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Abstract

We address the problem of camera motion and structure
reconstruction from line correspondences across multiple
views, from initialization to final bundle adjustment. One of
the main difficulties when dealing with line features is their
algebraic representation.

First, we consider the triangulation problem. Based on
Plücker coordinates to represent the lines, we propose a
maximum likelihood algorithm, relying on linearizing the
Plücker constraint and on a Plücker correction procedure to
compute the closest Plücker coordinates to a given 6-vector.

Second, we consider the bundle adjustment problem.
Previous overparameterizations of 3D lines induce gauge
freedoms and/or internal consistency constraints. We pro-
pose the orthonormal representation, which allows handy
non-linear optimization of 3D lines using the minimum 4
parameters, within an unconstrained non-linear optimizer.

We compare our algorithms to existing ones on simulated
and real data.

1. Introduction

The goal of this paper is to give methods for reconstruc-
tion of line features from image correspondences over mul-
tiple views, from initialization to final bundle adjustment.
Reconstruction of line features is an important topic since
it is used in areas such as scene modeling, augmented real-
ity and visual servoing. Bundle adjustment is the computa-
tion of an optimal visual reconstruction of camera motion
and 3D scene structure, where optimal means of maximum
likelihood in terms of reprojected image error. We make
no assumption about the calibration of the cameras. We as-
sume that line correspondences over at least three views are
available1.

While the multiple-view geometry of lines is well-
understood, see e.g. [3, 5], there is still a need for practi-

1line correspondences over two views do not constrain the camera mo-
tion.

cal structure and motion algorithms. The factorization al-
gorithms [7, 9, 13] yield reliable results but requires that
all lines are visible in all views. We focus on the common
three-stage approach, see e.g. [5, §17.5], consisting in (i)
computing camera motion using inter-image matching ten-
sors, (ii) triangulating the features and (iii) running bundle
adjustment.

There exist reliable algorithms for step (i). In particular,
it can be solved by computing trifocal tensors for triplets of
consecutive images, using e.g. the automatic computation
algorithm described in [5, §15.6], and registering the triplets
in a manner similar to [4]. Other integrated motion estima-
tion systems are [10], based on Kalman filtering techniques,
and [14] based on registering each view in turn.

In steps (ii) and (iii), one of the main difficulties when
dealing with line features arises: The algebraic representa-
tion. Indeed, there is no minimal, complete and globally
non-singular parameterization of the 4-dimensional set of
3D lines, see e.g. [5, §2.2]. Hence, they are often overpa-
rameterized, e.g. as the join of two points or as the meet of
two planes (8 parameters), or by the 6 coefficients of their
Plücker coordinates, which must satisfy the bilinear Plücker
constraint. Another overparameterization is two images of
the line (6 parameters). The most appropriate representa-
tion depends upon the problem considered. For example,
the algorithm in [5, §15.2] shows that the ‘two image lines’
representation is well-adapted to the computation of the tri-
focal tensor, while the sequential algorithm of [10] is based
on Plücker coordinates.

Concerning step (ii), many of the previous works as-
sume calibrated cameras, e.g. [6, 11, 12, 15] and use spe-
cific Euclidean representations. The linear three view al-
gorithm of [15] and the algorithm of [12] utilize a ‘clos-
est point+direction’ representation, while [11] uses the pro-
jections of the line on the x = 0 and the y = 0 planes,
which has obvious singularities. These algorithms yield
sub-optimal results in that none of them maximizes the in-
dividual likelihood of the reconstructed lines.

Bundle adjustment, step (iii), is a non-linear procedure
involving camera and line parameters, which maximizes the



likelihood of the reconstruction, corresponding to minimiz-
ing the reprojection error when the noise on measured fea-
tures is assumed to have an identical and independent nor-
mal distribution. Previously-mentioned overparameteriza-
tions are not well-adapted to standard non-linear optimizers.
The two point and the two plane overparameterizations have
4 degrees of internal gauge freedoms2 which may induce
numerical instabilities. The ‘two image lines’ parameteri-
zation has 2 degrees of internal gauge freedoms and implies
that one may have to choose different images for different
lines since all lines may not be visible in all views. Also,
one must check that the chosen images are not too close to
each other. Finally, direct optimization of Plücker coordi-
nates makes sense only if a constrained optimization tech-
nique is used to enforce the bilinear Plücker constraint. An
appropriate representation would not involve internal con-
straint or gauge freedom.

To summarize, there is a need for an efficient optimal
triangulation algorithm, and a representation of 3D lines
well-adapted to non-linear optimization. We address both
of these problems through the following contributions.

In §3, we propose triangulation methods based on us-
ing Plücker coordinates to represent the lines. A simple and
optimal algorithm is obtained based on linearizing the bilin-
ear Plücker constraint within an iteratively reweighted least
squares approach.

In §4, we propose a non-linear representation of 3D lines
that we call the orthonormal representation. This represen-
tation allows efficient non-linear optimization since only the
minimum 4 parameters are needed for optimization, within
any unconstrained non-linear optimizer. With this repre-
sentation, there is no internal gauge freedom or consistency
constraint, and analytic differentiation of the error function
is possible.

Finally, §5 validates our algorithms and compares them
to existing ones. The next section gives some preliminaries
and notations and formally states the problem.

2. Preliminaries and Notations

We make no formal distinction between coordinate vec-
tors and physical entities. Everything is represented in ho-
mogeneous coordinates. Equality up to scale is denoted by
∼, transposition and transposed inverse by T and −T. Vec-
tors are typeset using bold fonts (L, l), matrices using sans-
serif fonts (S, A, R) and scalars in italics. Bars represent
inhomogeneous leading parts of vectors or matrices, e.g.
MT ∼

(
M̄T | m

)
. The L2-norm of vector v is denoted

‖v‖. The identity matrix is denoted I. SO(2) and SO(3)
denote the 2D and 3D rotation groups.

2for the former one, the position of the points along the line, and the
free scale factor of the homogeneous representation of these points.

The 2D orthogonal (Euclidean) distance between point
q and line l weighted by q3 is:

d2
⊥(q, l) = (qTl)2/(l21 + l22). (1)

Plücker line coordinates. Given two 3D points MT ∼(
M̄T | m

)
and NT ∼

(
N̄T | n

)
, one can represent the

line joining them by a homogeneous ‘Plücker’ 6-vector
LT ∼

(
aT | bT

)
, where a = M̄× N̄ and b = mN̄−nM̄,

see e.g. [5, §2.2]. Other conventions for Plücker 6-vectors
are also possible. Each comes with a bilinear constraint that
the 6-vector must satisfy in order to represent valid line co-
ordinates. For our definition, the constraint is:

C(L) = 0 where C(L) = aTb. (2)

Perspective projection matrix for Plücker line coordi-
nates. Given a standard (3×4) perspective projection ma-
trix P ∼ (P̄ | p), a (3 × 6) matrix projecting Plücker line
coordinates [2, 3] is given by:

P̃ ∼ (det(P̄)P̄−T | [p]×P̄). (3)

It can be easily derived by expanding the expression of the
2D line joining the projections of two points.

Maximum likelihood estimation. As noted in [5,
§15.7.2], no matter how many points are used to represent
an image line l, the quadratic error function on it can be ex-
pressed in the form d2

⊥(x, l) + d2
⊥(y, l) for two weighted

points x, y on l. We will use this representation for sim-
plicity. If we have 3D lines S = {L1, . . . ,Lm} and cam-
erasM = {P1, . . . , Pn}, the negative log likelihood func-
tion E(S,M) for the reconstruction, corresponding to the
reprojection error, can be written in terms of individual re-
projection errors E(Lj ,M) for each line j:

E(S,M) =

m∑

j=1

E(Lj ,M) (4)

E(Lj ,M) =

n∑

i=1

(
d2
⊥(xij , lij) + d2

⊥(yij , lij)
)
. (5)

3. Triangulation

This section discusses computation of structure given
camera motion. We propose direct linear and iterative non-
linear methods to recover Plücker line coordinates. These
algorithms are general in the sense that they can be used
with calibrated, partially calibrated or uncalibrated cameras.

First, we describe a somehow trivial linear algorithm
where a biased error function (compared to the reprojection
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error) is minimized. This algorithm is subject to the same
kind of drawback as the 8 point algorithm for computing
the fundamental matrix: due to possible noise in the data,
the resulting 6-vectors do not generally satisfy the bilinear
Plücker constraint (2), similarly to the matrix computed by
the 8 point algorithm not being rank deficient [5, §10.2].
We propose what we call a Plücker correction procedure,
which allows to compute the closest Plücker coordinates to
a 6-vector.

Second, we propose an algorithm where the reprojection
error of the line is minimized. The cornerstone of this algo-
rithm is the linearization of the Plücker constraint.

Since the reconstruction of each line is independent from
the others, we drop the j index in this section.

3.1. Linear Algorithm

We describe a linear algorithm, ‘LIN’. In the reprojec-
tion error (5), each term is based on the square of the 2D
point-to-line orthogonal distance d⊥, defined by equation
(1). The denominator of this distance is the cause of the
non-linearity. Ignoring this denominator leads to an alge-
braic distance denoted by da, biased compared to the or-
thogonal distance. da is linear in the predicted line l and
defined by d2

a(q, l) = d2
⊥(q, l) w2 = (qTl)2, where the

scalar factor w encapsulates the bias as w2 = l21 + l22:

(wi)
2

=
(
(P̃iL)1

)2

+
(
(P̃iL)2

)2

. (6)

We define the biased linear least squares error function:

B(L,M) =

n∑

i=1

(
(xiT

P̃
iL)2 + (yiT

P̃
iL)2

)
(7)

= ‖A(2n×6)L‖
2, A =




. . .

xiTP̃i

yiTP̃i

. . .


 . (8)

Since L is an homogeneous vector, we add the constraint
‖L‖2 = 1. The L that minimizes B(L,M) is then given
by the singular vector of A associated to its smallest singu-
lar value. Due to noise, the recovered 6-vector does not in
general satisfy the Plücker constraint (2).

3.2. Plücker Correction

Let LT ∼ (aT | bT) be a 6-vector that does not nec-
essarily satisfy the Plücker constraint (2), i.e. aTb might
be non-zero. We seek L̂T ∼ (uT | vT), defined by
min

L̂,uTv=0 ‖L̂ − L‖2. Although this problem has a clear
and concise formulation, it is not trivial.

We propose the following solution, summarized in a
practical manner in table 1. We transform the original 3D

problem to an equivalent 2D problem, solve the 2D trans-
formed problem and bring the solution back to the original
3D coordinate frame.

A geometric interpretation. We interpret the 3-vectors
a, b, u and v as coordinates of 3D points. These points are
not directly linked to the underlying 3D line. This interpre-
tation is just intended to visualize the problem. The Plücker
constraint uTv corresponds to the fact that the lines induced
by the origin with u and v are perpendicular. The correction
criterion is the sum of squared Euclidean distances between
a and u and between b and v. Hence, the problem may
be formulated as finding two points u and v, the closest as
possible to a and b respectively and such that the lines in-
duced by the origin with u and v are perpendicular. We
begin by rotating the coordinate frame such that a and b

are transferred on the z = 0 plane. This is the reduction
of the problem. We solve the reduced problem, by finding
two points on the z = 0 plane, minimizing the correction
criterion and satisfying the Plücker constraint. Finally, we
express the solution back to the original space.

Reducing the problem. Let us define the (3×2) matrices
C̄ ∼ (a b) and Ĉ ∼ (u v). The Plücker constraint is ful-
filled if and only if the columns of matrix Ĉ are orthogonal.
We rewrite the correction criterion as :

O = ‖L− L̂‖2 = ‖C̄− Ĉ‖2.

Using the following singular value decomposition C̄(3×2) =

Ū(3×2)Σ̄(2×2)V̄
T

(2×2) :

O = ‖ŪΣ̄V̄
T − Ĉ‖2 = ‖Σ̄V̄

T − Ū
T
Ĉ‖2,

since Ū has orthonormal columns. We define Z̄ = Σ̄V̄T

and Ẑ = ŪTĈ. Matrix V̄ is orthonormal and Σ̄ is diagonal,
hence the rows of Z̄ are orthogonal (i.e. Z̄Z̄T is diagonal,
but not Z̄TZ̄). Note that Ẑ = ŪTĈ implies Ĉ = ŪẐ, even if
ŪŪT is not the identity3. The problem is reduced to finding
a column-orthogonal4 matrix Ẑ, as close as possible to the
row-orthogonal matrix Z̄.

3Indeed, denote ui the columns of matrix Ū and form U =
(u1 u2 u1 × u2). We have UTŪ = ( I(2×2) 0(2×1))

T. Let us mul-

tiply the correction criterion by UT : O = ‖( V̄Σ̄ 0(2×1))
T
− UTĈ‖2.

Denote Y(3×2) = UTĈ. The optimal solution has the form YT =

( ẐT 0(2×1)), since, according to the geometric interpretation, the cor-
rected points u and v must lie on the plane defined by points a, b and the
origin, the plane z = 0. Therefore, we obtain Ĉ = UY = ŪȲ.

4The fact that matrix Ẑ = ŪTĈ is column-orthogonal is induced from
the Plücker constraint. Indeed, this constraint implies that Ĉ is column-
orthogonal, hence ĈTĈ is diagonal. Matrix UTĈ, where SO(3) 3 U =
(u1 u2 u1 × u2) = (Ū ū), is also column-orthogonal. Observe that
ĈTUUTĈ = ĈTŪŪTĈ + ĈTūūTĈ = ĈTŪŪTĈ since ūTĈ = 0T.
Hence, matrix ŪTĈ is column-orthogonal.
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Solving the reduced problem. We parameterize the
column-orthogonal matrix Ẑ as Ẑ = V̂Σ̂, where V̂ is or-
thonormal and Σ̂ is diagonal. Hence :

O = ‖Σ̄V̄
T − V̂Σ̂‖2 = ‖V̂T

Σ̄V̄
T − Σ̂‖2.

The diagonal matrix Σ̂ which minimizes this expression
is given by the diagonal entries of V̂TΣ̄V̄T, and does not
depend on the solution for V̂. The orthonormal matrix
V̂ = (v̂1 v̂2) is given by minimizing the sum of squares of
the off-diagonal entries of V̂

T
Z̄, with Z̄ = Σ̄V̄

T = (z1 z2) :

O = (v̂T

1 z2)
2 + (v̂T

2 z1)
2.

Define the rotation matrix with angle π/2 M =
(

0 −1
1 0

)
and

parameterize the orthonormal matrix V̂ by a unit vector v̂,
as : {

v̂1 = v̂

v̂2 = Mv̂,

The correction criterion can be rewritten as :

O = (v̂Tz2)
2 + (v̂T

M
Tz1)

2 = ‖Tv̂‖2 avec T =

(
zT
2

zT
1 M

)
.

The unit vector v̂ minimizing this expression is given by the
singular vector associated to the smallest singular value of
matrix T.

Expressing the solution. From vector v̂ which solves
the reduced problem, we form the orthonormal matrix
V̂ =

(
v̂1 −v̂2

v̂2 v̂1

)
. The diagonal matrix Σ̂ is given by Σ̂ =

diag(V̂TΣ̄V̄T). Table 1 summarizes this algorithm.

• Compute the singular value decomposition
(a b) = ŪΣ̄V̄T.

• Let Z̄ = Σ̄V̄
T, form matrix T = ( z21 z22

z12 −z11
).

• Compute the singular vector v̂ associated to the
smallest singular value of matrix T.

• Let V̄ =
(

v̂1 −v̂2

v̂2 v̂1

)
, we obtain:

(u v) ∼ Ū V̂ diag
(
V̂

T
Σ̄V̄

T

)
.

Table 1. The Plücker correction algorithm. Given a
6-vector LT ∼ (aT | bT), this algorithm computes
the closest Plücker coordinates L̂T ∼ (uT | vT), i.e.
uTv = 0, in the sense of the L2-norm, i.e. ‖L̂− L‖2

is minimized.

3.3. Quasi-Linear Algorithms

We describe algorithms ‘QLIN1’ and ‘QLIN2’, that con-
sider the reprojection error (5). They are based on an itera-
tive bias-correction, through reweighting of the biased error
function (7). Such algorithms are coined quasi-linear.

We showed previously that the orthogonal and the alge-
braic distances are related by a scalar factor, given by equa-
tion (6), depending on the 3D line. The reprojection error
and the biased error functions are therefore related by a set
of such factors, one for each image of the line. The fact that
these factors depend on the unknown 3D line suggests an
iterative reweighting scheme.

The first approach that comes to mind is ‘QLIN1’. The
linear system considered for method LIN is formed and
solved. The resulting 6-vector L0 is corrected to be valid
Plücker coordinates. This yields a biased estimate of the 3D
line. Using this estimate, weight factors that contain the bias
of the linear least squares error function are computed, and
used to reweight the equations. The process is iterated to
compute successive refined estimates Lk until convergence,
where k is the iteration counter. Convergence is determined
by thresholding the difference between two consecutive er-
rors. It is typically reached in 3 or 4 iterations.

Experimental results show that this naive approach per-
forms very badly, see §5. This is due to the fact that the
Plücker constraint is enforced afterhand and is not taken
into account while solving the linear least squares system.

To remedy to this problem, we propose ‘QLIN2’, that
linearizes and enforces the Plücker constraint (2), as fol-
lows. The algorithm is summarized in table 2. Rewrite the
constraint as C(L) = LTGL where G(6×6) = ( 0 I

I 0
). By

expanding this expression to first order around the estimate
Lk, and after some minor algebraic manipulations, we ob-
tain the following linear constraint on Lk+1:

Ck(Lk+1) = LT

k GLk+1 = 0.

We follow the constrained linear least squares optimiza-
tion method summarized in [5, §A3.4.3] to enforce this lin-
earized constraint, as well as ‖Lk+1‖ = 1. The idea is
to find an orthonormal basis of all possible vectors satisfy-
ing the constraint and to solve for a 5-vector γ expressed
in this basis. Such an orthonormal basis is provided by
computing the nullspace of LT

k G using SVD. Let V̄ be a
(6 × 5) orthonormal matrix whose columns span the ba-
sis (i.e. LT

k GV̄ = 0), we define Lk+1 = V̄γ, hence
Ck(Lk+1) = LT

k GV̄γ = 0 and ‖Lk+1‖ = ‖γ‖. We
solve for γ be substituting in equation (8) (‖ALk+1‖

2 =
‖AV̄γ‖2). The singular vector associated to the smallest
singular value of matrix AV̄ provides the solution vector
with unit norm-two such that B(Lk+1,M) is minimized.
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1. Initialization: Form the linear least squares system
A from equation (8), compute L0 by minimizing
‖AL0‖

2, see §3.1, and by applying the Plücker cor-
rection procedure described in §3.2. Set k = 0.

2. Constraint linearization: Compute the SVD LT

k G ∼

uTdiag(1, 0, 0, 0, 0, 0)(v(6×1) | V̄(6×5))
T

.

3. Estimation: Compute minγ,‖γ‖2=1 ‖AV̄γ‖2 and set
Lk+1 = V̄γ.

4. Bias-correction: Reweight the linear system A by
computing the weights according to equation (6).

5. Iteration: Iterate steps 2, 3 and 4 until convergence.

Table 2. Quasi-linear algorithm ‘QLIN2’ for optimal
triangulation.

4. Bundle Adjustment

Bundle adjustment is the non-linear minimization of the
reprojection error (4), over camera and line parameters. We
focus on the parameterization of 3D lines. Parameterizing
the camera motion has been addressed in e.g. [1, 5, §A4.6].

4.1. Problem Statement

As said in the introduction, there are various possibilities
to overparameterize the 4-dimensional set of 3D lines. In
the context of non-linear optimization, choosing an overpa-
rameterized representation may induce the following prob-
lems. First, the computational cost of each iteration is in-
creased by superfluous parameters. Second, artificial free-
doms in the parameter set (internal gauge freedoms) are in-
duced and may give rise to numerical instabilities. Third,
some internal consistency constraints, such as the Plücker
constraint, may have to be enforced.

These reasons motivate the need for a representation of
3D lines allowing non-linear optimization with the mini-
mum 4 parameters. In that case, there is no free scale in-
duced by homogeneity or internal consistency constraints,
and any unconstrained non-linear optimizer can be used.

4.2. The Orthonormal Representation

The orthonormal representation has been introduced in
[1] for the non-linear optimization of the fundamental ma-
trix with the minimum 7 parameters. It consists in finding
a representation involving elements of SO(n) and scalars
(hence the term ‘orthonormal representation’). In particu-
lar, no other algebraic constraints should be necessary, such
as the rank-two constraint of fundamental matrices or the
bilinear Plücker constraint. Using orthonormal matrices

implies that the representation is well-conditioned. Based
on such a representation, local update using the minimum
number of parameters is possible.

Commonly used non-linear optimizers, e.g. Newton-
type optimizers such as Levenberg-Marquardt, often require
the Jacobian matrix of the error function with respect to
the update parameters. In the orthonormal representation
framework, we split it as the product of the Jacobian matrix
of the error function considered with respect to the ‘stan-
dard’ entity representation, e.g. the fundamental matrix or
Plücker coordinates, and the orthonormal Jacobian matrix,
i.e. for the ‘standard’ representation with respect to the up-
date parameters.

Example: representing P
1. We derive the orthonormal

representation of the 1-dimensional projective space P
1.

This is used in §4.3 to derive the orthonormal representa-
tion of 3D lines. Let σ ∈ P

1. Such a 2-vector is defined
up to scale and has therefore only 1 degree of freedom. We
represent it by an SO(2) matrix W defined by:

W =
1

‖σ‖

(
σ1 −σ2

σ2 σ1

)
. (9)

The first column of this matrix is σ itself, normalized to
unit-norm. Let θ be the update parameter. A local update
step is W ← WR(θ) where R(θ) is the 2D rotation matrix
of angle θ. The Jacobian matrix ∂σ

∂θ
evaluated at θ0 = 0 (the

update is with respect to a base rotation) is given by:

∂σ

∂θ

∣∣∣∣
θ0

=
∂w1

∂θ

∣∣∣∣
θ0

=

(
−σ2

σ1

)
= w2, (10)

where wi is the i-th column of W.

Updating SO(3). A matrix U ∈ SO(3) can be locally
updated using 3 parameters by any well-behaved (locally
non-singular) representation, such as 3 Euler angles θ

T =
(θ1 | θ2 | θ3) as:

U← UR(θ) with R(θ) = Rx(θ1)Ry(θ2)Rz(θ3), (11)

where Rx(θ1), Ry(θ2) and Rz(θ3) are SO(3) matrices repre-
sentating 3D rotations around the x-, y- and z-axis of angle
θ1, θ2 and θ3 respectively. The Jacobian matrix is derived
as follows. As in the SO(2) case, the update is with re-
spect to a base rotation. The orthonormal Jacobian matrix
is therefore evaluated at θ0 = 0(3×1):

∂U

∂θ

∣∣∣∣
θ0

=

(
∂U

∂θ1

∣∣∣∣
θ0

|
∂U

∂θ2

∣∣∣∣
θ0

|
∂U

∂θ3

∣∣∣∣
θ0

)
.

After minor algebraic manipulations, we obtain:

∂U

∂θ1

∣∣∣∣
θ0

=
∂ (URx(θ1)Ry(θ2)Rz(θ3))

∂θ1

∣∣∣∣
θ0

= (03 | u3 | − u2) , (12)

5



where ui is the i-th column of U. Similarly:

∂U

∂θ2

∣∣∣∣
θ0

= (−u3 | 03 | u1) (13)

∂U

∂θ3

∣∣∣∣
θ0

= (u2 | − u1 | 03) . (14)

These expressions are vectorized to form the orthonormal
Jacobian matrix.

4.3. The Case of 3D Lines

The case of 3D lines is strongly linked with the cases of
SO(2) and SO(3), as shown by the following result:

Any (projective) 3D line L can be represented by:

(U, W) ∈ SO(3)× SO(2),

where SO(2) and SO(3) are the Lie groups of respectively
(2 × 2) and (3 × 3) rotation matrices. (U, W) is the or-
thonormal representation of the 3D line L.

The proof of this result is obtained by showing that
any 3D line has an orthonormal representation (U, W) ∈
SO(3)×SO(2), while any (U, W) ∈ SO(3)×SO(2) cor-
responds to a unique 3D line. The next paragraph illustrates
this by means of Plücker coordinates.

Note that this result is consistent with the fact that a 3D
line has 4 degrees of freedom, since an element of SO(2)
has one degree of freedom and an element of SO(3) has 3
degrees of freedom.

Using this representation of 3D lines, we show that
there exists a locally non-singular minimal parameteriza-
tion. Therefore, 3D lines can be locally updated with the
minimum 4 parameters. The update scheme is inspired from
those given above for 2D and 3D rotation matrices, and can
be plugged into most of the existing non-linear optimiza-
tion techniques. These results are summarized in table 3 in
a practical manner.

Relating Plücker coordinates and the orthonormal rep-
resentation. The orthonormal representation of a 3D line
can be computed from its Plücker coordinates LT ∼
(aT | bT), as follows. Let C̄(3×2) ∼ (a | b) be factored
as :

C̄ ∼
(

a
‖a‖

b
‖b‖

a×b
‖a×b‖

)

︸ ︷︷ ︸
SO(3)



‖a‖

‖b‖




︸ ︷︷ ︸
(‖a‖ ‖b‖)T∈P1

.

In practice, we use QR decomposition, C̄(3×2) =
U(3×3)Σ(3×2). As already mentioned the special form of
matrix Σ is due to the Plücker constraint. While U ∈

SO(3), the two non-zero entries of Σ defined up to scale can
be represented by an SO(2) matrix W, as shown in §4.2.

Going back from the orthonormal representation to
Plücker coordinates is trivial. The Plücker coordinates of
the line are obtained from its orthonormal representation
(U, W) as:

LT ∼ (w11u
T

1 | w21u
T

2 ), (15)

where ui is the i-th column of U.

A 4-parameter update. Consider the orthonormal repre-
sentation (U, W) ∈ SO(3) × SO(2) of a given 3D line.
Since U ∈ SO(3), as reviewed in §4.2, it can not be
minimally parameterized but can be locally updated using
equation (11), as U ← UR(θ) where θ ∈ R

3. Matrix
W ∈ SO(2) can be updated as W ← WR(θ), where
θ ∈ R. We define the update parameters by the 4-vector
pT ∼ (θT | θ).

Initialization. The initial guess is given by the Plücker
coordinates LT

0 ∼ (aT
0 | b

T
0 ).

• Compute the orthonormal representation (U, W) ∈
SO(3) × SO(2) of L0 by QR decomposition :

(a0 | b0) = U

(
σ1

σ2

)
and set W =

(
σ1 −σ2

σ2 σ1

)
.

• The 4 optimization parameters are pT = (θT | θ)
where the 3-vector θ and the scalar θ are used to
update U and W respectively.

Update. (i.e. one optimization step)

• Current line is LT ∼ (w11u
T
1 | w21u2

T) and
∂L/∂p is given by equation (16).

• Compute p by minimizing some criterion.

• Update U and W: U← UR(θ) and W ←WR(θ).

Table 3. Elements for 3D line optimization using the
minimal 4 parameters through the orthonormal repre-
sentation.

We denote J the (6 × 4) Jacobian matrix of the Plücker
coordinates, with respect to the orthonormal representation.
Matrix J must be evaluated at p0 = 0(4×1):

J|p0
=

(
∂L

∂θ1

∣∣∣∣
p0

|
∂L

∂θ2

∣∣∣∣
p0

|
∂L

∂θ3

∣∣∣∣
p0

|
∂L

∂θ

∣∣∣∣
p0

)
.

By using the orthonormal representation to Plücker coor-
dinates equation (15) and the Jacobian matrices for SO(2)
and SO(3), as defined by equations (10,12,13,14), we ob-
tain, after minor algebraic manipulations:

J(6×4) =

(
0(3×1) −σ1u3 σ1u2 −σ2u1

σ2u3 0(3×1) −σ2u1 σ1u2

)
. (16)
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Geometric interpretation. Each of the 4 above-defined
update parameters p has a geometric interpretation. Since
matrix W encapsulates the distance d from the origin O to
L, parameter θ acts on d. Matrix U is related to a 3D coor-
dinate frame attached to L. Parameter θ1 rotates L around a
circle with radius d, centered on O, and lying on the plane
defined by O and L. Parameter θ2 rotates L around a circle
with radius d, centered on O, and lying in a plane contain-
ing O, the closest point Q of L to O, and perpendicular to
L. Parameter θ3 rotates L around the axis defined by O and
Q. For the last three cases, the angles of rotation are the
parameters themselves. This interpretation allows to eas-
ily incorporate a priori knowledge while estimating a line.
For example, to leave the direction of the line invariant, one
may use the 2 update parameters θ2 and θ, while to leave
the distance of the line to the origin invariant, one may use
the 3 update parameters θ.

5. Experimental Results

5.1. Simulated Data

Our simulated experimental setup consists of a set of
cameras looking inwards at 3D lines randomly chosen in
a sphere. Cameras are spread widely around the sphere. We
fix the focal length of the cameras to 1000 (in number of
pixels). Note that this information is not used in the rest of
the experiments. The end-points of all lines are projected in
all views, where their positions are corrupted by an additive
Gaussian noise. We vary the parameters of this setup to as-
sess and compare the quality of the different estimators on
various scene configurations.

We compare the 4 methods given in this paper: LIN,
QLIN1, QLIN2 and MLE (bundle adjustment based on our
orthonormal representation of 3D lines), as well as the
method given in [5, §15.4.1], denoted by ‘MLE HARTLEY’.
This method consists in non-linearly computing the trifo-
cal tensor as well as reconstructed lines by minimizing the
reprojection error (4) and parameterizing the 3D lines by
two of their three images. We also compare QLIN2 to a
direct Levenberg-Marquardt-based minimization of the re-
projection error: These two methods give undistinguishable
results in all our experiments. Note that most existing meth-
ods, e.g. [6, 11, 12, 15] can be applied only when camera
calibration is available.

We measure the quality of an estimate using the estima-
tion error, as described in [5, §4], which also provides the
theoretical lower bound. The estimation error is equivalent
to the value of the negative log likelihood (4) (i.e. the re-
projection error).

We vary the added noise level from 0 to 2 pixels, while
considering 20 lines and 3 views. The result is shown on fig-
ure 1 (a). One observes that, beyond 1 pixel noise, methods
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Figure 1. Estimation error for different methods when
varying the variance of added noise on image end-
points (a) and the number of lines considered (b).

LIN and QLIN1 behave very badly. This is mainly due to the
bias introduced by the Plücker correction procedure. Meth-
ods QLIN2, MLE and MLE HARTLEY degrade gracefully as
the noise level increases. Method QLIN2 gives reasonable
results. Methods MLE and MLE HARTLEY give undistin-
guishable results, very close to the theoretical lower bound.

We vary the number of lines from 15 to 60, while con-
sidering a 1 pixel noise and 3 views. The result is shown
on figure 1 (b). Similar conclusions as for the previous ex-
periment can be drawn, except for the fact, that when more
than 30 lines are considered, methods LIN and QLIN1 give
reasonable results. Also, methods MLE and MLE HARTLEY

give results undistinguishable from the theoretical lower
bound when more than 45 lines are considered.

Another experiment, not shown here due to lack of space,
shows that when the number of views increases, the es-
timation error decreases for all compared methods. Note
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that method MLE HARTLEY can not be used with more than
three views and is therefore not concerned with these con-
clusions. We observe that beyond 10 views, the result of
method MLE is undistinguishable from the theoretical lower
bound. The results given by methods LIN and QLIN1 are
reasonable when more than 15 views are considered.

We observe that the quasi-linear methods always con-
verge within 5 iterations.

5.2. Real Data

We tested our algorithms on several image sequences.
For one of them, see figure 2, we show results. We provide

Figure 2. Sample images out of a 5-frame indoor se-
quence overlaid with manually-provided lines. Note
that the optical distortion is not corrected.

45 line correspondences by hand. Note that some of them
are visible in two views only. We use these line correspon-
dences to compute the trifocal tensor corresponding to each
subsequence formed by a triplet of consecutive images, us-
ing the linear method described in e.g. [5, §15.2]. We
use method QLIN2 to reconstruct the lines associated with
each triplet. We registered these subsequences by using the
method given in [2]. At this point, we have a suboptimal
guess of metric structure and motion. We further refine it
using our structure from motion algorithms, to reconstruct
each line by taking into account all of its images. The corre-
sponding estimation errors are, respectively for LIN, QLIN1
and QLIN2, 2.3, 1.9 and 1.4 pixels.

We used the result of QLIN2 to initialize our maximum
likelihood estimator for structure and motion based on the
proposed orthonormal representation together with a metric
parameterization of the camera motion, which ends up with
a 0.9 pixel estimation error.

For each estimation, we reconstruct the end-points cor-
responding to the first view (shown on the left of figure 2).
The maximum likelihood end-points are given by orthogo-
nally projecting their images onto the image of the corre-
sponding line.

These results are visible on figure 3. Note the significant
improvement of methods QLIN2 and MLE over methods LIN

LIN & QLIN1

QLIN2

MLE

Figure 3. Zoom on some original (white) and repro-
jected lines (black).
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Figure 4. Snapshots of the cameras and lines reconstructed by method MLE. The images shown in figure 2 correspond
to the top- and bottom-most cameras.

and QLIN1. The lines predicted by MLE and the original
lines are undistinguishable. Figure 4 shows the cameras and
lines reconstructed by MLE. There is visually no difference
with the reconstruction provided by algorithm QLIN2, but
that reconstructions provided by LIN and QLIN1 appear dis-
torted.

6. Conclusion

We addressed the problem of structure and motion re-
covery from line correspondences across multiple views.

First, we proposed an optimal triangulation algorithm.
Given camera motion, the Plücker coordinates of the lines
are estimated by minimizing the reprojection error. The
algorithm relies on an iteratively reweighted least squares
scheme. We linearized the bilinear Plücker constraint to in-
corporate it up to first order in the estimation process. A
Plücker correction procedure is proposed to find the nearest
Plücker coordinates to a given 6-vector.

Second, we proposed the orthonormal representation of
3D lines, which allows non-linear optimization with the
minimal 4 parameters within any unconstrained non-linear
optimizer, contrarily to previously proposed overparameter-
izations. This representation is well-conditioned and allows
analytic differentiation.

Experimental results on simulated and real data show
that the standard linear method and its naive bias-corrected
extension perform very badly in many cases and should
only be used to initialize a non-linear estimator. Our bias-
corrected algorithm including the Plücker constraint per-
forms as well as direct Levenberg-Marquardt-based triangu-
lation. It is therefore a good solution to initialize subsequent
bundle adjustment. Based on our orthonormal representa-
tion, bundle adjustment gives results close to the theoreti-
cal lower bound and undistinguishable from the three-view
maximum likelihood estimator of [5, §15.4.1], while being

usable with any number of views.
Most algorithms proposed in this paper are summarized

in a practical manner.
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