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Abstract

The recovery of 3D shape and camera motion for non-rigid

scenes from single-camera video footage is a very impor-

tant problem in computer vision. The low-rank shape model

consists in regarding the deformations as linear combina-

tions of basis shapes. Most algorithms for reconstructing

the parameters of this model along with camera motion are

based on three main steps. Given point tracks and the rank,

or equivalently the number of basis shapes, they factorize a

measurement matrix containing all point tracks, from which

the camera motion and basis shapes are extracted and re-

fined in a bundle adjustment manner. There are several is-

sues that have not been addressed yet, among which, choos-

ing the rank automatically and dealing with erroneous point

tracks and missing data.

We introduce theoretical and practical contributions that

address these issues. We propose an implicit imaging

model for non-rigid scenes from which we derive non-rigid

matching tensors and closure constraints. We give a non-

rigid Structure-From-Motion algorithm based on comput-

ing matching tensors over subsequences, from which the im-

plicit cameras are extrated. Each non-rigid matching tensor

is computed, along with the rank of the subsequence, using

a robust estimator incorporating a model selection criterion

that detects erroneous image points.

Preliminary experimental results on real and simulated

data show that our algorithm deals with challenging video

sequences.

1. Introduction

Structure-From-Motion – the recovery of 3D shape and

camera motion from images – is one of the most studied

problems in computer vision. The decades of work has led

to significant successes, especially when the observed en-

vironment is static. However, the assumption of rigidity

is violated in many cases of interest, for example expres-

sive faces, moving cars, etc. For that reason, dealing with

non-rigid scenes coming from single-camera footage has re-

ceived an increasing attention over the last few years. The

problem is highly challenging since both the camera mo-

tion and the non-rigid 3D shape have to be recovered. A

major step forwards for such cases was made by Bregler et

al. [5, 9], Brand [4] and Aanæs et al. [1]. Building on the

work of [2, 7], they developed and demonstrated factoriza-

tion of images of non-rigid scenes, where the non-rigidity

was represented as a linear combination of basis shapes.

Xiao et al. [14] studied the degenerate deformations that

may defeat the reconstruction algorithms.

This paper tackles the two following open problems. (i)

the factorization of a measurement matrix containing all

point tracks in the presence of missing and erroneous im-

age points. This must be done to recover the parameters of

the implicit imaging model. Most previous work do not deal

with missing data [1, 4, 5, 9, 13]. (ii) the automatic choice

of the rank r of the measurement matrix, characterising the

degree of non-rigidity in the sequence. Most previous work

rely on a user-defined rank [4, 5, 9, 10, 13].

More precisly, we build on the low-rank shape model to

derive an implicit imaging model projecting points affinely

from R
r – the implicit shape points – onto the images us-

ing implicit camera matrices. The rank r reflects the degree

of non-rigidity of the model and is thus a very important

parameter. This implicit model is simpler than the explicit

model used in e.g. [5, 10], in the sense that it ignores the

replicated block structure of the camera matrices. The im-

plicit model gives weaker constraints on point tracks than

the explicit model. It is the model used for non-rigid fac-

torization in e.g. [5, 9, 13]. Based on this model, we derive

non-rigid matching tensors that constrain point tracks and

encapsulate information about the implicit camera matrices.

We define non-rigid closure constraints relating the match-

ing tensors to the implicit camera matrices. These theoret-

ical concepts are based on the fact that implicit reconstruc-

tion is performed in R
r. They lead to a batch algorithm for

computing the motion and structure matrices in the presence

of erroneous and missing data. The idea is to robustly com-

pute a set of matching tensors over several subsequences

using MAPSAC and the GRIC criterion to choose the associ-

ated rank [8]. From these matching tensors, we solve for the

implicit camera matrices using the closure constraints. The

next step consists in computing the basis shapes by non-

rigid triangulation. We refine both the implicit cameras and

implicit shape in a bundle adjustment manner. Finally, each

image point is classified as an inlier or an outlier. Almost all

steps in this algorithm are done robustly, meaning that blun-

ders are detected and thus do not corrupt the computation.



Roadmap. In §2, we derive the non-rigid shape and imag-

ing models. We examine previous work in §3. We derive the

non-rigid matching tensors and closure constraints in §§4
and 5 respectively. Our Structure-From-Motion algorithm

is derived in §6 while the robust estimation of matching ten-

sors and associated ranks is given in §7. Experimental re-

sults are reported in §8 and our conclusions in §9.

Notation. Vectors are denoted using bold fonts, e.g. x

and matrices using sans-serif or calligraphic characters, e.g.

M or X . Index i = 1, . . . , n is used for the images,

j = 1, . . . ,m for the points and k = 1, . . . , l for the ba-

sis shapes, e.g. xij is the position of the j-th point track in

the i-th image and Bkj is the k-th basis shape for the j-th

point. Visibility indicators modeling occlusions are denoted

vij . The Hadamard (element-wise) product is written ⊙.

The zero and one vectors are respectively 0 and 1, 0 is the

zero matrix and T is vector and matrix transpose. Bars in-

dicate centred data, as in e.g. X̄ . Notation [i, i′] refers to a

subsequence between image i and image i′, e.g. X[i,i′] is the

measurement matrix for this subsequence. {} is a set over

some variable. We use the Singular Value Decomposition,

denoted SVD, e.g. X = UΣVT where U and V are orthonor-

mal matrices, and Σ is diagonal, containing the singular val-

ues of X in decreasing order.

Noise distribution. The noise on image point positions is

supposed to be centred Gaussian i.i.d. Under this hypoth-

esis, minimizing the L2-norm between measured and pre-

dicted point positions, often dubbed the reprojection error,

yields Maximum Likelihood Estimates.

2. Non-Rigid Imaging Model

We review the low-rank shape model, dubbed the explicit

model and derive our implicit model.

2.1. Explicit Model

The low-rank shape assumption consists in writing the co-

ordinates of a time-varying set of points Qij as linear com-

binations over l basis shapes Bkj with the configuration

weights αik: Qij =
∑l

k=1 αikBkj . Points Qij are pro-

jected onto the images by affine cameras: xij = PiQij +ti,

from which the explicit imaging model is obtained:

xij = Pi

(
l∑

k=1

αikBkj

)

+ ti. (1)

This trilinear equation is the most explicit form of the

low-rank shape imaging model. Only rank-3 basis shapes

are considered for simplicity, but rank-2 and rank-1 basis

shapes can be modeled as well [14].

2.2. Implicit Model

Rewriting (1), one obtains:

xij =
(
αi1Pi · · · αilPi

)






B1j

...

Blj




+ ti

= MiSj + ti with (2)

Mi =
(
αi1Pi · · · αilPi

)
.

We call Mi a (2 × 3l) explicit camera matrix and ST

j =
(
BT

1j · · · BT

lj

)
a (3l×1) shape vector. Introduce r = 3l,

the rank of the model, a (r × r) full-rank matrix A and

relaxing the replicated structure yields the bilinear implicit

model. From (2), xij = MiSj +ti =
(
MiA

−1
)
(ASj)+ti,

giving:

xij = JiKj + ti. (3)

We call Ji = MiA
−1 and Kj = ASj the implicit camera

matrix and the implicit shape matrix respectively. Matrix

A represents a corrective transformation. As shown in the

next section, this is the model used for non-rigid factoriza-

tion. The model generalizes, in some sense, the P
k → P

2

projection matrices introduced by Wolf et al. [12].

3. Previous Work

Most of the previous work [1, 4, 5, 9, 13] is based on fac-

torizing a measurement matrix using SVD and hence do

not cope with missing data. We note that Torresani et al.

[10] propose an approach where the likelihood of the ex-

plicit model is maximized over the entire image sequence

using a generalized EM (Expectation Maximization) algo-

rithm which finds the nearest local optimum. The important

rank selection problem is neglected in most papers, besides

[1]. Below, we describe the three main steps involved in

most algorithms. The inputs are the complete measurement

matrix X and the rank r. The outputs are the camera pose,

the configuration weights and the basis shapes.

Step 1: Factorizing. A (2n×m) measurement matrix X
is built by gathering all point coordinates. The translation

part of the imaging model, i.e. the ti, is estimated as the

mean of the point coordinates in each image. A (2n × 1)
joint translation vector tT = (tT

1 · · · tT

n) is built and used

to centre the measurement matrix: X̄ ← X − t · 1T, from

which we get:






x11 · · · x1m

...
. . .

...

xn1 · · · xnm






︸ ︷︷ ︸

X̄(2n×m)

=






J1

...

Jn






︸ ︷︷ ︸

J(2n×r)

(
K1 · · · Km

)

︸ ︷︷ ︸

K(r×m)

,



where J and K are the joint implicit camera and shape ma-

trices. The centred measurement matrix is factorized using

SVD as X̄ = UΣVT. The joint implicit camera and shape

matrices J and K, are recovered as the r leading columns

of e.g. U and ΣVT respectively.

Step 2: Upgrading. The implicit model is upgraded to the

explicit one by computing a corrective transformation. Xiao

et al. [13] show that constraints on both the explicit camera

and shape matrices must be considered to achieve a unique

solution, namely the ‘rotation’ and the ‘basis’ constraints.

They give a closed-form solution based on these constraints.

Previous work [4, 5, 9] use only the rotation constraints,

leading to ambiguous solutions. For instance, Brand [4]

shows that a block-diagonal corrective transformation is a

good practical approximation. Once the replicated structure

has been approximately enforced, the rotation matrices are

extracted using orthonormal decomposition. The configu-

ration weights are then recovered using the orthonormal-

ity of the rotation matrices. Bregler et al. [5] assume that

the information about each basis shape is distributed in the

appropriate column triple in the shape matrix by the initial

SVD, in other words that the entries off the block-diagonal of

the corrective transformation matrix are negligible. Experi-

ments show that this assumption restricts the cases that can

be dealt with since only limited non-rigidity can be handled.

A second factorization round on the reordered weighted mo-

tion matrix elements enforces the replicated block structure,

yielding the weight factors and the Pi, which are upgraded

to Euclidean by computing a linear transformation as in the

rigid factorization case. Aanæs et al. [1] assume that the

structure resulting from rigid factorization gives the mean

non-rigid structure and camera motion. Given the camera

motion, recovering the structure is done by examining the

principal components of the estimated variance.

Step 3: Nonlinear refinement. The solution obtained so

far is finely tuned in a bundle adjustment manner by mini-

mizing e.g. the reprojection error. The algorithms proposed

in [4, 9] differ by the prior they are using to regularize the

solution. These priors state that the reconstructed shapes

should not vary too much between consecutive images.

4. Non-Rigid Matching Tensors

Matching tensors are known for the rigid case. Examples

are the fundamental matrix and the trifocal tensor. They re-

late the image position of corresponding points over multi-

ple images. The implicit imaging model allows us to derive

matching tensors for non-rigid scenes. These tensors are

briefly mentioned in [6, §18.3.1].

A non-rigid matching tensor is a matrix N whose

columns span the d dimensional nullspace of the (2n×m)

centred measurement matrix X̄ :

NTX̄ = 0. (4)

The size of matrixN is (2n×d) where the tensor dimension

is d = 2n − r. Loosely speaking, N constrain each point

track x̄j – the j-th column of X̄ – by NTx̄j = 0. These

constraints easily extend to the non centred measurement

matrix X by substituting X̄ = X − t · 1T into equation (4):

(
NT −NTt

)
(
X
1T

)

= 0.

Minimal number of points and views. The three follow-

ing parameters are characteristic of an image sequence: the

number of images n, the number of point tracks m and the

rank r. They can be related to each other, in particular for,

given r, deriving what the minimal number of point tracks

and views are for computing the matching tensor. The com-

putation is possible if the (2n × m) centred measurement

matrix X̄ is at least of size (r× r). Counting the point track

needed to compute the translations for centring the measure-

ment matrix, we directly get the minimal number of point

tracks as m ≥ r + 1. From 2n ≥ r, we obtain the minimal

number of views as n ≥ ⌊ r
2⌋ + 1. These numbers can also

be derived by counting the number of degrees of freedom in

the tensor and the number of independent constraints given

by equation (4).

Example: 2D rigid scene. In this case, r = 2 and pairs

of points are related by a 2D affine transformation that can

be estimated from 3 point correspondences. With centred

coordinates, the relationship is x̄2j = Ax̄1j , i.e. :

(
A −I

)

︸ ︷︷ ︸

NT

(
x̄1j

x̄2j

)

= 0,

from which we observe that the matching tensor has size

(4×2). More generally, even-rank matching tensors predict

an image point given all other n− 1 image points.

Example: 3D rigid scene. In this case, r = 3 and pairs

of points are related by the affine fundamental matrix that

can estimated from 4 point correspondences. With centred

coordinates, the relationship is (x̄T

2 1)F̄A(x̄T

1 1)
T

= 0 with

F̄A =
(

0 0 a
0 0 b
c d 0

)

the centred affine fundamental matrix:

(
c d a b

)

︸ ︷︷ ︸

NT

(
x̄1j

x̄2j

)

= 0.

More generally, odd-rank matching tensors predict the

equivalent of an epipolar line in an image given all other

n− 1 image points.



OBJECTIVE

Given m point tracks over n images as a an incomplete (2n × m)
measurement matrix X and a (n×m) visibility matrix V , compute

the implicit non-rigid cameras Ji, the non-rigid shape points Kj

and the rank r.

ALGORITHM

1. Partition the sequence, see §6.1 while robustly computing the

matching tensors {N[ib,i′
b
]} and associated ranks, see §7.2.

2. Solve for the implicit cameras (Ji, ti) using the closure con-

straints, see §6.2.

3. Triangulate the point tracks to get the implicit shape points

Kj , see §6.3.

4. Nonlinearly refine the implicit cameras and shape points by

minimizing the reprojection error, see §6.4.

5. Classify each image point track as an inlier or an outlier.

Table 1: Summary of our non-rigid implicit Structure-From-

Motion algorithm.

5. Non-Rigid Closure Constraints

The closure constraints introducted by Triggs in [11] relate

matching tensors to projection matrices. These constraints

are used to derive a batch Structure-From-Motion algorithm

dealing with high amounts of missing data.

In this section, we derive new types of closure constraints

for the non-rigid case, based on the above-derived matching

tensors, namely the N -closure. Our derivation is valid for

any rank r.

Let K ∈ R
r be an implicit shape point. We project

K in the images using the joint implicit camera matrix J :

x̄ = JK, ∀K ∈ R
r. From the definition (4) of the match-

ing tensors, NTx̄ = 0. Substituting the joint projection

equation yields NTJK = 0, ∀K ∈ R
r, which gives the

N -closure constraint:

NTJ = 0. (5)

This constraint means that the joint implicit camera matrix

lies in the right nullspace of NT.

6. Non-Rigid Structure-From-Motion

Our batch algorithm for implicit non-rigid Structure-From-

Motion is based on the above-derived non-rigid matching

tensors and closure constraints. It is summarized in table 1.

We consider only sets of consecutive images for simplicity.

It begins by selecting a set of s subsequences {[ib, i
′
b]}

b=s
b=1

and by computing a set of matching tensors {N[ib,i′
b
]}, one

for each subsequence, and the associated rank estimates

{r[ib,i′
b
]}. Our joint tensor and rank estimation algorithm

is presented in §7. The full sequence rank r is the maximum

over all subsequence ranks: r = maxb(r[ib,ib]).

6.1. Partitioning the Sequence

The measurement matrix is partitioned into overlapping

blocks with points visible in all of the selected images. Be-

fore going into further details, we must figure out what the

minimal tensor dimension is, and how many views each ten-

sor should operate on. Let [ib, i
′
b] and [ib+1, i

′
b+1] be two

consecutive subsequences and let δb,b+1 = ib+1 − ib be the

offset between them. We need to determine what the max-

imum value of δb,b+1 is. The b-th matching tensor, with

dimension db = 2nb − rb, gives db constraints. The num-

ber of unknowns constrained by the first matching tensor

only is δ1,2, from which we get δ1,2 ≤ n1 − ⌊
r1+1

2 ⌋. Mak-

ing the same reasoning for the b-th tensor, i.e. ignoring the

constraints coming from previous overlapping sets, gives a

bound on δb,b+1:

δb,b+1 ≤ nb − ⌊
rb + 1

2
⌋. (6)

Taking into account the other constraints lead to a tighter

bound on δb,b+1, but requires a cumbersome formalism to

count the number of constraints and unknowns. Requiring

δb,b+1 > 0 gives the minimal size of each image set as:

nb ≥ ⌊
rb + 1

2
⌋+ 1. (7)

For instance, for a 2D rigid scene, i.e. r = 2, the mini-

mal nb is 2 from equation (7) and the maximal δb,b+1 is 1

from equation (6), i.e. using the affine transformations over

pairs of consecutive views is fine. For a 3D rigid scene, i.e.

r = 3, the minimal nb is 3 and the maximal δb,b+1 is 1,

meaning that using trifocal tensors over triplets of consecu-

tive of views is fine1.

In practice, we do not know the ranks rb at this step. We

tune an initial guess while jointly partitioning the sequence

and computing the matching tensors, as described in §7.2.

6.2. Solving For the Implicit Cameras

The leading part. We solve for the non-rigid cameras us-

ing the closure constraints. For each computed matching

tensor, equation (5) gives the following constraints on the

joint camera matrix J :

(

0(db×2(ib−1)) NT

[ib,i′
b
] 0(db×2(n−i′

b
))

)

J = 0.

Stacking the constraints for all {[ib, i
′
b]}

b=s
b=1 yields an ho-

mogeneous system AJ = 0. It must be solved, e.g. in the

least-squares sense, while ensuring that matrix J has full

1Triggs [11] states this result and shows the equivalence of using pairs

of fundamental matrices over triplets of consecutive views.



column rank: minJ ‖AJ ‖
2 s.t. det(J ) 6= 0. We replace

the full column rank constraint by a column orthonormality

constraint, i.e. J TJ = I(r×r). Note that the latter implies

the former. This is done without loss of generality since for

any full column rank joint camera matrix J , there exist sev-

eral coordinate transformations, say G(r×r), such that JG

is column orthonormal. One such a transformation is given

by the QR decomposition of J = J ′G−1. The transformed

problem is solved by using the SVD A = UΣVT. Matrix

J is given by the r last columns of V. Note that matrix A

typically has a band-diagonal shape that one might exploit

to efficiently compute its singular vectors, see e.g. [3].

The translations. The implicit imaging model (3) is

xij = JiKj + ti. By minimizing a least-squares error over

all image points, the translations ti in the joint translation

vector t, along with the basis shape vectors Kj can be re-

constructed. We prefer to postpone the basis shape vector

reconstruction to the next step, for robustness purposes. In-

stead, we consider the translation estimate y[i,i′] for each

subsequence [i, i′], giving the centroid with respect to the

points visible in the subsequence. We reconstruct these

centroids along with vector t. Note that in the absence of

missing data, these centroids coincide. We minimize the re-

projection error
∑s

b=1 ‖y[ib,i′
b
]−J[ib,i′

b
]Y[ib,i′

b
]− t[ib,i′

b
]‖

2,

where J[i,i′] and t[i,i′] are respectively a partial joint projec-

tion matrix and a partial joint translation vector restricted to

the subsequence [i, i′], and Y[i,i′] is the reconstructed cen-

troid. By expanding the cost function, the reprojection error

is rewritten ‖Aw − b‖2, where the unknown vector w con-

tains the Y[ib,i′
b
] and t. The solution is given by using the

pseudo-inverse of matrix A, as w = A†b. One must use

a pseudo-inverse, since there is a r-dimensional ambiguity,

making A rank deficient with a left nullspace of dimension

r. This is a translational ambiguity between the basis shapes

and the joint translation t, that one can see by considering

that ∀γ ∈ R
r, xj = JKj + t = J (Kj − γ) + J γ + t =

JK′
j + t′, with K′

j = Kj − γ and t′ = J γ + t.

6.3. Reconstructing the Implicit Shape Points

We compute the basis shape vectors by non-rigid triangula-

tion. This is done by minimizing the reprojection error. As-

sume that the j-th point is visible in the subsequence [i, i′],
then this is formulated by:

min
Kj

‖x̄[i,i′] − J[i,i′]Kj‖
2,

with x̄[i,i′] = x[i,i′] − t[i,i′]. The solution is Kj =

J †
[i,i′]x̄[i,i′]. We perform the minimization in a robust man-

ner to eliminate erroneous image points. We use a RANSAC-

like algorithm with adaptive number of trials. The number

of image points sampled in the inner loop is ⌊ r
2⌋+ 1.

6.4. Nonlinear Refinement

We complete the reconstruction algorithm by minimizing

the reprojection error in order to finely tune the estimate:

min
J ,t,K

‖V+ ⊙ (X − JK − t · 1T)‖2,

where V+ is obtained by duplicating2 each row of the

(n×m) visibility matrix V . The minimization is done in a

bundle adjustment manner. More precisly, we use a damped

Gauss-Newton algorithm with a robust kernel. The damp-

ing is important to avoid singularities in the Hessian matrix,

due to the r(r+1) dimensional coordinate frame ambiguity.

Contrarily to the explicit case, see [1, 13], no extra regular-

izing constraint is necessary.

7. Estimating the Non-Rigid Matching

Tensors and Ranks

Our method estimates a non-rigid matching tensor over a

(sub)sequence, i.e. for a complete measurement matrix, in a

Maximum Likelihood framework. First, we tackle the case

where the data do not contain outliers, and when the rank

is given. Second, we examine the case where the data may

contain outliers, and when the rank have to be estimated.

7.1. Outlier-Free Data, Known Rank

We describe a Maximum Likelihood Estimator, that handles

minimal and redundent data. The translation t is obtained

by averaging the point positions, and the measurement ma-

trix is then centred as X̄ = X − t · 1T. The problem of

finding the optimal N is formulated by minX̂ ‖X̄ − X̂‖
2

s.t. NTX̂ = 0, where X̂ contains predicted point posi-

tions. This is a matrix approximation problem under rank

deficiency constraint. It is solved by computing the SVD

X̄ = UΣVT, from which X̂ is obtained by nullifying all but

the r leading singular values in Σ and recomposing the SVD.

Matrix N is given by the 2n− r last columns of U.

7.2. Contaminated Data, Unknown Rank

In most previous work, the rank of the sequence is assumed

to be given. One exception is Aanæs et al. [1] who use the

BIC model selection criterion to select the rank, but do not

deal with blunders. When one uses subsequences, the subse-

quence rank may be lower than the sequence rank, and must

be estimated along with the matching tensor. In addition,

one has to deal with erroneous image points. We propose

to use the robust estimator MAPSAC in conjunction with the

GRIC model selection criterion proposed in [8]. GRIC is a

modified BIC for robust least-squares problems. Our algo-

rithm maximizes the GRIC score, as follows. In the inner

2This is simply to make it the same size as X .



loop of the robust estimator, we sample point tracks and not

only compute a single matching tensor, but multiple ones by

varying the rank. Obviously, an upper bound rmax on the

rank is necessary to fix the number of point tracks that one

samples at each trial. One must take into account that the

computational cost rises with rmax. One possible solution

is to divide the sequence of trials into groups using gradu-

ally narrower intervals of possible rank values. The GRIC

score is given by:

GRIC =
m∑

j=1

ρ

(

e2
j

σ2

)

+ λd + rm log(m),

where ej is the prediction error for the j-th point track,

λ = 4d log(z) − log(2πσ2) and z is chosen as the image

side length. Function ρ is ρ(x) = x for x < t and ρ(x) = t
otherwise, where the threshold t = 2 log(θ) + dλ/(2n)
with θ the ratio of the percentage of inliers to the percent-

age of outliers. The noise level is robustly estimated using

the weakest model, i.e. for a tensor dimension d = 1, as

σ2 = med(e2
j )/0.67452. We refer the reader to [8] for more

details.

8. Experimental Results

Most other methods do not handle missing data, and hence

can not be compared to our. The method from Torresani et

al. [10] handles missing data but uses the explicit model.

8.1. Simulated Data

We simulated n = 180 cameras observing a set of m =
1000 points generated from l = 5 basis shapes, hence with

rank r = 3l = 15. The configuration weights are cho-

sen in order to give a decaying energy to successive defor-

mation modes. The simulation setup produces a complete

measurement matrix X̃ , from which we extract a sparse,

band-diagonal measurement matrixX , similar to what a real

intensity-based point tracker would produce. A Gaussian

centred noise with variance σ2 = 1 is added to the image

points.

In the experiments, we measured the reprojection error

and the generalization error, which are dubbed in a machine

learning context training and test error respectively. The re-

projection error is E =
√

1
e
‖V+ ⊙ (X − JK − t · 1T)‖2,

where e is the total number of visible image points. In other

words, the reprojection error reflects the difference between

the measures and the predictions. The generalization er-

ror is given by Gγ =
√

1
eγ
‖Ṽ+

γ ⊙ (X̃ − JK − t · 1T)‖2,

where γ indicates the percentage of hidden image points

in X̃ involved in the estimation and eγ is the total num-

ber of image points used in the calculation. The (n × m)
matrix Ṽγ indicates which image points are used in the cal-

culation: it is constructed by including points further away

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

Noise variance (pixels)

E
rr

or
 (

pi
xe

ls
)

Reprojection Error
Generalization Error 11%
Generalization Error 22%
Generalization Error 49%
Generalization Error 84%
Generalization Error 100%

Figure 1: Reprojection and generalization error versus the

variance of added noise σ for different percentages γ of hid-

den points to compute the generalization error.

from the visible points area while γ grows, i.e. Ṽ0 = V
and Ṽ100 = 1(n×m). For example, G0 = E and G100 =
√

1
nm
‖X̃ − JK − t · 1T‖2, i.e. all the visible and hidden

image points are used to compute the error. Obviously, we

expect the generalization error to be greater than the repro-

jection error, and to grow with γ.

The first experiment we performed consists in varying

the level of added noise σ for different percentages γ of hid-

den points to compute the generalization error. The results

are shown on figure 1. We observed that the reprojection

error is slightly higher than the level of noise. The ability to

generalize is accurate for a 1 pixel noise level, and smoothly

degrades for larger noise levels, but is still reasonable: in the

tested rang σ = 0, . . . , 5 pixels, the γ = 100% generaliza-

tion error is slightly higher than twice the noise level.

The second experiment we performed consists in vary-

ing the rank used in the computation, namely we tested

r = 11, . . . , 27, for different percentages γ of hidden points

to compute the generalization error. The results are shown

on figure 2. We observed that it is preferable to overesti-

mate rather than to underestimate the rank, up to some up-

per limit. A similar experiment with roughly equal magni-

tude configuration weights to generate the data shows that

r can be slightly underestimated and largely overestimated.

The conclusion is that in practice, overestimating the rank

is safe.

The third experiment is devised to assess the quality of

the rank estimation based on GRIC in the presence of out-

liers. We tested for true ranks in the range r = 3, . . . , 18
which covers what one expects to meet in practice. The

results we obtained are shown in table 2, which shows av-



3 6 9 12 15 18

0% 3.82 6.06 8.48 11.28 13.82 16.22

10% 3.86 6.02 8.60 11.02 13.66 16.24

20% 3.72 5.98 8.48 11.20 13.84 16.44

30% 3.64 5.94 8.52 11.00 13.52 16.58

40% 3.60 5.98 8.44 11.00 13.58 16.28

50% 3.40 5.88 8.30 10.86 13.68 16.16

3 6 9 12 15 18

0% 0.38 0.42 0.57 0.66 0.65 1.12

10% 0.35 0.37 0.49 0.65 0.55 1.14

20% 0.45 0.37 0.50 0.60 0.58 0.50

30% 0.48 0.37 0.57 0.53 0.61 0.67

40% 0.49 0.32 0.57 0.53 0.64 1.08

50% 0.49 0.62 0.70 0.63 0.71 1.17

Table 2: (left) Average estimated rank r and (right) its standard deviation σr versus the true rank r and percentage of outliers.
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Figure 2: Reprojection and generalization error versus the

rank r for different percentages γ of hidden points to com-

pute the generalization error. The true rank r = 15 is indi-

cated with a vertical bar.

erages over 50 trials. We observed that these results are

acceptable, even if the GRIC criterion we used is slightly

biased since low ranks, i.e. less than 6, are slightly overes-

timated, while larger ranks, i.e. greater than 9 are slightly

underestimated. It is however possible to correct for this

bias in accordance with our conclusions on the previous ex-

periment.

8.2. Real Data

We tested our algorithm on several image sequences. For

one of them, extracted from the movie ‘Groundhog Day’,

we show results. The sequence shows a man driving a car

with a groundhog seated on his knees. The head of the man

is rotating and deforming since he is speaking, and the ani-

mal is looking around, deforming its fur, opening and clos-

ing its mouth. Finally, the interior of the car is almost static,

while the exterior is rigid, but moving with respect to the

car.

The sequence contains 154 images, see figure 3 (top). We

ran a KLT-like point tracker. We obtained a total of 1502

point tracks after having removed the small point tracks,

namely which last less than 20 views. The visibility matrix,

shown on figure 3 (bottom) is filled to 29.58%.

Figure 4: One frame with points and motion vectors repro-

jected from the reconstructed model.

For some parts of the sequence, where the motion of the

different moving and deforming parts in the images is slow,

computing the matching tensors is quite easy. Indeed, blun-

ders can clearly be detected and classified as outliers. How-

ever, other parts in the sequence contain significant motion

between single frames and motion blur occurs, making the

point tracks slightly diverging from their ‘true’ position, and

making the detection of outliers difficult. Large illumination

changes sometimes make the tracker fails for entire areas of

the image.

The reprojection errors we obtained at the non-rigid

matching tensors estimation stage were distributed between

0.5 and 0.9 pixels, and 0.65 pixels on average. We used a

user-defined rank r = 15. The initialization step yielded

58021 inliers over 68413 image points, i.e. the inlier rate

was 84.8%, with a reprojection error of 1.19 pixels. The ro-

bust bundle adjustment yielded 61151 inliers, i.e. the inlier

rate was 89.4%, with a reprojection error of 0.99 pixels. We



Figure 3: (top) 5 out of the 154 frames and (bottom) the visibility matrix V for the ‘Groundhog Day’ sequence.

believe it is a successful result on this challenging image

sequence.

Figure 5: Closeup on the actor, the groundhog and the back-

ground overlaid with points and motion vectors reprojected

from the reconstructed model (white dots), original points

(light grey squares) and outliers (dark grey diamonds).

9. Conclusions

We proposed an implicit imaging model for non-rigid

scenes, from which we derived non-rigid matching tensors

and closure constraints. Based on these theoretical con-

cepts, we proposed a robust batch implicit Structure-From-

Motion algorithm for monocular image sequences of non-

rigid scenes, dealing with missing data and blunders. Future

work will be devoted to comparing various model selection

criteria, and segmenting the scene based on the configura-

tion weights, to recover objects that move or deform inde-

pendently.
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