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Abstract

Registering images of a deforming surface is a well-studied problem. So-
lutions include computing optic flow or estimating a parameterized motion
model. In the case of optic flow it is necessary to include some regularization.

We propose an approach based on representing the induced transforma-
tion between images using Radial Basis Functions (RBF). The approach can
be viewed as a direct, i.e. intensity-based, method, or equivalently, as a way
of using RBFs as non-linear regularizers on the optic flow field.

The approach is demonstrated on several image sequences of deforming
surfaces. It is shown that the computed registrations are sufficiently accurate
to allow convincing augmentations of the images.

1 Introduction
The objective of this paper is registration of images of a non-rigidly deforming surface,
such as a flag being gently blown by the wind. Our goal is to compute dense image
transformations, mapping pixels from one image to corresponding pixels in the other
images. This task is important in domains such as augmented reality and medical imaging.
We are particularly interested in images of surfaces whose behaviour is difficult to explain
using specific physics-based or learnt models, such as the motion of cloth in a skirt as a
person walks.

One solution to this problem is to compute a regularized optic flow field, by min-
imizing an energy functional based on a data term, from e.g. the brightness constancy
assumption, and a regularizer, encouraging smoothness of the flow field. A survey can
be found in e.g. [12]. For example, Irani uses subspace constraints to regularize the optic
flow field [8].

Another solution is to compute a parameterized image transformation. Two main ap-
proaches are possible: feature-based and direct methods. Feature-based methods first
compute a set of matched features extracted from the images, such as corners or contours,
and then use them to estimate the image transformations [15]. On the other hand, direct
methods usually minimize an error function similar to the one used for computing the
optic flow field, based on the brightness constancy assumption [9]. Both feature-based
and direct methods have been shown to give good results when computing rigid transfor-
mations, such as affinities or homographies. However, feature-based methods may fail



to capture the non-rigidities in the image areas where few features are present. In other
words, in contrast to the rigid transformation case where e.g. an affinity is encapsulated in
any three point correspondences, an arbitrary unknown number of correspondences might
be needed to represent all the image deformations. For example, a low texture area might
be subject to deformations, while no corner points might be found in this area. This is
one reason in favour of methods using the intensity information, i.e. optic flow and direct
methods, for computing non-rigid transformations.

The method in [6] draws on the strength of both optic flow and direct methods. The
idea is to learn linear motion models that are used as bases for the optic flow field.

Our objective is to avoid the need for learning the motion model. We propose to
represent it usingRadial Basis Mappings(RBM). Such transformations have been shown
to be very effective in representing various image distortions induced by different kinds of
non-rigidities. Radial Basis Functions (RBF) are non-linear functions defined by centres
and coefficients, see e.g. [13]. An example of such a function is the Thin-Plate Spline [2,
4].

The traditional approach to estimating RBMs is feature-based, for the main reason
that when landmarks are used as centres, then the coefficients of the transformation can
be computed by a linear algorithm. In the Thin-Plate Spline case, the linear algorithm
minimizes the ‘bending energy’ [4]. Chuiet al. [5] propose an integrated feature-based
approach to match points while computing a RBM.

On the other hand, very few attemps have been made towards computing RBMs by
directly considering the image intensity, i.e. using a direct method, or equivalently using
a RBM to regularize the optic flow field. Some progress has been made in this direction
in the medical imaging community, but mainly assuming that the centres of the transfor-
mation are given by user-defined landmarks, see e.g. [10].

We propose a scheme for intensity-based estimation of RBMs. The novelty of our
approach is that the number of centres is estimated on-the-fly, and directly depends on
the degree of non-rigidity between the images. Our algorithm is based on estimating
an affine transformation and adding centres until a registration criterion is met, while
minimizing the registration residual. At each iteration, both the position of centres and
the coefficients of the transformation are estimated. Our algorithm has therefore two main
characteristics: it minimizes an intensity-based registration error and fits a parameterized
non-rigid motion model, whose intrinsic complexity is tuned depending on the amount of
non-rigid deformations. Note that an alternative method of choosing centres is given in
[11].

We give some background in§2, and describe our method for the direct estimation of
RBMs in §3. We propose an extension of the method to deal with image sequences in§4
and report experimental results in§5. Finally, we give our conclusions and discuss further
work in §6.

Notation. Vectors and matrices are respectively typeset using bold and sans-serif fonts,
e.g.x andA. We do not use homogeneous coordinates, i.e. image point coordinates are
2-vectors:xT = (x y), whereT is transposition. We denote asI the images, andI (x)
the colour or gray-level at pixelx. Index i is used for the frames (i = 1, . . . ,n), k for the
centres (k = 1, . . . , l ) and j for point correspondences. The evaluation of an expression at
some value is denoted as inS|x. Matrix vectorization is written as ina = vect(A). The
identity matrix is denoted I and the zero matrix and vector as0 and0.



2 Background
In the following two sections, we describe direct methods and RBMs.

2.1 Direct Methods
We describe the principle of the direct, i.e. intensity-based, alignment of two imagesI
and I ′, related by a point-to-point transformation. The main idea, common to most
algorithms, is to minimize the sum of squared intensity differences between the aligned
images, over the parameters of the transformation [9]. Let us consider the case of an
affine transformation, and derive one of the possible algorithms based on Gauss-Newton.
A more detailed formulation of the image alignment problem is described in [1]. In
particular, a robust, coarse-to-fine framework is used to speed up convergence and prevent
the algorithm getting trapped into local minima, see [3].

An affine transformation has 6 parameters and is modelled by a 2× 3 matrix A =
( Ā t), whereĀ is the leading 2×2 submatrix andt the last column. A pointx is mapped
from the first image to a pointx′ in the second image byx′ = Āx+ t. The transformation
is parameterized by the 6-vectora = vect(A). The direct estimation ofA consists in
solving minaE(a)2, whereE is an error function defined by the mean intensity difference
induced byA betweenI andI ′ over a region of interestX with N pixels E(a)2 =
1
N ∑x∈X e(x,a)2. Each error term is given bye(x,a)2 =

(
I (x)−I ′(Āx+ t)

)2
. We

employ the Gauss-Newton algorithm [14] to solve this minimization problem, using the
identity transformation as an initial solution.

2.2 Radial Basis Mappings
In their basic form, RBFs define a mapping fromRd to R, whered is the dimension. A
general description can be found in [13]. A 2D RBFf is defined by aR2→ R basis
functionφ(η), coefficientsrepresented by anl +3-vectorhT = (w1 · · · wl λ µ ν) and a
set ofl centresqk as:

f (x) = λx+ µy+ν +
l

∑
k=1

wkφ(‖x−qk‖). (1)

It consists of a linear part, with parameters(λ µ ν), and a non-linear part, a sum ofl
weighted terms with coefficientswk of the basis function applied to the distance between
x and the centreqk. Amongst others, the basis function can be chosen as a Gaussian
φ(η) = exp(−η2/(2σ2))/(2πσ2) or as a Thin-Plate Splineφ(η) = η2 log(η).

Radial Basis Mappings asR2→ R2 Radial Basis Functions. The usual way to con-
struct aR2→R2 mappingm, i.e. a RBM, is to stack twoR2→R RBFs f x and f y sharing
their centres [4]:

m(x) =
(

f x(x)
f y(x)

)
= Āx+ t +

l

∑
k=1

(
wx

k
wy

k

)
φ(‖x−qk‖), (2)

whereĀ andt form an affine transformation given by:

A =
(

λ x µx νx

λ y µy νy

)
.

The coefficients are encapsulated in an(l + 3)× 2 matrix h = (hx hy), partitioned in a
non-rigid and a rigid part ashT = (WT A).



Computation from point correspondences. RBMs are often used to create dense smooth
transformations interpolating point correspondencesn j↔ n′j between two images. Points
n j are used as the centres of the transformation. By writing the interpolating conditions
n′j = m(n j) using equation (2), one obtains:

n′j = Ān j + t +
l

∑
k=1

(
wx

k
wy

k

)
φ(‖n j −nk‖),

which can be rewritten as a linear systemCh = D, see [2, 4].

The side conditions. The last three equations of the linear systemCh = D are the ‘side
conditions’. They ensure that the computed transformation has square integrable sec-
ond derivatives, i.e. that it smoothly behaves outside the region of interestX . The
side conditions are expressed between the coefficientswx andwy and the centresn j as
∑l

k=1wk = ∑l
k=1wknk,1 = ∑l

k=1wknk,2 = 0, or, defining ther-th row of matrixP as(nT
r 1),

in matrix form:
PTW = 0(3×1). (3)

3 Direct Estimation of Radial Basis Mappings
We describe our approach for estimating a RBM by using a direct method.

3.1 Outline of the Approach
Constructing a direct method for estimating a RBM raises specific concerns since the
number of centresl , as well as the centresqk themselves and the coefficientsh of the
transformation have to be estimated. More formally, we formulate the problem as:

min
l ,α

E(α)2 such thatPTW = 0(3×1),

whereα encapsulates the set of parameters of the transformation as:

α
T = (qx

1 qy
1 . . . qx

l qy
l wx

1 wy
1 . . . wx

l wy
l a1 . . . a6).

A possible approach is to use a pre-defined set of centres, e.g. on a regular grid or corner
points in the first image (as in a feature-based approach). This approach is not satisfactory.
If too few centres are used, the mapping may fail to capture all the deformations, and if
too many centres are used, then the computational cost might be extremely high.

Our approach is built on adynamic centre insertionprocedure. The idea is to iter-
atively insert new centres, i.e. add non-rigidity to the transformation, until it becomes
satisfactory. The centres are inserted based on examining the error image, to detect where
the mapping fails to provide a proper registration. At each iteration, a centre is inserted,
and the error is minimized. The number of centres grows until the algorithm converges.

The initial number of centres is set to 4, since if less than 4 centres are present, the
corresponding coefficients are constrained to be zero by the side-conditions (3). The
algorithm is summarized in table 1 and illustrated in figure 1.



1. Initialization: use algorithm of§2.1 to obtain the parametersA of an initial affine
transformation. Insert 4 centres as indicated in§3.3, setl ← 4 and setupα accord-
ingly.

2. Transformation refinement:(§3.2) compute the parametersα ′ which minimize the
error in intensity, starting fromα.

3. Convergence test:(§3.4) if E(α)−E(α ′) < ε then remove the last inserted centre(s)
and stop.

4. Parameters updating:α ← α ′.

5. Centre insertion:(§3.3) l ← l +1. The new centre isql , with corresponding coeffi-
cientswx

l ← 0 andwy
l ← 0.

6. Main loop: return to step 2.

Table 1: Direct alignment of two imagesI andI ′ based on estimating a RBMα with
l centresqk and coefficientsh, using the Gauss-Newton algorithm and dynamic centre
insertion. The iterations terminate when the decrease in the error becomes insignificant.

Figure 1: Registration of two images of a deforming Tshirt, shown top and bottom. (from
left to right) Original images, the centres of the transformation and a grid mesh illustrating
the mapping.



3.2 Refining the Transformation
We describe the alignment algorithm given the numberl of centres. The algorithm draws
on the previously described algorithm for the direct estimation of an affine transformation,
see§2.1. The problem is to solve:

min
α

E(α)2 such thatPTW = 0(3×1).

We use the Gauss-Newton algorithm. The differences with the affine transformation re-
finement algorithm are two-fold: the Jacobian matrix of the mapping is more complicated,
and a special parameterization is used to enforce the side-conditions1.

3.3 Dynamic Centre Insertion
A centre accounts for non-rigidity in the transformation around its position. Our strategy
is to insert centres until the transformation gives a satisfactory registration of the two
images, by looking at the error imageE , i.e. the difference between the first image, and
the warped second image.

We proceed as follows. First, we compute a blurred versionÎ of the first imageI
using a Gaussian kernel. Second, using the current transformation, we warp the second
imageI ′ asÎ ′, and blur using the same Gaussian kernel. Blurring the images before
computing their difference is important to get rid of effects such as the partial pixel effect.
The error imageE (the absolute difference between̂I and Î ′) indicates the regions
where the registration is not satisfactory. One may simply insert the new centre where
E attains a maximum. We perform an integration step by convolving with a Gaussian
kernel, before looking for the maximum, to emphasize the regions where the registration
is not satisfactory.

3.4 A Stopping Criterion
Inserting a centre increases the number of degrees of freedom of the transformation and
reduce the registration error. One strategy to stop the iterations would be to penalize
the registration error by the number of degrees of freedom, and stop the algorithm when
the minimum of this function is reached, similar to a nested model selection algorithm,
e.g. [16]. Another strategy is based on the fact that when the ‘best’ number of centres
is reached, inserting a new centre will only produce a slight decrease in the error, pro-
portional to the noise level and quantization / warping error. Thresholding the difference
between two consecutive errors is consequently used as a stopping criterion.

4 Registering Multiple Images
The goal in this section is to exploit the two-image registration algorithm proposed above,
to register a sequence of images. More precisely, we aim at computing the transformation
between a reference image of the sequence and all other images. Without loss of gener-
ality, we choose the first image as the reference one. Denotingfi1i2 the transformation
between imagei1 and imagei2, our goal is to computef1i , i = 2, . . . ,n.

We perform sequential processing: we first computef12 starting from an identity
transformation. Then, we computef13 starting fromf12 and so on.

One problem with this approach is that throughout the sequence, shadows might ap-
pear or disappear, meaning that the appearance of the surface might change. To overcome

1We use aQR decomposition-based subspace projection, as described in e.g. [7,§12.1.4].



this problem, we investigated two approaches. The first approach consists in updating the
appearance of the reference frame while registering the frames. After having computed
f12, we use it to alignI2 with the reference frame. This aligned image is calledI21, and
is used as an updated reference frame when computingf13 as the transformation between
I21 andI3. Of course, this approach gets rid of appearance variations, but might drift
since registration errors are accumulated through the process.

The second approach we propose is to apply a shadow mask. This mask is computed
as the residual error image between the reference imageI1 andI21. It is then applied
to the reference image before registering it withI3. As in the previous approach, this
gets rid of appearance variations, but might drift through the sequence. We have found
however, that this approach is less likely to drift. This is due to the fact that only the
shadow mask is updated, and not the reference frame itself.

5 Experimental Results
This section reports experimental results on simulated and real data.

5.1 Simulated Data
The goal of these experiments is to validate the algorithm and determinate conditions
under which it converges. Starting from a first image, we generate a second image, that
will be used in the algorithm. The second image is generated as illustrated on figure
2. First, a rigid transformation is applied to the first image: three points are selected and

Figure 2: The simulation setup: the original Tshirt image, after affine transformation,
after full non-rigid transformation and after having applied a global illumination change
and added random noise.

randomly perturbed to define an affine transformation. The direction of the perturbation is
chosen at random, while its normδR is user-defined. Second, a non-rigid transformation
is applied: points on a regular grid are offset by a random perturbation as above, with
normδNR. Third, a global illumination change is applied, as well as a random Gaussian
noise with varianceσ , on the intensity of all pixels. We perform the experiments using
the Tshirt image of figure 2 and an image from the Newspaper sequence, figure 5.

The default values of these three parameters areδR = 3 pixels,δNR = 2 pixels and
σ = 1 (over 256 gray levels). We vary independently these parameters while measuring
the residual errorE at convergence. A residual error close to the noise levelσ means that
the algorithm successfully converged. The results are averages over 50 trials.

Figure 3 shows the results we obtained. Based on these, we can say that the conver-
gence is independent of the rigid partδR, on the 0 to 10 pixels range. However, con-
vergence is strongly affected by the non-rigid partδNR. It gracefully degrades until a
break-point is reached, at roughlyδNR = 6 pixels for the Tshirt image andδNR = 4 pixels
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Figure 3: (left) A grid mesh illustrating the kind of simulated deformations. (right) Sim-
ulation results.

for the Newspaper image. Beyond these break-points, the algorithm does not converge to
the right solution.

5.2 Real Data
Comparing grid-based and dynamic centre insertion approaches. We compare the
traditional approach based on placing the centres at the nodes of a fixed, regular grid, and
our dynamic centre insertion procedure. The results for the Tshirt images shown in figure
1 are displayed on figure 4. Our approach converged after 5 centres were introduced, with
an error of 13.80 over 256 gray-levels.
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Figure 4: Comparison of our dynamic centre insertion and a fixed grid approach.

We observe that the fixed grid approach needs many more centres than ours to min-
imize the error function to a similar order of magnitude. More precisely, 16 centres are
needed for the fixed grid approach to reach the same alignment.



The Newspaper sequence.We apply our algorithm to the 225-frame Newspaper se-
quence, shown in figure 5. This sequence was acquired by waving the newspaper, which
non-rigidly deformed, in front of a hand-held digital camera. The movie shows that the
surface is undergoing highly non-rigid deformations. We select a reference frame, shown
on figure 5, to which all other frames are registered, using pair-wise non-rigid motion
estimation, as described in§4.

Visually it is evident that the registration is good. The average intensity registration
error over the sequence is 5.24 over 256 gray-levels, which is acceptable. The final col-
umn of figure 5 shows an augmented sequence: the original cartoon has been replaced by
a new one. The video presentation associated with this paper clearly shows that visual
deformations have been eliminated.

Figure 5: Registration results on the Newspaper sequence. (left) Original images. (mid-
dle) A mesh grid illustrating the computed mapping. (right) The cartoon on the reference
image (indicated by a black frame) is replaced and mapped onto the other frames.



6 Conclusions and Further Work
We have proposed an intensity-based algorithm for the computation of Radial Basis Map-
pings, that can equivalently be viewed as a way to compute a regulatized optic flow field.
The basic algorithm is intended to register pairs of views, and an extension for the regis-
tration of multiple views is proposed. Amongst the possible avenues for future research,
experimenting with different, robust cost functions would be important, as well as com-
puting super-resolution.
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