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Abstract

Our goal is to augment images of non-rigid scenes com-
ing from single-camera footage. We do not assume any a
priori information about the scene being viewed, such as
for example a parameterized 3D model or the motion of the
camera. One possible solution is to use non-rigid factor-
ization of points, from which a dense interpolating function
modeled by a thin-plane spline can be computed. However,
in many cases, point correspondences fail to capture pre-
cisely all the deformations occurring in the scene. Exam-
ples include the eyebrows or the lips when augmenting se-
quences of a face. Such deformations can be captured by
tracking curves, but then point correspondences are not ob-
tained directly due to the aperture problem.

We propose an integrated method for non-rigid factoriza-
tion and thin-plate spline interpolant estimation using point
and curve correspondences over multiple views. The main
novelties lie in the introduction of curves into the non-rigid
factorization framework and in a direct global solution for
the registration map, obtained by minimizing the registra-
tion error over all points and curves while taking all the im-
ages into account. The parameters of the registration map
are set using cross-validation. The fidelity of the map is
demonstrated by augmenting video footage undergoing var-
ious types of deformation.

1. Introduction

Augmenting images coming from pre-shot monocular
footage is a major issue in the domain of special effects.
One approach is to compute a dense mapping function be-
tween a reference frame and all other frames of the se-
quence. The augmentation is then performed by the user
only on the reference image and is transferred automatically
to the rest of the sequence.

When the observed scene is rigid, the problem is equiv-

alent to computing a 3D surface. Techniques such as dense
matching [10] and multiple-view stereo [7], or interpolation
from a set of feature correspondences, can be employed to
estimate this surface.

However, the assumption of rigidity is violated in many
cases of interest, such as faces changing expression or cloth-
ing deforming. The problem is then particularly challenging
because a different shape is observed in each image. A ma-
jor step forwards for such cases was made by Torresani et
al. [13, 14] and Brand [3]. Building on the work of [1, 6],
they developed and demonstrated factorization of non-rigid
scenes, where the non-rigidity was represented as a linear
combination of basis shapes.

Unfortunately, for real sequences of smooth surfaces
there is often insufficient texture to establish point corre-
spondences which capture accurately all the deformations.
However, curves encapsulating such deformations are of-
ten available. In this paper we give a solution to this prob-
lem. We describe a method for computing a dense inter-
polating function between images of a non-rigid motion se-
quence. The mapping function is computed from both point
and curve correspondences, using the non-rigid factoriza-
tion framework. An example of using the computed map-
ping is shown in figure 1 (the sequence is shown in figure
5). In this case there are only a few areas where points can
be reliably tracked, e.g. the corner of the eyes, but there are
several curves (the hairline, the eyebrows) which may be
used to determine the mapping.

In outline our method proceeds by computing an initial
mapping based on point correspondences. From this map-
ping, we introduce virtual point correspondences, chosen
such that the registration error of curves is minimized. Fi-
nally, the mapping parameters and the virtual points posi-
tions are globally tuned by minimizing a non-linear error
function, and the process is iterated until the registration of
curves is satisfactory. Thin-plate spline image interpolants
are used for the mapping. The non-rigid factorization, based
on a low-rank shape assumption, mainly serves to enforce



Figure 1. (left) Close-up of two frames of a 40 frame
sequence from the film ‘Run Lola Run’. (middle) the
frames overlaid with real point and curve correspon-
dences. (right) the frames augmented with a logo on
the forehead. The top row shows the reference frame.

global shape consistency by defining a low-rank subspace
for reconstructing the virtual points.

This paper is organized as follows. §2 gives preliminaries
and background. §3 describes our approach and §4 reports
experimental results. Finally, §5 gives conclusions and ex-
tensions.

2. Preliminaries and Background

2.1. Notation

Without loss of generality, we use the first image as the
reference image, i.e. the image that we will relate to all
other ones to perform augmentation. We do not use ho-
mogeneous coordinates, i.e. image point coordinates are 2-
vectors. Vectors and matrices are respectively typeset using
bold and sans-serif fonts, e.g. x and X. We denote real
points as xij , for the j-th (j = 1, . . . ,m) point in the i-th
view (i = 1, . . . , n). Index k = 1, . . . , l is used for curves,
i.e. Cik is the i-th image of the k-th curve. The virtual points
are denoted yikp where p = 1, . . . , dk. Points on a curve are
obtained by Cik(t), where t ∈ [0, 1] is a parameter.

2.2. Non-Rigid Factorization

We sketch the assumptions and ideas of non-rigid factor-
ization and the way we use it. We denote X the (2n ×m)

matrix defined as:

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

⎞
⎟⎟⎟⎠ .

Non-rigid factorization assumes the affine camera model
and that centroids have been subtracted in each image. In
the rigid case, matrix X has rank r = 3 if the scene is 3D
[12], r = 2 if the scene is 2D. In the non-rigid case, it has
been shown that X can still be of low rank, e.g. [14]. This
result is obtained by assuming that the observed 3D shapes
are linear combinations of basis shapes. For example, if a
3D scene is observed, and is a linear combination over 2
basis shapes, then r = 6 since matrix X factorizes as:

X =

⎛
⎜⎜⎜⎝
λ11P1 λ12P1

λ21P2 λ22P2

...
...

λn1Pn λn2Pn

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
M

(
B11 B12 · · · B1m

B21 B22 · · · B2m

)
︸ ︷︷ ︸

S

,

where Pi are the leading (2 × 3) submatrices of affine pro-
jection matrices, the λiu are the weights of the linear com-
binations and Buj is the u-th 3D basis point for the j-th
point. We call M the motion matrix and S the shape ma-
trix. This factorization can be achieved by Singular Value
Decomposition X = UΣVT. The motion and shape ma-
trices are given by the r first columns of U

√
Σ and the r

first rows of
√

ΣVT respectively, which, in the presence of
noise, corresponds to nullifying all but the r first singular
values of X. Recomposing the motion and shape matrices
gives the reprojected points X̂ = MS. Each column s of
the shape matrix S corresponds to a physical point. More
precisely, it is a basis point in R

r: it encapsulates the low-
rank information which, coupled to the motion matrix M,
enables all images of the point to be predicted. While the
basis shapes are obtained in a straightforward manner from
the shape matrix, the weights and the projection matrices are
difficult to extract properly from the motion matrix. More-
over, it is sometimes difficult to choose between 2D and 3D
deforming scenes. Finally, the non-rigidity induces addi-
tional ambiguities in the reconstruction, see [9], and bundle
adjustment needs therefore strong regularization terms.

Our algorithm relies on non-rigid factorization. How-
ever, it does not need the motion matrix to be explicitly de-
composed into projection matrices and weight factors, nor
the shape matrix to be cast as sets of 2D or 3D points. This
avoids making an explicit choice between a 2D or 3D scene.

In practice, there is the issue of choosing the rank r. Pre-
vious solutions to this problem include [9] (using model se-
lection), and [6] (by examining the singular values). In the



experimental section §4, we use cross-validation measures
to choose r.

2.3. Thin-Plate Spline Image Interpolants
A R

2 → R
2 radial basis function has the form f(x) =

(fx(x) fy(x))T, where, if we define ∗ ∈ {x, y}:

f∗(x) = α∗ + γ∗x+ δ∗y +
m∑

j=1

w∗
jE(‖xj − x‖). (1)

A 2D thin-plate spline is obtained by choosing the basis
functions as E(ρ) = ρ2 log ρ. This choice minimizes the
bending energy [2]:

Φ(f) =
∫∫ ((

∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
)
dxdy.

Interpolating or approximating mappings can be con-
structed from m point correspondences xj ↔ x′

j . The pa-
rameters of a mapping are encapsulated into a (m+ 3) × 2
matrix h = (hx hy) where the m + 3 vectors hx and hy

are defined by h∗T = (w∗
1 · · · w∗

m α∗ γ∗ δ∗).
In practice, parameters h are computed by minimizing

the following cost function [4]:

ψ(f,xj ,x′
j , σ) = σΦ(f) +

m∑
j=1

d2(x′
j , f(xj)).

The regularization parameter σ ∈ R
+ controls the trade-off

between the smoothness of the mapping and the interpola-
tion. In the limiting case σ = 0, f interpolates the point
correspondences. When σ > 0, they are approximated, and
when σ → +∞, the mapping tends to an affine transforma-
tion.

By taking the partial derivatives of ψ with respect to h,
one obtains the following linear system:

C(xj)h = D(x′
j). (2)

where the (3+m)× (3+m) matrix C(xj) depends only on
the coordinates in the source image, while the (3 +m) × 2
matrix D(x′

j) contains the coordinates of the points in the
target image:

C(xj) =
(

K + σI P
PT 0

)
, D(x′

j)
T = (x′

1 · · · x′
m 0 0 0),

where the (r, c)-th entry of matrix K is E(‖xr − xc‖) and
the r-th row of matrix P is (1 xT

r ). The last three equations
are the ‘side conditions’, which ensure that the computed
mapping has square integrable second derivatives, i.e. that
it behaves smoothly outside the region of interest.

The outcome is a vector valued function f(x), which ex-
actly maps the corresponding points xj ↔ x′

j onto each
other (for σ = 0) and is a smooth interpolant for other
points.

3. Computing the Mappings

We are given an image sequence of a deforming surface,
where there may be relative motion between the surface and
camera. Our goal is to recover a set of thin-plate spline
mappings between the reference frame and each of the other
frames of the sequence. We wish to exploit curve, as well
as point, correspondences in computing these maps. Whilst
mappings can be constructed from point correspondences as
reviewed in §2.3, the extension to curve correspondences is
not trivial.

1. Tracking. Compute point xij and curve Cik tracks.
Gather the points in matrix X.

2. Rank and regularization parameter selection, §3.1.
Compute the rank r to be used for non-rigid fac-
torization and the regularization parameter σ of the
thin-plate spline mappings by cross-validation.

3. Non-rigid factorization, §2.2. Factorize X into mo-
tion M and shape S. The reprojections are X̂ = MS.

4. Thin-plate spline mappings estimation, §2.3. Use
reprojected points in matrix X̂ to estimate the fi.

5. Curves registration assessment, §3.2. For each
curve k, if the registration error D2

k > µ2, introduce
a virtual point on this curve, as described in §3.3. If
all curves are well-registered, converge.

6. Basis points reconstruction, §3.4. For all virtual
points, reconstruct a basis point by appending a col-
umn skp to the shape matrix S. Append the corre-
sponding column to matrix X.

7. Global refinement (optional), §3.5. Minimize the
global error function E , equation (6), over the map-
pings and all virtual basis points skp.

8. Iteration. Loop on 3.

Table 1. Point- and curve-based multiple-view dense
registration algorithm. The curve registration thresh-
old µ is typically chosen as 1/10 pixels.

The idea is to first use measured point correspondences
throughout the sequence to compute an initial estimate of
the cameras and basis points via non-rigid factorization. A
thin-plate spline mapping can then be built from the esti-
mated point correspondences between the reference image
and any other frame. Note that the rank r used in the non-
rigid factorization and the regularization parameter σ used
for the mappings are computed at this stage by minimizing
a cross-validation error, as described in §3.1. The computed
thin-plate spline provides an initial estimate of the desired



map. However, this initial estimate will induce a registra-
tion error on the curves, and the map is then refined by min-
imizing this registration error. Our method differs from that
of [4] principally in this use of points to provide an initial
estimate that is consistent over multiple frames.

More precisely, the algorithm proceeds as follows. The
initial parameters hi of mappings fi are computed using the
real point correspondences xij , where fi is the mapping be-
tween the reference image and the i-th image. For each
curve correspondence Cik, i = 1, . . . , n, a multi-view regis-
tration error is computed, as the mean distance between the
reference curve C1k mapped with fi to images i = 2, . . . , n
and the corresponding curves C ik. The computation of the
curve registration error is described in §3.2. If the registra-
tion error of a curve is too high, say the distance is greater
than 1/10 pixels, this means that the image area surrounding
the curve is badly mapped, and that the curve may provide
useful constraints to improve the mapping. To incorporate
this information, we introduce a virtual point y ikq on the
curve, as described in §3.3. This process is iterated until
the registration of all curves becomes satisfactory. The role
of the virtual point correspondences, chosen on correspond-
ing curves, is to make the mappings computed throughout
the iterations register the curves better and better. In other
words, the virtual point correspondences are used to incor-
porate into the mapping the information provided by the
curve correspondences.

The iterative process is important since it ensures that all
curves are well-registered by the mapping, and that the set
of virtual points is minimal. The alternative solution of in-
troducing a fixed number of virtual points on each curve is
not satisfactory, since this set of points could be redundant
for some curves, while other curves could be badly regis-
tered by the mapping.

Introducing point correspondences on curves yields one
major problem: nothing guarantees that they are actually
consistent, in the sense of being the image of a unique 3D
point. We deal with this problem using the non-rigid fac-
torization reviewed in §2.2. A similar idea is followed in
[13] for the reconstruction of unreliable point correspon-
dences. Using non-rigid factorization, we factorize the real
point correspondences into a motion and a shape matrix.
Given the motion matrix, instead of computing directly the
positions of all virtual corresponding points y ikq along the
curves in all images, we instead compute the corresponding
3D basis points B, which makes the virtual points consis-
tent with the low-rank shape constraint. More details are
given in §3.4.

Our global refinement step turns into minimizing the dis-
tance between the virtual points predicted by the mappings
and those predicted by the reconstruction, and the global
registration error on curves. The cost function is described
in §3.5 and the optimization procedure in appendix A. The

algorithm is summarized in table 1.

3.1. Computing the Rank and Regularization

We propose to choose the rank r used in the non-rigid
factorization and the regularization parameter σ of the thin-
plate splines by minimizing a cross-validation error τ(r, σ).
Cross-validation reflects how well the model can interpolate
the data. It consists of applying the algorithm to the data
but leaving out one of the correspondences. The error in the
predicted positions of this correspondence is then measured
using the mappings computed from all the remaining cor-
respondences. We perform non-rigid factorization, and use
the reprojected points to compute thin-plate splines. The
point left out is then transferred from the first view to all
other views using the thin-plate splines, and the difference
between its actual and predicted positions is computed. The
cross-validation error τ(r, σ) is obtained by averaging these
differences over all views and all points. By varying the
rank r used in non-rigid factorization and the regulariza-
tion parameter σ of the thin-plate splines, different cross-
validation errors are obtained. We choose r and σ such that
τ(r, σ) is minimized.

3.2. Assessing Curve Registration

This section deals with computing the multi-view reg-
istration error Dk of a curve correspondence Cik, i =
1, . . . , n, given a multi-view mapping fi, i = 2, . . . , n. As
explained previously, we use a transfer error, given by the
mean of the distances between fi(C1k), the reference curve
C1k mapped to image i > 1, and the corresponding curve
Cik:

D2
k =

1
n− 1

n∑
i=2

ε2(fi(C1k), Cik), (3)

where ε is a distance measure between two curves. A nat-
ural distance measure is the average of the distances be-
tween e regularly sampled points on C with parameters tq ,
q = 1, . . . , e, and C ′:

ε2(C, C′) =
1
e

e∑
q=1

(
min

t′∈[0,1]
d2(C(tq), C′(t′))

)
. (4)

By substituting equation (4) into equation (3), we obtain:

D2
k = ν

n∑
i=2

e∑
q=1

(
min

t′∈[0,1]
d2(fi(C1k(tkq)), Cik(t′))

)
, (5)

where ν = 1
e(n−1) is a normalizing factor. This expres-

sion can be evaluated by computing e(n − 1) independent
one-dimensional minimisations over t ′. We use the Newton
algorithm with analytic differentiation. Reliable initial solu-
tions are provided by t′ = tkq , and the constraint t′ ∈ [0, 1]
is enforced by a simple clamping. Note that for certain



curve parameterizations, direct specific solutions may exist
to compute Dk.

3.3. Choosing the Virtual Points
At each iteration of the algorithm, the current estimated

mapping is tested against each curve. Assume that the reg-
istration error Dk of the k-th curve is not satisfactory. We
drop the curve index k for clarity throughout this section.

A virtual point y1q = C1(s1q) is introduced on the curve
in the reference image (see below). The corresponding vir-
tual points in the other views are chosen on the correspond-
ing curves, such the mapping computed at the next iteration
will tend to better match the curves. A trivial solution to
chose the corresponding points yiq is to evaluate all images
of the curve with the same parameters, i.e. yiq = Ci(s1q).
However, this solution highly depends on the parameterisa-
tion of the curves. We prefer to choose for the y iq the closest
points to the points predicted by the current mapping:

yiq = C(siq) with siq = arg min
s
d2(fi(y1q), Ci(s)).

The virtual point introduced in the reference image is
chosen such that it has a high probability to reduce
the curve registration error, i.e. such the total error∑n

i=2 d
2(fi(y1q), Ci(siq)) induced by chosing the corre-

sponding points is maximized.

3.4. Reconstructing the Basis Points
We drop the curve index k for clarity throughout this

section. We tackle the problem of finding the virtual cor-
responding points of yip, and reconstructing the underly-
ing basis point sp. Point y1p lies on C1 in the reference
image and has been introduced to incorporate information
from this curve correspondence in the mapping. Comput-
ing the corresponding points y2p, . . . ,ynp is difficult due
to the aperture problem: they may be located anywhere
along the curves C2, . . . , Cn in frames 2, . . . , n respectively.
This problem is (n − 1)-dimensional, where n is the num-
ber of views. To reduce this high-dimensional problem,
we consider the previously computed non-rigid factoriza-
tion X̂ = MS. Each column s of the shape matrix S corre-
sponds to a particular point. For any virtual point y1p, we
append a column sp to matrix S. The corresponding image

points are given by
(
ŷT

1p · · · ŷT
np

)T = Msp. We have re-
duced our (n− 1)-dimensional problem to a r-dimensional
one, where r is the rank used for non-rigid factorization, e.g.
from 39 to 3 on the 40 frame Lola sequence. The accurate
estimation of sp is part of the global non-linear refinement
described in the next section. We compute sp such that the
distances between the predicted points ŷip and the points
yip is minimized for i = 2, . . . , n, and such that ŷ1p = y1p:

min
sp | ŷ1p=y1p

n∑
i=2

d2(ŷip,yip).

This is a linear least squares problem under linear con-
straints, that we solve using the framework described in e.g.
[5, A3.4.4].

3.5. Non-Linear Global Refinement

We deal with the last step of our iterative algorithm, the
global refinement of the mappings parameters and virtual
points positions. We minimize an error function consisting
of two terms:

min
hi,skp

E with E2 = E2
rec + ζ2E2

reg, (6)

where hi are the parameters of the i-th mapping f i and ζ2 is
a weight that we currently choose as 1. The reconstruction
term Erec and the registration term Ereg are described below.
The appendix shows how the optimization can be carried
out using sparse matrix inversion.

The reconstruction term concerns the reconstruction of
the basis points for the virtual points. It measures the
difference between the virtual image points predicted by
the reconstruction and those predicted by the mapping:
E2

rec =
∑l

k=1

∑n
i=2

∑dk

p=1 d
2(ŷikp, fi(y1kp)), where dk is

the number of virtual points on curve k.
The registration term accounts for the registration of the

curves across the images. It is based on the multi-view curve
registration error Dk of §3.2: E2

reg ∝∑l
k=1 D2

k.

4. Experimental Results
4.1. Implementation Details

We mark real points and curves in the first image, and
use the Shi-Tomasi point tracker [11] to get the real point
correspondences. Curves are modeled by natural splines.
We track each curve by computing a local non-rigid trans-
formation g by minimizing an intensity-based registration
error on the image patch X surrounding the curve:

min
gi

∑
x∈X

(I1(x) − Ii(gi(x)))2 ,

where Ii(x) is the intensity or colour of the pixel with co-
ordinates x in image Ii, and gi is a thin-plate spline with a
fixed number of centres, chosen as 4 in our implementation.
Transformations gi are used to transfer the control points of
the curve, which are finely tuned by maximizing the normal
image gradient along the curve.

More sophisticated curve trackers, see e.g. [8], based on
geodesic snakes, could be used as well.

4.2. Computing the Rank and Regularization

We use the procedure of §3.1 based on cross-validation
to determine the rank r to be used in non-rigid factorization
and the regularization parameter of the thin-plate splines.



Figure 2. (top row) Sample frames (5 out of 105) of the Bears sequence. (second row) the point and curve correspon-
dences. (third row) the computed flow field. (last row) the augmented sequence.
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Cross-validation also provides a quantitative analysis. We
use the 105 frames of the Bears sequence shown in fig-
ure 2. We chose this sequence since many stable point and
curve correspondences can be obtained. More precisely, we
tracked 94 points and 6 curves.
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tom: hairline, left and right eyebrows.



Figure 3 shows the cross-validation plotted against dif-
ferent values of r. For each value of r, the σ minimizing the
cross-validation is employed.

The same experiment run on the Lola sequence, not
shown here, gave r = 3.

4.3. Augmenting Images

We give a qualitative evaluation of the registration algo-
rithm by augmenting sequences. We first consider the Lola
sequence, consisting of 40 frames, from which samples are
given in figure 5. The 33 real points and 3 curves used are
shown on figure 1. The algorithm requires a total of 7 it-
erations to converge, to a 0.052 pixels average registration
error on the curves, and 16 virtual points to be inserted – 7
on the hairline, 6 on the left eyebrow and 3 on the right eye-
brow. Figure 4 shows the evolution of the registration error
for each curve and the mean over all curves, as the itera-
tions proceed. Figure 6 shows the curves mapped from the
reference image to another image of the sequence through
the iterations. We observe that the quality of the mapping
in the vicinity of the curves clearly improves through the
iterations, until finally the mapped curve becomes indistin-
guishable from the tracked curve. Figure 7 shows images of
the Lola sequence augmented with a logo on the forehead.
There is a significant gain of quality between the result ob-
tained using only the real points and the result obtained by
applying our algorithm to real points and curves.

Figure 7. (left) The augmented reference image.
(middle) The augmentation transferred based on real
points. (right) Using real points and curves. In the
former case, the logo is deformed and shifted towards
the hairline, while in the latter case, it is centred on
the forehead, as in the reference image.

5. Conclusions and Extensions
One drawback of using the reference image registration

approach is that occlusions can not be handled easily. This
limits the number of sequences that can be dealt with. A
more explicit 3D surface representation would address this
problem.

We plan to introduce a final step designed to tune
the mapping’s parameters based on a direct method, i.e.
intensity-based, that should capture more completely all the
fine deformations of the surface.

A. Sparse Optimization Algorithm
We show how to carry out the optimization of criterion E ,

equation (6), using a sparse Levenberg-Marquart algorithm.
By merging the two sums over k and on i, and incorporat-
ing the inner minimization over t ′ in the main outer min-
imization by introducing the parameters t ′ikq , the problem
becomes:

min
hi,skp,t′ikq∈[0,1]

l∑
k=1

n∑
i=2

(
e∑

q=1

d2(fi(C1k(tkq)), Cik(t′))

)

+

(
dk∑

p=1

d2(ŷikp, fi(y1kp))

)
.

Let J denotes the Jacobian matrix of E . The Levenberg-
Marquardt algorithm consists in iteratively solving normal
equations (H + θI)δ = −g, where g = JTr is the gradi-
ent and H = JTJ the Gauss-Newton approximation of the
Hessian matrix. Parameter θ ∈ R is tuned heuristically. We

W

W V

virtual pointsmappings curve registration parameters

U

T

Figure 8. Shape of the Hessian matrix H (Gauss-
Newton approximation) for a toy example with n = 3
images, m = 3 real points, l = 2 curves, e = 5
sampled points for curve registration error estimation,
d1 = 2 virtual points on curve 1, d2 = 1 virtual point
on curve 2 and rank r = 3 for non-rigid factorization.

refer to e.g. [5, A4.2] for more details. In order to solve
the normal equations efficiently, we investigate the shape of
matrix H, shown in figure 8. As can be seen, this matrix has



Figure 5. Sample frames (5 out of 40) from the film ‘Run Lola Run’.

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Figure 6. Evolution of the mapping of the curves through the iterations. The grey curve is the tracked curve, while the
white curves are predicted by the mappings. (left) All curves. (right) close-up on the hairline shows that the mapping is
improved through the iterations in the vicinity of the curve. On each image, we show the virtual point correspondence
that is incorporated at the next iteration.

a strong sparse block structure that we exploit to solve the
normal equations using partitioning techniques from bun-
dle adjustment, as described in e.g. [5, A4.3], based on
the U, V and W blocks shown on figure 8. Assuming that
the initial solution is in the best region of convergence, we
enforce the constraints t′ikq ∈ [0, 1] using a simple clamp-
ing. The derivatives are computed in a very simple manner
since C(xj), equation (2) is a constant matrix and hence the
thin-plate spline mapping, equation (1), is linear in the un-
knowns.
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