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Abstract

Bundle ajustment is used to obtain accurate visual recon-
structions by minimizing the reprojection error. The coor-
dinate frame ambiguity, or more generality the gauge free-
doms, has been dealt with in different manners. It has often
been reported that standard bundle adjustment algorithms
were not gauge invariant: two iterations within different
gauges can lead to geometrically very different results. Sur-
prisingly, most algorithms do not exploit gauge freedoms to
improve performances. We consider this issue. We ana-
lyze theoretically the impact of the gauge on standard al-
gorithms. We show that a sufficiently general damping ma-
trix in Levenberg-Marquardt iteration can be used to implic-
itly reproduce a gauge transformation. We show that if the
damping matrix is chosen such that the decrease in the repro-
jection error is maximized, then the iteration is gauge invari-
ant. Experimental results on simulated and real data show
that our gauge invariant bundle adjustment algorithm out-
performs existing ones in terms of stability.

1. Introduction

The recovery of accurate 3D structure and camera motion
from images is a major research challenge in photogram-
metry [1] and computer vision [17]. Bundle adjustment
is a technique to refine a visual reconstruction to produce
jointly optimal 3D structure and camera motion. Under cer-
tain assumptions on the noise on the observed features, bun-
dle adjustment consists in minimizing the reprojection error,
which is in general a non-linear procedure. Second-order
non-linear least squares algorithms are usually employed,
namely the Gauss-Newton and Levenberg-Marquardt meth-
ods. These methods iteratively improve sub-optimal param-
eter estimates by solving normal equations. Efficient solu-
tions are possible thanks to the sparse block structure of the
normal equations. The Levenberg-Marquardt method has
proved the most successful due to the use of a trust region
strategy, implemented via a damping of the normal equa-
tions, also called augmentation.

An inherent problem in bundle adjustment is the choice
of the coordinate frame in which the reconstruction is ex-
pressed. This coordinate frame is called the gauge, or the
datum in the photogrammetry community. A gauge is a sub-
set of parameter vectors such that any two of them do not
share the same underlying geometry. Parameter vectors cor-
responding to the same geometry are related by gauge trans-
formations. It has been shown in [8] that these transforma-
tions have a group structure. The reprojection error is gauge
invariant since it reflects the inherent merit of a reconstruc-
tion. These considerations hold whichever camera model is
used and whichever calibration level is available. Examples
of geometric gauge freedoms are the global rotation, trans-
lation and scale in metric reconstruction and the position of
points along the line in the two point representation of lines.
Example of algebraic gauge freedoms is the scale factor of
homogeneous coordinates. When ignored, gauge freedoms
may induce numerical estimation problems, since they im-
ply the rank deficiency of the normal equations.

It has been reported that most bundle adjustment algo-
rithms initialized with the same reconstruction expressed
within different gauges can yield extremely different results,
in terms of computational cost [1, 3, 8, 11, 12, 14, 17].
In other words, these algorithms are not gauge invariant1.
Carefully choosing the gauge can greatly improve the relia-
bility. In practice, we observe that most algorithms converge
to the same solution, but may require different number of
iterations.

Gauge freedoms imply that the normal equations to be
solved at each iteration do not have a unique solution, i.e.
the design matrix is singular, but rather a family of solutions,
whose dimension is the number of gauge freedoms. Damp-
ing the normal equations consists in adding a symmetric pos-
itive definite matrix to the design matrix. This matrix is most

1We employ ‘gauge invariant’ in a manner different from [8, 11, 12].
These authors propose algorithms based on using a pre-defined global
gauge. Hence, no matter the gauge within which the initial solution is ex-
pressed, their algorithms will give the same result. However, the behaviour
of these algorithms do depend upon the pre-defined global gauge. In this
sense, these algorithms are not gauge invariant.



of the time chosen as a diagonal one, which corresponds to
an elliptical trust region, see e.g. [16] and §3 for more details.

Surprisingly, gauge freedoms have rarely been exploited
to improve on the reliability of algorithms. Most algorithms
are not gauge invariant and are based on somehow arbitrary
gauges which are not chosen to meet some efficiency criteria.
More details are given in §2.

The main contribution of this paper is an algorithm that
maximizes the decrease in the reprojection error at each iter-
ation, in a gauge invariant manner. In more detail:

• In §4, we formally state the gauge invariance property
of a bundle adjustment algorithm. A detailled investi-
gation of how the gauge influences Gauss-Newton and
Levenberg-Marquardt iterations allows to conclude that
in general neither of them is gauge invariant. This
analysis shows that the gauge and the damping matrix
in Levenberg-Marquardt iterations are closely linked:
Gauge transformations change the standard elliptical
trust region to a more complex shape.

• In §5, we concentrate on Levenberg-Marquardt itera-
tions and propose implicit gauges, as opposed to the ex-
plicit transfer of a reconstruction to the desired gauge.
This shows that in some sense, the damping matrix can
encapsulate gauge transformations. We state the follow-
ing important result. If the form of the damping matrix
is sufficiently general, then the iteration can be made
gauge invariant by carefully choosing this matrix, based
on a gauge dependent criterion.

• In §6, we propose a gauge dependent damping matrix
which defines a trust region with the following impor-
tant properties. (i) it makes the underlying iteration
gauge invariant, (ii) it maximizes the decrease in the
reprojection error up to first order and (iii) it preserves
the sparse block structure of the normal equations.

Finally §7 reports some experimental results and §8 con-
cludes. For simplicity of notation, we deal with projective
reconstruction of points and cameras. Extension to other
camera models (e.g. affine cameras), other calibration lev-
els (e.g. metric reconstruction) and other types of features
(e.g. lines) is straightforward, following [8, 12]. Our final
gauge invariant bundle adjustment algorithm is summarized
in a practical manner in table 1.

Notation. We make no formal distinction between coordi-
nate vectors and physical entities. Equality up to a non-null
scale factor is denoted by ∼ and is sometimes written by in-
troducing explicitly the scale factor: (x ∼ x′) ⇔ (∃α|x =
αx′). Transposition and transposed inverse are denoted by T

and −T. Vectors are typeset using bold fonts (q, Q), matrices
using sans-serif fonts (P, T) and scalars in italics. Indices
are used to indicate the size of a matrix or vector (P(3×4),

q(3×1)) or to index a set of entities. The row-wise matrix
vectorization is written vect.

Let Pi, i = 1 . . . n denote the n reconstructed camera
matrices and Qj , j = 1 . . .m denote the m reconstructed 3D
points. Structure and motion parameters are contained in a
(p×1) vectorX , partitionned into 12n motion parametersM
and 4m structure parameters S (homogeneous coordinates of
m points) as:

XT = (vectT(P1) . . . vectT(Pn)︸ ︷︷ ︸
MT

QT

1 . . . QT

m︸ ︷︷ ︸
ST

)

Changing the 15-degrees of freedom projective reconstruc-
tion basis and the individual scale factors of the camera ma-
trices and point coordinate vectors leave the underlying ge-
ometry invariant. Hence there are g = 15 + n + m degrees
of gauge freedom.

2. Previous work
A survey of gauge freedom handling strategies is [17, §9].

Methods to deal with this problem are either globally free,
i.e. they left the gauge free to drift, or globally fixed, i.e.
they enforce a global gauge.

Globally free methods are based on selecting a solution of
the normal equations, using a pseudo-inverse [1], numerical
damping [9, 10, 16, 17] or local gauge constraints. For ex-
ample, the standard photogrammetric inner constraints spec-
ify that the reconstructed points should not be translated, ro-
tated and scaled, but they do not specify where are the recon-
structed points, see [3, 17]. They are devised to minimize the
norm of the parameter vector update, as well as the variance
of the parameter estimate. In [1, §9.5], it is shown experi-
mentally that this behaves better than globally fixed methods
(see below), but that leaving the gauge drift freely can some-
times be better.

Globally fixed methods enforce a pre-chosen gauge.
Some methods use reference elements (trivial gauge), ei-
ther features [1, 4, 13] (object-centered gauge) or cameras
[2, 5, 6]. In [1, p.40] the author suggests that control points
or reference lengths can be used to fix a metric recontruction
basis, while in [4, 13] a similar method based on 5 refer-
ence points is used to fix a projective reconstruction basis.
The constraints are enforced using either Lagrange multipli-
ers [1, p.40] or by elimination [1, p.41], [4, 13]. In [6], the
author considers projective reconstruction and partially fix
the gauge by setting a canonical form to a reference camera,
while [2] uses two reference cameras.

Another possibility for a globally fixed gauge is to use
global gauge constraints [8, 11, 12], which raises the prob-
lem of enforcing these constraints during optimization. In
[11], artificial extra observations are added to the cost func-
tion with a heavy weight. In [8], the gauge is left free to drift
during the iteration, but the result is projected onto the gauge
afterhand, while in [12], a parameter subspace projected onto
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the gauge is computed before the iteration. Another possi-
bility is [1, p.41], where Lagrange multipliers are introduced
and incorporated as unknowns in the optimization.

Besides the globally free photogrammetric inner con-
straints, all these methods are based on somehow arbitrary
gauges which are not chosen to meet some efficiency crite-
ria. A recent attempt in this direction is [14]. Based on gauge
theory, the authors analyze, in the context of Euclidean re-
construction, which physical measure is the most likely to
maximize the accuracy of the reconstruction while setting
the scene scale.

3. Standard Algorithms
Bundle adjustment consists in refining a visual recon-

struction to produce jointly optimal 3D structure and cam-
era motion. By optimal, we mean that the maximum like-
lihood estimate of structure and motion is sought, which is
achieved by minimizing an appropriate cost function. If we
assume that the observed point features are corrupted by in-
dependently and identically distributed Gaussian noise, then
the cost function is the reprojection error, given by the sum of
squared differences between observed features qij and pre-
dicted features q̂ij :

C(X ) =

n∑

i=1

m∑

j=1

wij d2(qij , q̂ij) = rTr, (1)

where wij is one if point j is visible in view i and zero oth-
erwise. The (r × 1) vector r is the residual error vector.
Predicted features are given by q̂ij ∼ PiQj .

Given a sub-optimal solution X0, the parameter vector X
is iteratively updated by X ← X + δ, where the increment
δ is obtained as follows. Let J = ∂r

∂X denotes the (r × p)
Jacobian matrix of the residual error vector r with respect to
structure and motion parameters X , g = JTr be the (p × 1)
gradient vector of C and let N = JTJ be the Gauss-Newton
approximation of the (p × p) Hessian matrix. The reprojec-
tion error is approximated by:

C(X + δ) ≈ C(X ) + gT
δ +

1

2
δ

T
Nδ

︸ ︷︷ ︸
e

. (2)

The minimum of this simple local quadratic model can be
found by setting ∂e

∂δ
= 0, which gives the Gauss-Newton

iteration, through the following normal equations:

Nδ = −g. (3)

Note that N has a rank deficiency of g (the number of gauge
freedoms). The Levenberg-Marquardt iteration is based on
damping or augmenting the normal equations, as follows :

(N + W(λ)︸ ︷︷ ︸
N?

)δ = −g, (4)

where λ > 0 is related to the trust region radius and W(λ)
is some symmetric positive definite (p × p) weight matrix,
called the damping matrix, often chosen as:

W(λ) = λI(p×p),

which corresponds to a spherical trust region. This is
the original strategy proposed by Levenberg and Marquardt
[9, 10] and recommended in [17]. Another commonly used
solution, due to [16] and recommended in [5, 7, 15] is
W(λ) = λD where D is a diagonal matrix containing the
diagonal entries of N, which gives an elliptical trust region.
The damping matrix must satisfy a normalization constraint
so that the trust region radius is meaningful, e.g. ‖I(p×p)‖ =√

p. Note that the damping guarantees that N? is full-rank.
Parameter λ is tuned as follows: if parameters X + δ de-

crease the error, i.e. if C(X + δ) < C(X ), then the step
is accepted and the value of λ is divided by some constant,
often 10, else the step is rejected and λ is multiplied by the
constant.

4. Influence of the Gauge
Not surprisingly, It has been reported that in general, bun-

dle adjustment was not gauge invariant, i.e. an iteration
within different gauges yield geometrically different results
[1, 3, 8, 11, 12, 14, 17]. We formulate the gauge invariance
property and examine under which condition standard algo-
rithms satisfy it.

4.1. Gauge Transformation and Invariance
Gauge transformations change the parameter vector with-

out changing the underlying geometry, e.g. [8]. Let X T =
(MT ST) and X̌T = (M̌T ŠT) be two parameter vectors
of the same reconstruction expressed within two different
gauges G and Ǧ. Let T be the full-rank transformation re-
lating the two underlying projective bases, defined such that:
P̌i = γiPiT and Q̌j = αjT

−1Qj , where γi and αj are un-
known non-zero scale factors. Entities written with aˇare
expressed within the gauge Ǧ. The structure and motion pa-
rameters transform as:

Š = diag(α1T
−1, . . . , αmT

−1

︸ ︷︷ ︸
m

) S

M̌ = diag(γ1T
T, . . . , γnT

T

︸ ︷︷ ︸
3n

)M,

since vect(γPT) = diag(γTT, γTT, γTT) vect(P). We de-
duce that the parameter vectors are related by X̌ = T̃X
where the gauge transformation T̃ is defined by:

T̃ = diag(γ1T
T, . . . , γnT

T

︸ ︷︷ ︸
3n

, α1T
−1, . . . , αmT

−1

︸ ︷︷ ︸
m

). (5)

Note that det(T) 6= 0⇒ det(T̃) 6= 0 since the γi and αj are
non-zero. In general,X and X̌ are related by a unique gauge
transformation.
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The geometric equivalence of two reconstructions, de-
noted by ∼=, is an egality ‘up to the gauge’ defined by:

(X ∼= X̌ )⇔
(
∃T̃ | X̌ = T̃X

)
. (6)

with T̃ of the form (5). We can now formally state the gauge
invariance property. A bundle adjustment algorithm is gauge
invariant if it preserves geometric equivalence: (X ∼= X̌ )⇒
((X + δ) ∼= (X̌ + δ̌)). By writing explicitly this property
using equation (6), expanding, and sinceX and X̌ are related
by a unique T̃, we obtain the following definition of gauge
invariance:

(
∃T̃ | (X̌ = T̃X )

)
⇒ (δ̌ = T̃δ). (7)

Note that although derived in a different manner, this def-
inition is similar to the one given in [12]. We examine
successively under which conditions the Gauss-Newton and
Levenberg-Marquardt iterations are gauge invariant.

4.2. Gauss-Newton
Consider a Gauss-Newton iteration. The increment δ

within gauge G is given by solving the normal equations
(3). Due to gauge freedoms, matrix N has a rank deficiency
of g, and multiple solutions hold, corresponding to different
gauges. Let G be a (p × g) full column-rank matrix defined
by NG = 0, i.e. the columns of G span the nullspace of N.
Denoting by † the Moore-Penrose pseudo-inverse, the possi-
ble solutions of the normal equations are parameterized by a

(g×1) vector v as δ = −(JT
J)

†
J
Tr+Gv, where we substi-

tuted N = J
T
J and g = J

Tr. Since J = ∂r

∂X = ∂r

∂X̌
∂X̌
∂X = J̌T̃,

we obtain: δ = −(T̃TJ̌TJ̌T̃)
†
T̃TJ̌r+T̃−1Ǧv. From equation

(7), gauge invariance holds if and only if:

(T̃T
ŇT̃)

†
= T̃

−1
Ň

†
T̃
−T and v = v̌,

which is verified if and only if T̃ is orthonormal [12], i.e.
T̃−1 = T̃T. Hence, Gauss-Newton-based bundle adjustment
is not gauge invariant. The previously derived condition does
not leave enough flexibility to be exploited in this direction.

4.3. Levenberg-Marquardt
Consider a Levenberg-Marquardt iteration. The incre-

ment δ within gauge G is given by solving the damped
normal equations (4) N?δ = −g. By substituting N? =
N + W(λ) = JTJ + W(λ) and g = JTr in this equation and

since det(N?) 6= 0, we obtain: δ = −(JTJ + W(λ))
−1

JTr.

By substituting J = J̌T̃ and expanding, we get:

δ = −(T̃T
J̌
T
J̌T̃ + W(λ))

−1
T̃

T
J̌
Tr

= −T̃
−1(Ň + T̃

−T
W(λ)T̃−1)

−1
J̌
Tr.

From equation (7), gauge invariance holds if and only if:

W̌(λ) = T̃
−T

W(λ)T̃−1. (8)

The usual choices for matrices W(λ) and W̌(λ), e.g.
W(λ) = W̌(λ) = λI, do not fulfill the above-derived
property2. Hence, standard implementations of Levenberg-
Marquardt-based algorithms are not gauge invariant. Equa-
tion (8) can be verified if an appropriate gauge dependent
choice is made for the damping matrices. This is the cor-
nerstone for the gauge invariant method proposed in the next
section.

5. Explicit and Implicit Gauges
Standard bundle adjustment algorithms are not gauge in-

variant. Hence, given a parameter estimate, there must exist
an optimal local gauge within which the iteration reduces the
reprojection error better than within the others. The problem
of finding this gauge is dealt with in the next section. In this
section, we examine the relationship between the damping
matrix and gauge transformations.

A commonly used solution to globally enforce a gauge,
e.g. [8, 11, 12], is what we call explicit gauge fixing. It con-
sists in explicitly expressing the reconstruction within the
desired gauge before each iteration. It implies the transfer
of the points, the cameras, and all other entities being opti-
mized, into the desired gauge.

We propose implicit gauge fixing. Consider equation (8).
On the one hand, it tells us that the algorithm is not gauge
invariant. On the other hand, it shows that there exists a close
link between the gauge and the damping matrix. Hence, it
can be used to perform bundle adjustment within gauge Ǧ,
while choosing W̌(λ) such that it behaves exactly as if is
was conducted within gauge G. For example if W(λ) = λI

and W̌(λ) = λT̃−TT̃−1, then running the algorithm within
gauges G and Ǧ is strictly equivalent. We confirm in our
experiments that explicit and implicit gauges give exactly the
same results. Let A = TTT, then W̌(λ) = λT̃−TT̃−1 is
given by:

W̌(λ) = λ diag(γ2
1A

−1, . . . , γ2
nA

−1

︸ ︷︷ ︸
3n

, α2
1A, . . . , α2

mA︸ ︷︷ ︸
m

). (9)

In other words, a spherical trust region within gauge G cor-
responds to a more complex trust region within gauge Ǧ, en-
capsulated by the symmetric positive definite matrix W̌(λ)
defined by equation (9).

To summarize, it is possible to reproduce the behaviour
of bundle adjustment within a certain gauge, without explic-
itly expressing the reconstruction within this gauge, only by
choosing the appropriate damping matrix, depending on the
gauge transformation.

Based on this reasonning, we propose the following re-
sult.

2It can be shown that equation (8) with W(λ) = W̌(λ) = λI is verified
as in the Gauss-Newton case, i.e. if T̃ is orthonormal.
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Proposition 1 (Gauge invariance conditions) Levenberg-
Marquardt iterations can be made gauge invariant if the
following two conditions are verified: (i) the form of the
damping matrix is at least as general as the form given
by equation (9) and (ii) the damping matrix is uniquely
determined by a gauge dependent criterion defined such that
equation (8) is verified.

6. Gauge Dependent Damping
We propose a solution to choose a gauge dependent damp-

ing matrix W(λ) = λW which has the three following im-
portant properties. First, it makes the underlying iteration
gauge invariant. Second, it maximizes the decrease in the
reprojection error up to first order. Third, it preserves the
sparse block structure of the normal equations.

In order to achieve this result, we begin by deriving an ap-
proximation of the reprojection error, depending upon W(λ).
A quadratic approximation of C(X + δ) is given by equation
(2). The incremental error e is given by:

e = gT
δ +

1

2
δ

T
Nδ. (10)

The increment vector δ is given by solving the augmented
normal equations (4):

δ = −(N + W(λ))
−1

g.

Since det(W(λ)) 6= 0, we can formulate the following Tay-
lor expansion:

(N + W(λ))−1 =
∞∑

n=0

(−1)n
Z(n),

where Z(n) = (W(λ)
−1

N)n
W(λ)

−1. This expression is
valid provided ‖W(λ)

−1
N‖ < 1, i.e. when N is small or

λ is large. This leads to:

δ = −
∞∑

n=0

(−1)n
Z(n)g.

We substitute the above expression in equation (10). The first
term is rewritten as:

gT
δ = −

∞∑

n=0

(−1)ngT
Z(n)g = −

∞∑

n=0

(−1)n
K(n),

where K(n) = gTZ(n)g. The second term becomes:

1

2
δ

T
Nδ =

1

2

∞∑

n=0

(
(−1)ngT

Z(n)
)
N

∞∑

n=0

((−1)n
Z(n)g) .

After expansion and using the following property arising
from the symmetry of W(λ): Z(n)NZ(n′) = Z(n + n′ + 1),
we obtain:

1

2
δ

T
Nδ =

1

2

∞∑

n=0

(−1)n(n + 1)K(n + 1).

This gives the following Taylor expansion for e:

e =

∞∑

n=0

(−1)n+1
(
1 +

n

2

)
K(n). (11)

Proposition 2 (Gauge invariant iterations) The damping
matrix defined such that equation (11) is minimized satis-
fies proposition 1. Hence, the underlying iteration is gauge
invariant.

Proof. We drop the parameter λ for this proof. Equation (11)
can be rewritten as:

e = gT

(
−W

−1 +
3

2
W

−1
NW

−1 − . . .

)
g.

Transfer the reconstruction from the gauge G to Ǧ by apply-
ing the gauge transformation T̃. By substituting g = T̃Tǧ

and N = T̃TŇT̃, we obtain:

e = ǧT
T̃

(
−W

−1 +
3

2
W

−1
T̃

T
ŇT̃W

−1 − . . .

)
T̃

Tǧ,

and hence, W̌−1 = T̃W−1T̃T, which verifies the gauge in-
variance equation (8) and concludes the proof. �

Finding the damping matrix that minimizes e, equation
(11), is a complicated problem. We propose to keep only
the first-order term: e ≈ −gTW(λ)−1

g, which reduces the
problem to finding a symmetric, positive definite, damping
matrix λW such that:

W = arg max
W,‖W‖2=p

gT(λW)
−1

g.

The normalization condition ‖W‖2 = p is the same as the
standard choice W(λ) = λI since ‖I(p×p)‖2 = p. Obviously,
the solution depends upon the form chosen for matrix W .
For example, ifW = diag(d), where d is a (p × 1) vector
with strictly positive elements, then the problem transforms
in:

W = diag

(
arg max

d,‖d‖2=p

p∑

k=1

g2
k/dk

)
,

which has the simple solution (up to scale)W ∼ diag(g)2.
According to proposition 1, this solution can not yield a sub-
sequent gauge invariant algorithm since a diagonal damping
matrix is not general enough for implicit gauges.

In a more general manner, since W(λ) is a symmetric
matrix, W(λ)

−1
= 1

λ
RTR, where R is an upper-triangular

matrix. With this parameterization, and since gT 1
λ
R

T
Rg =

1
λ
‖Rg‖2, we obtain:

R = arg max
R,‖RTR‖2=p

1

λ
‖Rg‖2. (12)

Hence, the coefficients of matrix R can be found by solving
a simple linear least squares optimization problem.
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1. Compute the damping matrix W(λ)−1 = λRTR

where:

R = diag(M1, . . . , Mn︸ ︷︷ ︸
3n

, S, . . . , S︸ ︷︷ ︸
m

).

The (4 × 4) upper-triangular matrices Mi and S are
formed by solving (see main text):

Mi = arg max
Mi,‖MT

i
Mi‖2=12

3∑

k=1

‖Mig
k
M,i‖2

S = arg max
S,‖STS‖2=4

m∑

j=1

‖SgS,j‖2,

where gS,j and gk
M,i are (4×1) gradient vectors for

the j-th point and for the k-th row of the i-th camera
matrix respectively.

2. Perform one Levenberg-Marquardt iteration with
the damping matrix W(λ). This iteration is gauge
invariant due to the above choice.

3. Optional: Project the estimate onto a global gauge.

Table 1. The gauge invariant iteration we propose. Pe-
riodical enforcement of global gauge constraints (step
3) such as renormalization of homogeneous coordi-
nates is recommended. Gauge invariance holds in the
sense that any global gauge can be enforced in step 3
without affecting the result.

From proposition 1 and imposing the fact that the damp-
ing should not spoil the sparse block structure of the normal
equations, we are left with the following possible form:

R = diag(RM,1, . . . , RM,n︸ ︷︷ ︸
n

, RS,1, . . . , RS,m︸ ︷︷ ︸
m

),

where the RM,i and the RS,j are respectively (12× 12) and
(4 × 4) upper-triangular matrices. Given that each of the p
parameters gives one constraint on the damping matrix and
since it must be uniquely determined (i.e. it must not have
more than p parameters), we propose the following 10(n +
1)-parameter choice:

RM,i = diag(Mi, Mi, Mi) and RS,j = S,

where the Mi and S are (4 × 4) upper-triangular matri-
ces. This choice means that the parameter block of each
camera i has its own 10 parameter damping block MT

i Mi,
while a unique 10 parameter damping block STS is defined
for point parameters. This form is handy since each block
can be found independently by solving a problem of the
form (12). More details are given in table 1. Below, we

give details about solving the low-dimensional maximiza-
tion problems of table 1. Let the problem to be solved be
maxx,‖x‖2=b ‖Cx‖2. The singular vector v associated to the
largest singular value of matrix C gives the solution for x as
x =
√

bv. Singular value decomposition of matrix C can be
used to compute v.

7. Experimental Results
We compare our gauge invariant algorithm, denoted

GAUGE INVARIANT, to some other ones. FREE directly op-
timizes the camera matrices and 3D points. Pseudo-inverse
is used to solve the normal equations. HARTLEY [6] con-
sists in using a reference camera to partially eliminate the
gauge and BARTOLI [2] consists in using two reference cam-
eras to eliminate the gauge. FAUGERAS [4] is based on
fixing the coordinates of 5 reference points to enforce the
gauge. A similar approach is proposed by Mohr et al in [13].
MCLAUCHLAN [11] consists in enforcing a normalized ba-
sis after each iteration and in using first order gauge con-
straints in the normal equations and KANATANI [8] is simi-
lar to method FREE but periodically projects the estimate on a
pre-chosen gauge to prevent it to drift too much. When refer-
ence cameras or points are required by the parameterization,
they are chosen at random. Note that we have implemented
all these algorithms in a unified manner: the optimization
engine is unique, only the parameterization and the damping
strategy change.

We measure the number of iterations and the reprojection
error at convergence. The initial solution, denoted by INIT,
is computed by registering cameras in turn to a two-view re-
construction. Image point coordinates are standardized such
that they lie in [−1 . . . 1].

7.1. Simulated Data
We simulate m = 100 points lying in a cube with 1 meter

side length, observed by n = 5 cameras with a focal length
of 1000 pixels. The points are offset from a base plane lying
inside the cube, with a mean offset denoted by d. Cameras
are situated 10 meters away from the center of the cube. The
baseline between consecutive cameras is 3 meters. All points
are visible in all views. We add a centered Gaussian noise on
true point positions with a 1 pixel variance. We vary some
parameters of the above-described setup to compare the algo-
rithms in different situations. The results are averaged over
50 trials.

Figure 1 shows the results when the scene flatness, i.e. the
mean offset d from the plane, is varied. We observe that the
reprojection errors, i.e. the accuracy, are undistinguishable
for all methods, except for methods FREE which converges
to a different local minimum than the others, for weak ge-
ometry, i.e. when the mean offset from the plane d is small.
Concerning the number of iterations, i.e. the computational
cost, we observe that when the mean offset is large, i.e. when
the geometry is strong, there is only slight differences be-
tween the different methods besides for method FREE, which
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Figure 1. Reprojection error and number of itera-
tions when varying the scene unflatness, from weak to
strong geometry.

takes clearly more iterations to converge. As the geometry
becomes weaker, i.e. when the offset decreases, large dis-
crepancies can be observed between the different methods.
Method FAUGERAS based on reference points gives bad re-
sults, since using reference points to fix a projective basis can
be very unstable. Methods HARTLEY and BARTOLI based
on reference cameras and KANATANI based on periodical
projection on a pre-chosen gauge give reliable results when
the geometry is strong enough. Method MCLAUCHLAN per-
forms better, while GAUGE INVARIANT is the method the
less sensitive to the instability of the scene.

We tested other strong to weak scene configurations,
based on varying the number of points and cameras, the
baseline between consecutive cameras and the visibility (not
shown here due to lack of space). We observed similar re-
sults as above: strong geometries reduce the discrepancies
between the different methods. Similarly, we tested the in-
fluence of the initialization. As expected, discrepancies be-
tween the different methods reduce as the initialization gets
more accurate.

Figure 2 shows the reprojection error as a function of the
iterations for the scene setting with d = 0.5. As expected,
we observe that the error is faster to decrease as the number
of iterations gets low.
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Figure 2. Reprojection error as a function of the itera-
tions.

7.2. Real Data

We compare the algorithms on various image streams.
For two of them, the office sequence, figure 3, and the ho-
tel sequence3, we show results, see table 2. For the office
sequence, all methods give a reprojection error of 0.8392
pixel. For the hotel sequence, they all gave 0.9594 pixel,
besides method FREE which gave 1.5268 pixels. Concerning
the number of iterations, the same observations as for sim-
ulated data can be made. The hotel sequence gives a weak
geometry since an affine camera model is well-adapted to
these data. Hence, a full perspective projection model is not
well-constrained, which tends to increase the discrepancies
between the different methods.

Algorithm office seq. hotel seq.

FREE 12 28
HARTLEY 7 16
BARTOLI 8 19
FAUGERAS 10 22
MCLAUCHLAN 6 15
KANATANI 7 16
GAUGE INVARIANT 7 13

Table 2. Number of iterations of the algorithms for the
office and the hotel sequences.

3These data have been provided by the Modeling by Videotaping group
in the Robotics Institute, Carnegie Mellon University.
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Figure 3. One out of the 15 frames of the office se-
quence, overlaid with the 38 corner features (left) and
snapshot of the reconstructed shape (right).

8. Conclusions
We proposed a bundle adjustment algorithm which max-

imizes the decrease in the error at each iteration, regardless
the gauge within which the reconstruction is expressed.

We derived this algorithm based on a careful study of how
the gauge influence the iterations of standard algorithms,
which are not gauge invariant. In particular, concerning
Levenberg-Marquardt iterations, we showed that the stan-
dard diagonal damping matrices, defining elliptical trust re-
gions, transform to a more complex shaped trust region when
changing the gauge. Based on this, we proposed a gauge de-
pendent damping matrix and a practical algorithm to com-
pute it, that allows gauge invariant iterations while maximiz-
ing the decrease in the reprojection error. The final algorithm
can be incorporated in a straightforward manner to exist-
ing minimization engines since it consists in appropriately
choosing the damping matrix by solving low-dimensional
linear least squares systems. The sparse block structure of
the normal equations is preserved.

We compared our algorithm to existing ones using simu-
lated and real data. We observed that it is more reliable in
the sense that it is less sensitive to weak geometry and weak
initialization. Moreover, the error decreases more intensely
throughout the iterations. Most algorithms converge to the
same solution, but require different number of iterations.
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