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Abstract

Bundle ajustment is used to obtain accurate visual recon-
structions by minimizing the reprojection error. The coor-
dinate frame ambiguity, or more generality the gauge free-
doms, has been dealt with in different manners. It has often
been reported that standard bundle adjustment algorithms
were not gauge invariant: two iterations within different
gauges can lead to geometrically very different results. Sur-
prisingly, most algorithms do not exploit gauge freedoms to
improve performances. We consider this issue. We ana-
lyze theoretically the impact of the gauge on standard al-
gorithms. We show that a sufficiently general damping ma-
trix in Levenberg-Marquardt iteration can be used to implic-
itly reproduce a gauge transformation. We show that if the
damping matrix is chosen such that the decrease in the repro-
jection error is maximized, then the iteration is gauge invari-
ant. Experimental results on simulated and real data show
that our gauge invariant bundle adjustment algorithm out-
performs existing ones in terms of stability.

1. Introduction
The recovery of accurate 3D structure and camera motion

from images is a major research challenge in photogram-
metry [1] and computer vision [13]. Bundle adjustment
is a technique to refine a visual reconstruction to produce
jointly optimal 3D structure and camera motion. Under cer-
tain assumptions on the noise on the observed features, bun-
dle adjustment consists in minimizing the reprojection error,
which is in general a non-linear procedure. Second-order
non-linear least squares algorithms are usually employed,
namely the Gauss-Newton and Levenberg-Marquardt meth-
ods. These methods iteratively improve sub-optimal param-
eter estimates by solving normal equations. Efficient solu-
tions are possible thanks to the sparse block structure of the
normal equations. The Levenberg-Marquardt method has
proved the most successful due to the use of a trust region
strategy, implemented via a damping of the normal equa-
tions, also called augmentation.

An inherent problem in bundle adjustment is the choice
of the coordinate frame in which the reconstruction is ex-
pressed. This coordinate frame is called the gauge, or the

datum in the photogrammetry community. A gauge is a sub-
set of parameter vectors such that any two of them do not
share the same underlying geometry. Parameter vectors cor-
responding to the same geometry are related by gauge trans-
formations. It has been shown in [7] that these transforma-
tions have a group structure. The reprojection error is gauge
invariant since it reflects the inherent merit of a reconstruc-
tion. These considerations hold whichever camera model
is used and whichever calibration level is available. When
ignored, gauge freedoms may induce numerical estimation
problems, since they imply the rank deficiency of the normal
equations.

It has been reported that most bundle adjustment algo-
rithms [1, 3, 7, 8, 9, 10, 13] are not gauge invariant1. Care-
fully choosing the gauge can greatly improve the reliabil-
ity. In practice, most algorithms converge to the same solu-
tion, but require different number of iterations. Surprisingly,
gauge freedoms have rarely been exploited to improve on the
reliability of algorithms.

Gauge freedoms imply that the normal equations to be
solved at each iteration do not have a unique solution. Damp-
ing the normal equations consists in adding a symmetric pos-
itive definite matrix to the design matrix. This matrix is most
of the time chosen as a diagonal one, which corresponds to
an elliptical trust region, see e.g. [12] and §3 for more details.

The main contribution of this paper is an algorithm that
maximizes the decrease in the reprojection error at each it-
eration, in a gauge invariant manner. In §4, we formally
state the gauge invariance property of a bundle adjustment
algorithm. In §5, we concentrate on Levenberg-Marquardt
iterations and propose implicit gauges. In §6, we propose a
gauge dependent damping matrix which (i) makes the under-
lying iteration gauge invariant, (ii) maximizes the decrease
in the reprojection error up to first order and (iii) preserves
the sparse block structure of the normal equations. Finally
§7 reports some experimental results and §8 concludes. For
simplicity of notation, we deal with projective reconstruction

1We employ ‘gauge invariant’ in a manner different from [7, 8, 9]. These
authors propose algorithms based on using a pre-defined global gauge.
Hence, no matter the gauge within which the initial solution is expressed,
their algorithms will give the same result. However, the behaviour of these
algorithms do depend upon the pre-defined global gauge. In this sense, these
algorithms are not gauge invariant.



of points and cameras. Extension to other camera models,
calibration levels, and types of features is straightforward,
following [7, 9]. Note that an extended version of this paper
is available.

Notation. We make no formal distinction between coordi-
nate vectors and physical entities. Equality up to a non-null
scale factor is denoted by ∼ and is sometimes written by in-
troducing explicitly the scale factor: (x ∼ x′) ⇔ (∃α|x =
αx′). Transposition and transposed inverse are denoted by T

and −T. Vectors are typeset using bold fonts (q, Q), matrices
using sans-serif fonts (P, T) and scalars in italics. Indices
are used to indicate the size of a matrix or vector (P(3×4),
q(3×1)) or to index a set of entities. The row-wise matrix
vectorization is written vect.

Let Pi, i = 1 . . . n denote the n reconstructed camera
matrices and Qj , j = 1 . . .m denote the m reconstructed
3D points. Structure and motion parameters are contained in
a (p× 1) vector X , partitionned into 12n motion parameters
M and 4m structure parameters S as:

XT = (vectT(P1) . . . vectT(Pn)︸ ︷︷ ︸
MT

QT

1 . . . QT

m︸ ︷︷ ︸
ST

)

Changing the 15-degrees of freedom projective reconstruc-
tion basis and the individual scale factors of the camera ma-
trices and point coordinate vectors leave the underlying ge-
ometry invariant. Hence there are g = 15 + n + m degrees
of gauge freedom.

2. Previous work

A survey of gauge freedom handling strategies is [13,
§9]. Methods to deal with this problem are either globally
free, i.e. they left the gauge free to drift, or globally fixed,
i.e. they enforce a global gauge. Globally free methods are
based on selecting a solution of the normal equations, using
a pseudo-inverse [1], numerical damping [12, 13] or local
gauge constraints, for example, the standard photogrammet-
ric inner constraints. Globally fixed methods enforce a pre-
chosen gauge. Some methods use reference elements (trivial
gauge), either features [1, 4] (object-centered gauge) or cam-
eras [2, 5, 6]. Another possibility for a globally fixed gauge
is to use global gauge constraints [7, 8, 9], which raises the
problem of enforcing these constraints during optimization.
Besides the globally free photogrammetric inner constraints,
all these methods are based on somehow arbitrary gauges
which are not chosen to meet some efficiency criteria. A re-
cent attempt in this direction is [10]. Based on gauge theory,
the authors analyze, in the context of Euclidean reconstruc-
tion, which physical measure is the most likely to maximize
the accuracy of the reconstruction while setting the scene
scale.

3. Standard Algorithms
Bundle adjustment often consists in minimizing the re-

projection error, given by the sum of squared differences be-
tween observed features qij and predicted features q̂ij :

C(X ) =

n∑

i=1

m∑

j=1

wij d2(qij , q̂ij) = rTr, (1)

where wij is one if point j is visible in view i and zero oth-
erwise. The (r × 1) vector r is the residual error vector.
Predicted features are given by q̂ij ∼ PiQj .

Given a sub-optimal solution X0, the parameter vector X
is iteratively updated by X ← X + δ, where the increment
δ is obtained as follows. Let J = ∂r

∂X denotes the (r × p)
Jacobian matrix of the residual error vector r with respect to
structure and motion parameters X , g = JTr be the (p × 1)
gradient vector of C and let N = JTJ be the Gauss-Newton
approximation of the (p× p) Hessian matrix. The reprojec-
tion error is approximated by:

C(X + δ) ≈ C(X ) + gT
δ +

1

2
δ

T
Nδ

︸ ︷︷ ︸
e

. (2)

The minimum of this simple local quadratic model can be
found by setting ∂e

∂δ
= 0, which gives the Gauss-Newton

iteration, through the following normal equations:

Nδ = −g. (3)

Note that N has a rank deficiency of g (the number of gauge
freedoms). The Levenberg-Marquardt iteration is based on
damping or augmenting the normal equations, as follows :

(N + W(λ)︸ ︷︷ ︸
N?

)δ = −g, (4)

where λ > 0 is related to the trust region radius and W(λ)
is some symmetric positive definite (p × p) weight matrix,
called the damping matrix, often chosen as W(λ) = λI(p×p),
which corresponds to a spherical trust region. This is the
original strategy proposed by Levenberg and Marquardt and
recommended in [13]. Another commonly used solution, due
to [12] and recommended in [5, 11] is W(λ) = λD where
D is a diagonal matrix containing the diagonal entries of N,
which gives an elliptical trust region. The damping matrix
must satisfy a normalization constraint so that the trust re-
gion radius is meaningful, e.g. ‖I(p×p)‖ =

√
p. Note that

the damping guarantees that N? is full-rank. Parameter λ is
tuned as follows: if parameters X + δ decrease the error, i.e.
if C(X + δ) < C(X ), then the step is accepted and the value
of λ is divided by some constant, often 10, else the step is
rejected and λ is multiplied by the constant.

4. Influence of the Gauge
We formulate the gauge invariance property and examine

under which conditions standard algorithms satisfy it.
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4.1. Gauge Transformation and Invariance
Gauge transformations change the parameter vector with-

out changing the underlying geometry, e.g. [7]. Let X T =
(MT ST) and X̌T = (M̌T ŠT) be two parameter vectors
of the same reconstruction expressed within two different
gauges G and Ǧ. Let T be the full-rank transformation re-
lating the two underlying projective bases, defined such that
P̌i = γiPiT and Q̌j = αjT

−1Qj , where γi and αj are un-
known non-zero scale factors. Entities written with aˇare
expressed within the gauge Ǧ. The structure and motion pa-
rameters transform as:

Š = diag(α1T
−1, . . . , αmT

−1

︸ ︷︷ ︸
m

) S

M̌ = diag(γ1T
T, . . . , γnT

T

︸ ︷︷ ︸
3n

)M,

since vect(γPT) = diag(γT
T, γT

T, γT
T) vect(P). We de-

duce that the parameter vectors are related by X̌ = T̃X
where the gauge transformation T̃ is defined by:

T̃ = diag(γ1T
T, . . . , γnT

T

︸ ︷︷ ︸
3n

, α1T
−1, . . . , αmT

−1

︸ ︷︷ ︸
m

). (5)

Note that det(T) 6= 0⇒ det(T̃) 6= 0 since the γi and αj are
non-zero. In general, X and X̌ are related by a unique gauge
transformation.

The geometric equivalence of two reconstructions, de-
noted by ∼=, is an egality ‘up to the gauge’ defined by:

(X ∼= X̌ )⇔
(
∃T̃ | X̌ = T̃X

)
. (6)

with T̃ of the form (5). We can now formally state the gauge
invariance property. A bundle adjustment algorithm is gauge
invariant if it preserves geometric equivalence: (X ∼= X̌ )⇒
((X + δ) ∼= (X̌ + δ̌)). By writing explicitly this property
using equation (6), expanding, and sinceX and X̌ are related
by a unique T̃, we obtain the following definition of gauge
invariance:

(
∃T̃ | (X̌ = T̃X )

)
⇒ (δ̌ = T̃δ). (7)

Note that although derived in a different manner, this defini-
tion is similar to the one given in [9].

4.2. Gauss-Newton
Consider a Gauss-Newton iteration. The increment δ

within gauge G is given by solving the normal equations
(3). Due to gauge freedoms, matrix N has a rank deficiency
of g, and multiple solutions hold, corresponding to different
gauges. Let G be a (p × g) full column-rank matrix defined
by NG = 0, i.e. the columns of G span the nullspace of N.
Denoting by † the Moore-Penrose pseudo-inverse, the possi-
ble solutions of the normal equations are parameterized by a

(g×1) vector v as δ = −(JTJ)
†
JTr+Gv, where we substi-

tuted N = JTJ and g = JTr. Since J = ∂r

∂X = ∂r

∂X̌
∂X̌
∂X = J̌T̃,

we obtain: δ = −(T̃TJ̌TJ̌T̃)
†
T̃TJ̌r + T̃−1Ǧv. From equa-

tion (7), gauge invariance holds if and only if (T̃TŇT̃)
†

=

T̃−1Ň†T̃−T and v = v̌, which is verified if and only if T̃

is orthonormal [9], i.e. T̃
−1 = T̃

T. Hence, Gauss-Newton-
based bundle adjustment is not gauge invariant. The previ-
ously derived condition does not leave enough flexibility to
be exploited in this direction.

4.3. Levenberg-Marquardt
Consider a Levenberg-Marquardt iteration. The incre-

ment δ within gauge G is given by solving the damped
normal equations (4) N?δ = −g. By substituting N? =
N + W(λ) = J

T
J + W(λ) and g = J

Tr in this equation and

since det(N?) 6= 0, we obtain: δ = −(JTJ + W(λ))
−1

JTr.

By substituting J = J̌T̃ and expanding, we get:

δ = −(T̃T
J̌
T
J̌T̃ + W(λ))

−1
T̃

T
J̌
Tr

= −T̃
−1(Ň + T̃

−T
W(λ)T̃−1)

−1
J̌
Tr.

From equation (7), gauge invariance holds if and only if:

W̌(λ) = T̃
−T

W(λ)T̃−1. (8)

The usual choices for matrices W(λ) and W̌(λ), e.g.
W(λ) = W̌(λ) = λI, do not fulfill the above-derived
property2. Hence, standard implementations of Levenberg-
Marquardt-based algorithms are not gauge invariant. Equa-
tion (8) can be verified if an appropriate gauge dependent
choice is made for the damping matrices. This is the cor-
nerstone for the gauge invariant method proposed in the next
section.

5. Explicit and Implicit Gauges
Standard bundle adjustment algorithms are not gauge in-

variant. Hence, given a parameter estimate, there must exist
an optimal local gauge within which the iteration reduces the
reprojection error better than within the others. The problem
of finding this gauge is dealt with in the next section. In this
section, we examine the relationship between the damping
matrix and gauge transformations.

A commonly used solution to globally enforce a gauge,
e.g. [7, 8, 9], is what we call explicit gauge fixing. It consists
in explicitly expressing the reconstruction within the desired
gauge before each iteration.

We propose implicit gauge fixing. Consider equation (8).
On the one hand, it tells us that the algorithm is not gauge
invariant. On the other hand, it shows that there exists a close
link between the gauge and the damping matrix. Hence, it

2It can be shown that equation (8) with W(λ) = W̌(λ) = λI is verified
as in the Gauss-Newton case, i.e. if T̃ is orthonormal.
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can be used to perform bundle adjustment within gauge Ǧ,
while choosing W̌(λ) such that it behaves exactly as if is
was conducted within gauge G. For example if W(λ) = λI

and W̌(λ) = λT̃−TT̃−1, then running the algorithm within
gauges G and Ǧ is strictly equivalent. We confirm in our
experiments that explicit and implicit gauges give exactly the
same results. Let A = T

T
T, then W̌(λ) = λT̃

−T
T̃
−1 is

given by:

W̌(λ) = λ diag(γ2
1A

−1, . . . , γ2
nA

−1

︸ ︷︷ ︸
3n

, α2
1A, . . . , α2

mA︸ ︷︷ ︸
m

). (9)

Proposition 1 (Gauge invariance conditions) Levenberg-
Marquardt iterations can be made gauge invariant if the
following two conditions are verified: (i) the form of the
damping matrix is at least as general as the form given
by equation (9) and (ii) the damping matrix is uniquely
determined by a gauge dependent criterion defined such that
equation (8) is verified.

6. Gauge Dependent Damping
We propose a solution to choose a gauge dependent damp-

ing matrix W(λ) = λW which has the three following im-
portant properties. First, it makes the underlying iteration
gauge invariant. Second, it maximizes the decrease in the
reprojection error up to first order. Third, it preserves the
sparse block structure of the normal equations.

In order to achieve this result, we begin by deriving an
approximation of the reprojection error, depending upon
W(λ). A quadratic approximation of C(X + δ) is given
by equation (2). The incremental error e is given by e =
gTδ + 1

2δ
T
Nδ. The increment vector δ is given by solving

the augmented normal equations (4) δ = −(N + W(λ))
−1

g.
Since det(W(λ)) 6= 0, we can formulate the following Tay-
lor expansion (N + W(λ))

−1
=

∑∞
n=0(−1)nZ(n), where

Z(n) = (W(λ)−1
N)nW(λ)−1. This expression is valid pro-

vided ‖W(λ)
−1

N‖ < 1, i.e. when N is small or λ is large.
This leads to δ = −∑∞

n=0(−1)nZ(n)g. We substitute the
above expression in equation (2). The first term is rewritten
as gT

δ = −
∑∞

n=0(−1)n
K(n), where K(n) = gT

Z(n)g.
The second term becomes:

1

2
δ

T
Nδ =

1

2

∞∑

n=0

(
(−1)ngT

Z(n)
)
N

∞∑

n=0

((−1)n
Z(n)g) .

After expansion and using the following property arising
from the symmetry of W(λ): Z(n)NZ(n′) = Z(n + n′ + 1),
we obtain 1

2δ
T
Nδ = 1

2

∑∞
n=0(−1)n(n + 1)K(n+ 1), which

gives the following Taylor expansion for e:

e =

∞∑

n=0

(−1)n+1
(
1 +

n

2

)
K(n). (10)

Proposition 2 (Gauge invariant iterations) The damping
matrix defined such that equation (10) is minimized satis-
fies proposition 1. Hence, the underlying iteration is gauge
invariant.

Proof. We drop the parameter λ for this proof. Equation (10)
can be rewritten as:

e = gT

(
−W

−1 +
3

2
W

−1
NW

−1 − . . .

)
g.

Transfer the reconstruction from the gauge G to Ǧ by apply-
ing the gauge transformation T̃. By substituting g = T̃Tǧ

and N = T̃
T
ŇT̃, we obtain:

e = ǧT
T̃

(
−W

−1 +
3

2
W

−1
T̃

T
ŇT̃W

−1 − . . .

)
T̃

Tǧ,

and hence, W̌
−1 = T̃W

−1
T̃

T, which verifies the gauge in-
variance equation (8) and concludes the proof. �

Finding the damping matrix that minimizes e, equation
(10), is a complicated problem. We keep only the first-order
term: e ≈ −gTW(λ)

−1
g, which reduces the problem to

finding a symmetric, positive definite, damping matrix λW
W = arg maxW,‖W‖2=p gT(λW)−1

g. The normalization
condition ‖W‖2 = p is the same as the standard choice
W(λ) = λI (‖I(p×p)‖2 = p). Since W(λ) is a symmetric

matrix, W(λ)
−1

= 1
λ
R

T
R, where R is an upper-triangular

matrix. With this parameterization, and since gT 1
λ
RTRg =

1
λ
‖Rg‖2, we obtain:

R = arg max
R,‖RTR‖2=p

1

λ
‖Rg‖2. (11)

Hence, the coefficients of matrix R can be found by solving
a simple linear least squares optimization problem.

From proposition 1 and imposing the fact that the damp-
ing should not spoil the sparse block structure of the normal
equations, we are left with the following possible form:

R = diag(RM,1, . . . , RM,n︸ ︷︷ ︸
n

, RS,1, . . . , RS,m︸ ︷︷ ︸
m

),

where the RM,i and the RS,j are respectively (12× 12) and
(4 × 4) upper-triangular matrices. Given that each of the p

parameters gives one constraint on the damping matrix and
since it must be uniquely determined (i.e. it must not have
more than p parameters), we propose the following 10(n +
1)-parameter choice: RM,i = diag(Mi, Mi, Mi) and RS,j =
S, where the Mi and S are (4 × 4) upper-triangular matri-
ces. This choice means that the parameter block of each
camera i has its own 10 parameter damping block MT

i Mi,
while a unique 10 parameter damping block STS is defined
for point parameters. This form is handy since each block
can be found independently by solving a problem of the

4



1. Compute the damping matrix W(λ)−1 = λRTR

where:

R = diag(M1, . . . , Mn︸ ︷︷ ︸
3n

, S, . . . , S︸ ︷︷ ︸
m

).

The (4 × 4) upper-triangular matrices Mi and S are
formed by solving (see main text):

Mi = arg max
Mi,‖MT

i
Mi‖2=12

3∑

k=1

‖Mig
k
M,i‖2

S = arg max
S,‖STS‖2=4

m∑

j=1

‖SgS,j‖2,

where gS,j and gk
M,i are (4×1) gradient vectors for

the j-th point and for the k-th row of the i-th camera
matrix respectively.

2. Perform one Levenberg-Marquardt iteration with
the damping matrix W(λ). This iteration is gauge
invariant due to the above choice.

3. Optional: Project the estimate onto a global gauge.

Table 1. The gauge invariant iteration we propose. Pe-
riodical enforcement of global gauge constraints (step
3) such as renormalization of homogeneous coordi-
nates is recommended. Gauge invariance holds in the
sense that any global gauge can be enforced in step 3
without affecting the result.

form (11). More details are given in table 1. Below, we
give details about solving the low-dimensional maximiza-
tion problems of table 1. Let the problem to be solved be
max

x,‖x‖2=b ‖Cx‖2. The singular vector v associated to the
largest singular value of matrix C gives the solution for x as
x =
√

bv. Singular value decomposition of matrix C can be
used to compute v.

7. Experimental Results
We compare our gauge invariant algorithm, denoted

GAUGE INVARIANT, to some other ones. FREE directly op-
timizes the camera matrices and 3D points. Pseudo-inverse
is used to solve the normal equations. HARTLEY [6] con-
sists in using a reference camera to partially eliminate the
gauge and BARTOLI [2] consists in using two reference cam-
eras to eliminate the gauge. FAUGERAS [4] is based on
fixing the coordinates of 5 reference points to enforce the
gauge.MCLAUCHLAN [8] consists in enforcing a normalized
basis after each iteration and in using first order gauge con-
straints in the normal equations and KANATANI [7] is similar
to method FREE but periodically projects the estimate on a
pre-chosen gauge to prevent it to drift too much. The initial
solution, denoted by INIT, is computed by registering cam-

eras in turn to a two-view reconstruction.

7.1. Simulated Data
We simulate m = 100 points lying in a cube with 1 meter

side length, observed by n = 5 cameras with a focal length
of 1000 pixels. The points are offset from a base plane lying
inside the cube, with a mean offset denoted by d. Cameras
are situated 10 meters away from the center of the cube. The
baseline between consecutive cameras is 3 meters. All points
are visible in all views. We add a centered Gaussian noise on
true point positions with a 1 pixel variance. The results are
averaged over 50 trials.

Figure 1 (left and middle) shows the results when the
scene flatness, i.e. the mean offset d from the plane, is varied.
We observe that the reprojection errors, i.e. the accuracy, are
undistinguishable for all methods, except for methods FREE

which converges to a different local minimum than the oth-
ers, for weak geometry, i.e. when the mean offset from the
plane d is small. Concerning the number of iterations, i.e.
the computational cost, we observe that when the mean off-
set is large, i.e. when the geometry is strong, there is only
slight differences between the different methods besides for
method FREE, which takes clearly more iterations to con-
verge. As the geometry becomes weaker, i.e. when the offset
decreases, large discrepancies can be observed between the
different methods. Method FAUGERAS based on reference
points gives bad results, since using reference points to fix
a projective basis can be very unstable. Methods HARTLEY

and BARTOLI based on reference cameras and KANATANI

based on periodical projection on a pre-chosen gauge give
reliable results when the geometry is strong enough. Method
MCLAUCHLAN performs better, while GAUGE INVARIANT

is the method the less sensitive to the instability of the scene.
We tested other strong to weak scene configurations,

based on varying the number of points and cameras, the
baseline between consecutive cameras and the visibility (not
shown here due to lack of space). We observed similar re-
sults as above: strong geometries reduce the discrepancies
between the different methods. Similarly, we tested the in-
fluence of the initialization. As expected, discrepancies be-
tween the different methods reduce as the initialization gets
more accurate.

Figure 1 (right) shows the reprojection error as a function
of the iterations for the scene setting with d = 0.5. As ex-
pected, we observe that the error is faster to decrease as the
number of iterations gets low.

7.2. Real Data
We compare the algorithms on various image streams. For

two of them, the office sequence and the hotel sequence3, we
show results, see table 2. For the office sequence, all meth-
ods give a reprojection error of 0.8392 pixel. For the hotel

3provided by the Modeling by Videotaping group in the Robotics Insti-
tute, Carnegie Mellon University.
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Figure 1. Reprojection error (left) and number of iterations (middle) when varying the scene unflatness from weak to
strong geometry and reprojection error as a function of the iterations (right).

sequence, they all gave 0.9594 pixel, besides method FREE

which gave 1.5268 pixels. Concerning the number of iter-
ations, the same observations as for simulated data can be
made. The hotel sequence gives a weak geometry since an
affine camera model is well-adapted to these data. Hence,
a full perspective projection model is not well-constrained,
which tends to increase the discrepancies between the differ-
ent methods.

Algorithm office seq. hotel seq.

FREE 12 28
HARTLEY 7 16
BARTOLI 8 19
FAUGERAS 10 22
MCLAUCHLAN 6 15
KANATANI 7 16
GAUGE INVARIANT 7 13

Table 2. Number of iterations of the algorithms for the
office and the hotel sequences.

8. Conclusions
We proposed a bundle adjustment algorithm which max-

imizes the decrease in the error at each iteration, regardless
the gauge within which the reconstruction is expressed. We
derived this algorithm based on a careful study of how the
gauge influence the iterations of standard algorithms, which
are not gauge invariant. In particular, concerning Levenberg-
Marquardt iterations, we showed that the standard diago-
nal damping matrices, defining elliptical trust regions, trans-
form to a more complex shaped trust region when changing
the gauge. Based on this, we proposed a gauge dependent
damping matrix and a practical algorithm to compute it, that
allows gauge invariant iterations while maximizing the de-
crease in the reprojection error. The sparse block structure
of the normal equations is preserved.

We compared our algorithm to existing ones using simu-

lated and real data. We observed that it is more reliable in
the sense that it is less sensitive to weak geometry and weak
initialization. Moreover, the error decreases more intensely
throughout the iterations. Most algorithms converge to the
same solution, but require different number of iterations.
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