Wolf | Join tensors: On 3D-to-3D alignment of dynamic sets[END_REF] dealing with the case of independently moving features, often termed as dynamic features. The goal of these works is to provide algorithms for dynamic structure and motion recovery as well as matching tensors for images of dynamic features. General, as well as highly constrained, dynamic scenarios, involving monocular or stereo views, have been investigated.

In this paper, we consider that the observed scene has both a static and a dynamic part. The static part is unconstrained (but has to be 3D) whereas on the other hand, as in [START_REF] Avidan | Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence[END_REF][START_REF] Han | Reconstruction of a scene with multiple linearly moving objects[END_REF][START_REF] Han | Multiple motion scene reconstruction from uncalibrated views[END_REF][START_REF] Sturm | Structure and motion for dynamic scenes -the case of points moving in planes[END_REF][START_REF] Wolf | On projection matrices P k → P 2 , k = 3, • • • , 6, and their applications in computer vision[END_REF][START_REF] Wolf | Join tensors: On 3D-to-3D alignment of dynamic sets[END_REF], we consider that dynamic features move along straight lines, termed motion lines. To further constrain the scenario, we consider that all motion lines lie on a motion plane and converge to an incidence point. Figure 2 illustrates this setting. Note that no assumption is made about the camera motion, which rules out background subtraction techniques, and that the camera is not assumed to be calibrated. A real-world instance of this scenario may be the motion of points arising from roadways seen from above, as for instance, by a moving surveillance video camera, see figure 1.

Figure 1: Selected frames of a video sequence consisting of 60 frames. Modeling the geometry of images provided by a moving camera observing a roadway is one application of our scenario. The difficulties of handling such sequences come from the fact that the scene consists of both static and dynamic features and that there is no constraint on the unknown camera motion.

This scenario fits into less constrained cases previously examined [START_REF] Avidan | Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence[END_REF][START_REF] Han | Reconstruction of a scene with multiple linearly moving objects[END_REF][START_REF] Han | Multiple motion scene reconstruction from uncalibrated views[END_REF][START_REF] Sturm | Structure and motion for dynamic scenes -the case of points moving in planes[END_REF][START_REF] Wolf | On projection matrices P k → P 2 , k = 3, • • • , 6, and their applications in computer vision[END_REF][START_REF] Wolf | Join tensors: On 3D-to-3D alignment of dynamic sets[END_REF]. The corresponding dynamic structure-and-motion algorithms and matching tensors may therefore be used. The main drawback is that they require, in general, a number of point correspondences that may not be well-adapted for e.g. robust estimation based on random sampling techniques, that is most of the time required to devise practical systems.

Moreover, the following drawbacks arise. The method proposed in [START_REF] Avidan | Trajectory triangulation: 3D reconstruction of moving points from a monocular image sequence[END_REF] requires that the camera motion is known and that point correspondences over 5 images are provided. The solutions proposed in [START_REF] Han | Reconstruction of a scene with multiple linearly moving objects[END_REF][START_REF] Han | Multiple motion scene reconstruction from uncalibrated views[END_REF] rely on the fact that observed features have constant velocity, as well as most applications, apart from segmentation tensors, provided in [START_REF] Wolf | On projection matrices P k → P 2 , k = 3, • • • , 6, and their applications in computer vision[END_REF]. In [START_REF] Sturm | Structure and motion for dynamic scenes -the case of points moving in planes[END_REF][START_REF] Wolf | Join tensors: On 3D-to-3D alignment of dynamic sets[END_REF], 3D views of the scene are required, which implies the use of two or more synchronized cameras. The H-tensor of [START_REF] Shashua | Homography tensors: On algebraic entities that represent three views of static or moving planar points[END_REF] necessitates at least 3 images of static or dynamic points to be computed.

We show that much simpler matching tensors and dynamic structure and motion algorithms may be derived for the case studied in this paper.

Firstly, in §3, we examine the purely dynamic case, i.e. when only dynamic points are observed and when camera motion is unknown. We show that in the two-view case, dynamic structure and motion may be described by a fundamental matrix-like tensor that we call the C-tensor. Standard techniques, such as robust estimation [START_REF] Torr | Motion Segmentation and Outlier Detection[END_REF] and maximum likelihood estimation through bundle adjustment [START_REF] Triggs | Bundle ajustment -a modern synthesis[END_REF] can then be applied in a straightforward manner to recover this tensor. We then show how dynamic motion in the multiple-view case can be modeled using a network of constrained C-tensors. A means to consistently estimate this geometry is provided. Dynamic structure in this case is also examined.

Secondly, in §4, we investigate the links between the previously-derived dynamic structure and motion and the projective registration (i.e. static motion) of the images. We give means for constrained estimation of camera motion.

Experimental results on real images may be seen throughout the paper and in §5. The dynamic scenario considered in this paper -unconstrained static points and points moving independently in a pencil of lines converging to the incidence point and lying on the motion plane. The motion plane and the incidence point are assumed to be static. However, most results derived in this paper are still valid without this assumption.

In most practical cases, the incidence point lies at infinity since motion lines are parallel.

Background and Notation

We consider sets of 3D points, each of them denoted as U , that may be split into dynamic and static points respectively denoted as X and Q. Corresponding time-varying 3D coordinates are respectively denoted by U, U , U , . . . , X, X , X , . . . and Q. Images of these points are respectively denoted by u, u , u , . . . , x, x , x , . . . and q, q , q , . . . . Figure 2 illustrates some of these notations. The incidence point is denoted by B. It has coordinates B and projects to b, b , b , . . . . It lies on the motion plane π that has coordinates π T ∼ ( π 1). The projective space of dimension d is denoted by P d . Everything is homogeneous (i.e. defined up to scale).

Purely Dynamic Views

Here we restrict to the case where only dynamic points can be observed from the scene. We assume that the different views are not registered, i.e. projection matrices are not available. We derive dynamic matching tensors for the two-then the multiple-view case.

Figure 3 shows a toy example overlaid with dynamic features.

Two Views: The 7-dof C-Tensor

Derivation. We propose a way to derive the C-tensor, encapsulating the dynamic twoview motion. Alternatively, other means could be used, such as P 3 → P 2 projection matrices within the framework of [START_REF] Wolf | On projection matrices P k → P 2 , k = 3, • • • , 6, and their applications in computer vision[END_REF] or similarly to the join tensors of [START_REF] Wolf | Join tensors: On 3D-to-3D alignment of dynamic sets[END_REF].

Let H be the unknown homography induced by the motion plane between the two views considered. Using H, we may predict the projection x of X in the second view if X was static as x ∼ Hx. The image line m of the motion line associated to X can then be obtained in the second view as the line joining b and x : m ∼ [b ] × Hx, where [b ] × is the (3 × 3) skew-symmetric cross-product matrix. Obviously, a necessary condition for X and X to be instances of the same dynamic point X is that x lies on m , which yields:

x T Cx with C ∼ [b ] × H, (1) 
where we call C the 7-dof C-tensor (see below). It encapsulates the image signature of the dynamic two-view motion for the scenario previously described.

It is straightforward to see that the C-tensor has the same algebraic structure as the fundamental matrix. More precisely, the following analogy may be established. The projections of the incidence point play the roles of the epipoles while the 1D homography between the two motion line pencils corresponds to the epipolar transformation.

Properties. From the above-proposed analogy, several properties of the C-tensor may be easily derived. The C-tensor is rank-2 and has 7 dof. The projection of the indidence point in the first image, respectively in the second image, is the right null-space, respectively the left null-space, of the C-tensor: Cb = C T b = 0 (3×1) . The extended motion line transformation G (a 5-dof 2D line-to-line homography relating the motion line pencils) is linked to the C-tensor as: Similarly, a canonic plane homography, denoted as H can be recovered as well as a 3-dimensional set of 2D homographies H a consistent with C:

G ∼ C [b] × and C ∼ G [b] × . (2) 
H ∼ [b ] × C and H a ∼ H + b a T . (3) 
Note that H a is a set of 2D homographies containing the plane homography H induced by the motion plane. We will see in §4.1 that when the fundamental matrix F (weak calibration of the cameras) is available, it is possible to recover the unknown H by computing the intersection of the family H a and the 3-dimensional family of plane homographies defined by F.

Estimation. Another consequence of the analogy between the C-tensor and the fundamental matrix is that one can apply any two-view projective structure and motion algorithm to estimate C. For instance, we use the 8 point algorithm [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] embedded in a RANSAC-based robust estimation scheme [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis[END_REF] to compute an initial guess of C, that we further refine using uncalibrated two-view bundle adjustment. In this case, the projective depths of points represent in fact their displacement along the motion lines. Figure 4 shows the result of computing pair-wise C-tensors.

Figure 4: Motion line pencils estimated using two-view projective bundle adjustment. For the middle image, we compute the motion line pencils with respect to two C-tensors (with the first and with the third images). Note the significant discrepancy between them. This discrepancy will be eliminated by a consistent parameterization of the multiple-view case, see §3.2. Note also that points lying on the overtaking car have been discarded as outiers.

Multiple Views: The 5-dof C-Tensor

We show that the relationships between n unregistered dynamic views are contained in n -1 C-tensors submitted to some additional consistency constraints, which express the fact that the incidence point is unique, regardless of the current time instant.

Degrees-of-freedom analysis and derivation. From the previous section, we already know that for n = 2 views, the dynamic geometry has 7 dof and is represented by a 7dof C-tensor, say C. Consider now a third view of the same scene which shares dynamic features with at least one of the two other views, say the second one. One can compute the C-tensor C between the second and the third view. However, one has to remember that for a given time instant, the incidence point has a fixed position. Therefore, C and C have to share the second image b of the incidence point for being consistent, which provides 2 constraints and leaves 7 + 7 -2 = 12 dof for the dynamic geometry for n = 3.

It is then straightforward to derive that the n-view case has 7 + 5(n -2) = 5n -3 dof.

The dynamic geometry of a set of n images can therefore be conveniently modeled by a 7-dof C-tensor between two reference views and a network of n -2 5-dof C-tensors. A 5-dof C-tensor is a C-tensor with one constrained incidence point. A means to compute such a constrained C-tensor, given its right kernel, is provided in the next paragraph.

Concerning the dynamic structure, each point has 2 + (n -1) = n + 1 dof corresponding to its position in the motion plane and n -1 motions along its motion line.

Threading C-tensors. Once a solution has been obtained for the 7-dof C-tensor modeling the dynamic geometry of two particular images, subsequent 5-dof C-tensors have to be computed given one projection of the incidence point, e.g. with their left or right kernel known. Enforcing these consistency constraints when threading C-tensors is important since only 5 point correspondences instead of 7 are necessary to solve for the constrained tensor, as shown below. Moreover, the solution obtained is consistent and may be refined directly without prior correction using non-linear methods to obtain, e.g. a maximum likelihood solution.

We propose a linear algorithm inspired by [START_REF] Hartley | Minimizing algebraic error[END_REF] for estimating 5-dof C-tensors using 5 or more point correspondences while enforcing the consistency constraints. Using equation ( 1) and the factorization (2) of the C-tensor, we may write: ). An efficient solution to obtain this decomposition is given in [START_REF] Hartley | Minimizing algebraic error[END_REF]. By replacing into equation ( 4), we obtain: x T Ḡȳ = 0 with ( Ḡ(3×2) 0 (3×1) ) = GUΣ and (ȳ T (2×1) y) = V T x. Note that Ḡ is defined by 6 homogeneous parameters ḡ ∈ P 5 , which is consistent with the fact that G has 5 dof1 . Expanding this equation leads to an homogeneous linear system for ḡ. Note that 5 equations (hence 5 point correspondences) are sufficient to solve for ḡ in the least squares sense. From Ḡ, one can further obtain C as: C ∼ ( Ḡ(3×2) 0 (3×1) )V T .

x T G [b] × x = 0, (4) 
Figure 5: Motion line pencils estimated using two-view projective bundle adjustment between the first and the second views and constrained estimation of a 5-dof C-tensor between the second and third views. Note that the motion lines pencils are perfectly aligned in the second image.

Estimation. The 7-dof C-tensor between two particular views may be estimated using the 8 point algorithm. Other 5-dof C-tensors may be computed using the above-described constrained method, possibly embedded in a RANSAC-based robust estimation process [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis[END_REF]. Figure 5 shows the result of such a constrained computation. This provides an initial guess of the dynamic registration, which may be refined as follows.

As in the case of multiple-view bundle adjustment, minimizing the reprojection error, i.e. the discrepancy between measured and predicted features yields the maximum likelihood estimator. We employed such a means directly for the two-view case since there was a direct analogy. For the multiple-view case however, one can not directly use standard bundle adjustment techniques for the following reasons. Firstly, the projective multipleview motion has 11n -15 dof whereas dynamic motion involves 5n -3 dof. Secondly, a reconstructed static point has 3 dof whereas a dynamic point has n + 1 dof (provided it is visible in every image considered). Therefore, the problem must be specifically parameterized.

Mixing Static and Dynamic Features

In this section, we consider that enough static points may be used to perform a weak calibration of the cameras, i.e. to projectively register them. A classical means for such a registration is to compute static structure and motion between two particular views and iteratively register the other views using 3D-to-2D point correspondences. We derive the links between the dynamic structure and motion given in §3 and classical static structure and motion and show how the above-mentioned registration algorithm can be constrained by known C-tensors.

Two Views

We represent the projective two-view motion by the fundamental matrix F. Firstly, we investigate the link between F and the C-tensor C. Secondly, we show that if F and C are known, the plane homography H induced by the motion plane may be recovered and we give a closed-form solution in terms of F and C as well as a means to use standard homography estimation algorithms.

The Link Between C and F

To establish this link, we consider the plane homography H induced by the motion plane. This homography can be written in terms of the C-tensor as H a , see equation [START_REF] Costeira | A multi-body factorization method for motion analysis[END_REF], where the unknown 3-vector a is used to span the space of 2D homographies consistent with C. The fundamental matrix can be formed from any plane homography as F ∼ [e ] × H and in particular H a which yields:

F ∼ [e ] × ([b ] × C + b a T ). (5) 
This equation, that we call the F-C-consistency constraint, shows that F has only 5 dof corresponding to the right epipole and the equation a of the motion plane. It is equivalent to the fact that F and C share a 2D homography. Therefore, given C, 5 point correspondences should be enough to estimate F. However, due to the non-linearity of equation ( 5) for the unknowns e and a, we can not estimate F linearly using 5 point correspondences. Another solution is to use the fact that the incidence point B is a static point and that therefore, b and b give one constraint on F through the fundamental equation b T Fb = 0. A minimum of 6 other static points are then sufficient to estimate F.

Retrieving H

Given the C-tensor and the epipolar geometry, it is possible to recover the plane homography induced by the motion plane π. The following two paragraphs give respectively a closed-form solution in terms of the C-tensor and the fundamental matrix and a more physically meaningful solution taking feature positions into account.

A closed-form solution. Let x, x be the projections of a 3D point X ∈ π. Obviously, x lies at the intersection of the motion line and the epipolar line associated to x:

x ∼ (Cx) × (Fx).

We claim that H can be recovered as:

H ∼ (C × F) • diag (C × F) -1 i c i × i f i , (7) 
where C × F is the column-wise cross-product of C and F. The proof of this result is omitted and may be found in [START_REF] Bartoli | The geometry of dynamic scenes -on coplanar and convergen linear motions embedded in 3D static scenes[END_REF].

Figure 6: Dynamic points transferred between images using plane homographies associated with the motion plane, i.e. as if they were static. These plane homographies have been estimated by hallucinating point correspondences (see text) and minimizing the symmetric squared distance between measured and transferred features. The final error is 0.35 pixels while the initial guess provided by the closed-form solution (not shown here) has an error of 2.77 pixels.

A physically meaningful solution. More physically meaningful means to estimate H, but more computationally expensive, can be obtained by hallucinating static point correspondences that lie on the plane using equation [START_REF] Han | Reconstruction of a scene with multiple linearly moving objects[END_REF]. Any standard method can then be used to solve for H by minimizing a given criterion, see e.g. [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]:

1. hallucinate point correspondences as:

(x, (Cx) × (Fx)) , x , (C T x ) × (F T x )
2. use any standard method to estimate H.

For example, we have chosen to non-linearly optimize the following cost function using the Levenberg-Marquardt algorithm initialized by the previously-given closed-form solution:

min H x↔x d 2 (Hx, (Cx) × (Fx)) + d 2 H -1 x , (C T x ) × (F T x ) .
Experimental results can be seen on figure 6.

Multiple Views

In the registered case, 2 views entirely fix the dynamic motion, since the incidence point and the motion plane may be determined uniquely. On the other hand, each additional view of a dynamic point adds 1 dof, corresponding to its position on its motion line at the time instant the picture was taken, as in the purely dynamic case. More details are given in [START_REF] Bartoli | The geometry of dynamic scenes -on coplanar and convergen linear motions embedded in 3D static scenes[END_REF], in particular, the link between C and P via the P-C-consistency constraint and the consistent estimation of these entities are investigated.

Experimental Results Using Real Images

We compute dynamic and static structure and motion on a 60-frame sequence from which sample images are shown on figure 1. We select dynamic and static features by hand on the first image and automatically track them through the sequence using a correlationbased technique. We then used key frames 0, 10, 20, . . . shown on figure 1.

We first perform dynamic structure and motion by sequentially computing C-tensors as described in §3.2. We then perform constrained static structure and motion as described in §4. Lastly, we use these results to recover the plane homographies associated to the motion plane between key frames, as indicated in §4.1.2. Such homographies allow to transfer dynamic features and predict their position in another camera position and another time instant as if they were static. The result of such transfers is shown on figure 7.

Figure 7: Plane homographies recovered using dynamic and static structure and motion allow to transfer vehicle positions from one key frame to the others as if they were static. The last two images are zooms on frames 0 and 10 respectively. The first one shows manually clicked static points (lying on the motion plane) while the second one shows the transfer of these points using the recovered plane homography (computed using dynamic points only).

Figure 7 also shows that the first homography (i.e. between frames 0 and 10) is relatively accurate since static point positions after transfer seem visually good.

The main problem that we encountered was the computation of the initial 7-dof Ctensor between the two first frames. Indeed, one may observe that all vehicles have roughly the same speed, which therefore induces a point-to-point homography between dynamic features of these two frames. There was therefore a 2-dof ambiguity on the computation of the 7-dof C-tensor. Instead, we computed a 5-dof C-tensor constrained by the projection of the incidence point in the first image. This projection was obtained by intersecting support lines of white bands on the ground.

Conclusion

We addressed the case of a specific dynamic scenario describing the motion of point features along lines converging to the same point and lying onto a motion plane. We show that very simple matching tensors that we call C-tensors, similar to fundamental matrices, exist. We show how to constrain static structure and motion by its dynamic counterpart. Plane homographies associated with the motion plane can then be recovered from dynamic features only. Experimental results show that this approach is feasible in practice and may be used to model e.g. surveillance video cameras observing roadways.

We believe that these geometrical features may be successfully used to devise completely automatic systems for vehicule tracking and camera motion estimation. Among issues for further work, self-calibration of the camera by considering that in practice the incidence lies most of the time at infinity, could be examined.

More details may be found in [START_REF] Bartoli | The geometry of dynamic scenes -on coplanar and convergen linear motions embedded in 3D static scenes[END_REF].

  Figure2: The dynamic scenario considered in this paper -unconstrained static points and points moving independently in a pencil of lines converging to the incidence point and lying on the motion plane. The motion plane and the incidence point are assumed to be static. However, most results derived in this paper are still valid without this assumption. In most practical cases, the incidence point lies at infinity since motion lines are parallel.

Figure 3 :

 3 Figure 3: Dynamic points used for the experiments on the toy images. Note that four points are lying on a car which overtakes another one in the second image, and therefore do not fulfill the dynamic motion associated to the other points.

  To understand the above expressions, consider a motion line m in the first image: [b] × m is a point on this line (b is interpreted as a line that does not contain the point b) and C [b] × is the corresponding motion line in the other image. A similar reasoning may be done to understand the expression of C from G.

  where G contains the unknown motion line pencil transformation and b is the known projection of the incidence point in the first image. Let us see how to solve for G. Let [b] × ∼ UΣV T be a singular value decomposition of [b] × where Σ = diag(1, σ, 0

ḡ is the row-wise vectorization of Ḡ.