N
N

N

HAL

open science

Handling Missing Data in the Computation of 3D Affine
Transformations

Hanna Martisson, Adrien Bartoli, Frangois Gaspard, Jean-Marc Lavest

» To cite this version:

Hanna Martisson, Adrien Bartoli, Francois Gaspard, Jean-Marc Lavest. Handling Missing Data in the
Computation of 3D Affine Transformations. IAPR International Workshop on Energy Minimization

Methods in Computer Vision and Pattern Recognition, 2005, United States. hal-00094758

HAL Id: hal-00094758
https://hal.science/hal-00094758

Submitted on 14 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00094758
https://hal.archives-ouvertes.fr

Handling Missing Data in the Computation
of 3D Affine Transformations

H. Martinsson', A. Bartoli?, F. Gaspard', and J-M. Lavest?

! CEA LIST - LIST/DTSI/SARC/LCEI Bat 528, 91 191 Gif sur Yvette, France
tel: +33(0)1 69 08 82 98, fax: +33(0)1 69 08 83 95
hanna.martinsson@cea.fr
? LASMEA (CNRS / UBP) — 24 avenue des Landais, 63 177 Aubiére, France
tel: +33(0)4 73 40 76 61, fax: +33(0)4 73 40 72 62
adrien.bartoli@univ-bpclermont.fr

Abstract. The reconstruction of rigid scenes from multiple images is a
central topic in computer vision. Approaches merging partial 3D models
in a hierarchical manner have proven the most effective to deal with large
image sequences. One of the key building blocks of these hierarchical
approaches is the alignment of two partial 3D models, which requires
to express them in the same 3D coordinate frame by computing a 3D
transformation. This problem has been well-studied for the cases of 3D
models obtained with calibrated or uncalibrated pinhole cameras.

We tackle the problem of aligning 3D models — sets of 3D points — ob-
tained using uncalibrated affine cameras. This requires to estimate 3D
affine transformations between the models. We propose a factorization-
based algorithm estimating simultaneously the aligning transformations
and corrected points, exactly matching the estimated transformations,
such that the reprojection error over all cameras is minimized. In the
case of incomplete image data our algorithm uses an Expectation Max-
imization (EM) based scheme that alternates prediction of the missing
data and estimation of the affine transformation.

We experimentally compare our algorithm to other methods using sim-
ulated and real data.

1 Introduction

Threedimensional reconstruction from multiple images of a rigid scene, often
dubbed Structure-From-Motion (SFM), is one of the most studied problems in
computer vision. The difficulties come from the fact that, using only feature
correspondences, both the 3D structure of the scene and the cameras have to be
computed. Most approaches rely on an initialisation phase optionally followed by
self-calibration and bundle adjustment. Existing initialisation algorithms can be
divided into three families, namely batch, sequential and hierarchical processes.
Hierarchical processes [1] have proven the most successful for large image se-
quences. Indeed, batch processes such as the factorization algorithms [2] which
reconstruct all features and cameras in a single computation step, do not easily



handle occlusions, while sequential processes such as [3] which reconstruct each
view on turn, may typically suffer from accumulation of the errors. Hierarchical
processes merge partial 3D models obtained from sub-sequences, which allows
to distribute the error over the sequence, and efficiently handle open and closed
sequences. A key step of hierarchical processes is the fusion or the alignment of
partial 3D models, which is done by computing 3D motion from 3D feature cor-
respondences. This problem has been extensively studied in the projective [4,1]
and the metric and Euclidean [5] cases.

first reconstruction
second reconstruction

[ ]
first set of ¢ameras second set of cameras

Fig. 1. The problem tackled in this paper is the Maximum Likelihood Estimation of 3D
affine transformations between two affine reconstructions obtained from uncalibrated
affine cameras.

We focus on the affine camera model [6], which is a reasonable approxima-
tion to the perspective camera model when the depth of the observed scene is
small compared to the viewing distance. In this case, the partial 3D models ob-
tained from sub-sequences, i.e. multiple subsets of cameras, are related by 3D
affine transformations. We deal with the computation of such transformations
from point correspondences, as illustrated on Fig. 1. We propose a Maximum
Likelihood Estimator based on factorizing modified image point coordinates. We
compute a 3D affine transformation and a set of 3D point correspondences which
perfectly match, such that the reprojection error in all sets of cameras is mini-
mized. It is intended to fit in hierarchical affine SFM processes of which the basic
reconstruction block is, e.g. the affine factorization [2]. Our method does not
make any assumption about the cameras, besides the fact that a reconstruction
of each camera set using an affine camera model has been performed. The method
relies on the important new concept of orthonormal bases. In the occlusion-free
case, our algorithm needs one Singular Value Decomposition (svD). However, in
the case of incomplete measurement data, i.e. when some of the 3D points used
for the alignment are not visible in all views, the factorization algorithm must
be extended. We propose an Expectation-Maximization (EM) based scheme.
The Expectation step predicts the missing data while the Maximization step
maximizes the log likelihood.



We proposed the Maximum Likelihood Estimator in the case of complete
data in [7]. The contribution of this paper with respect to the former one resides
in the handling of missing data. We have also completed the experiments.

This paper is organized as follows. We give our notation and preliminaries in
Sect. 2. In Sect. 3, we review the factorization approach to uncalibrated affine
Structure-From-Motion. Our alignment method is described in Sect. 4, while
other methods are summarized in Sect. 5. Experimental results are reported in
Sect. 6. Our conclusions are given in Sect. 7.

2 Notation and Preliminaries

Vectors are typeset using bold fonts, e.g. x, and matrices using sans-serif, cal-
ligraphic and greek fonts, e.g. A, Q and A. We do not use homogeneous co-
ordinates, i.e. image point coordinates are 2-vectors: x' = (x y), where T is
transposition. The different sets of cameras are indicated with primes, e.g. Py
and P} are the first cameras of the camera sets. Index ¢ = 1...n is used for the
cameras of a camera set and index j = 1...m is used for the 3D points. The
mean vector of a set of vectors, say {Q;}, is denoted Q. The Moore-Penrose
pseudoinverse of matrix A is denoted Af.

Let Q; be a 3-vector and x;; a 2-vector representing respectively a 3D and
an image point. The uncalibrated affine camera is modeled by a (2 x 3) matrix
P, and a (2 x 1) translation vector t;, giving the projection equation

Calligraphic fonts are used for the measurement matrices, e.g.

X(2n><7n) = (yl ce ym) and yj = (leT e anT)T ’

where ); contains all the measured image coordinates for the j-th point. The
(2n x 3) ‘joint projection’ and (3 x m) ‘joint structure’ matrices are defined by

P=(P - PnT)T and Q= (Qi-- Qn)

We assume that the noise on the image point positions has a Gaussian centered
distribution and is i.i.d. Under these hypotheses, minimizing the reprojection
error yields Maximum Likelihood Estimates.

3 Structure-From-Motion Using Factorization

Given a set of point matches {x;;}, the factorization algorithm is employed to
recover all cameras {P;, £;} and 3D points {Q;} at once [2]. Under the aforemen-
tioned hypotheses on the noise distribution, this algorithm computes Maximum
Likelihood Estimates [8] by minimizing the reprojection error

. o R . 1 n o m
min  R*(P, Q,{t;}) with RZ(P,Q,{ti}):%ZZdQ(xij,PiQﬁ—ti),

P,0,{t:} i=1 j=1
(2)



where d(x,y) = ||x — y|| is the Euclidean distance between x and y.

Step 1: Computing the translation. Given the uncalibrated affine projection (1),
the first step of the algorithm is to compute the translation t; of each camera in
order to cancel it out from the projection equation. This is achieved by nullifying
the partial derivatives of the reprojection error (2) with respect to t;: =0.
A short calculation shows that if we fix the arbitrary centroid of the 3D pomts
to the origin, then t; = %;. Each set of image points is therefore centered on its
centroid, i.e. X;; < X;; — X;, to obtain centered coordinates: x;; = P;Q;.

Step 2: Factorizing. The problem is reformulated as

min R*(P,Q)  with  R*(P,Q) = ZZCF xij, PiQ;)

P.Q 11]1

The reprojection error can be rewritten by gathering the terms using the mea-
surement, the ‘joint projection’ and the ‘joint structure’ matrices as

R*(P, Q) oc || X = PQ|

and the problem is solved by computing the Singular Value Decomposition [9]
of matrix X, Xopxm = UanmZmeVme Let ¥ = ¥,¥, be any decompo-
sition of matrix ¥. The motion and structure are obtained by ‘truncating’ the
decomposition or nullifying all but the 3 first singular values, which leads to

P =(UL,) and Q=yT(vVy]) ,

where ¢ (W) returns the matrix formed with the 3 leading columns of matrix W.
Note that the solution P = 1(U) and Q = T (VX) has the property PTP =1,
which is useful for our alignment method, see Sect. 4.

The 3D model is obtained up to a global affine transformation. Indeed, for
any (3 x 3) invertible matrix B,

P =PB and 0=B"'90 (3)

give the same reprojection error that P and Q since R? (P,Q) = ||Xx —PQ| =
|X —PBB1Q|]? = | X — PQ|? = R*(P, Q).

As presented above, the factorization algorithm do not handle occlusions.
Though some algorithms have been proposed, see e.g. [10], they are not appro-
priate for Structure-From-Motion from large image sequences.

4 Alignment of 3D Affine Reconstructions

We formally state the alignment problem in the two camera set case and present
our algorithm, dubbed ‘FACTMLE-EM’.



4.1 Problem Statement

Consider two sets of cameras {(P;, t;)}7_, and {(P},t/)}?, and associated struc-
tures {Q; < Qj}jL; obtained by reconstructing a rigid scene using e.g. the
above-described factorization algorithm. Without loss of generality, we take

n =n’' and the reprojection error over two sets is given by

C3(0,Q) = —— (R¥(P, Q, {t:}) + R2(P, O, {t!})) . (4)

2nm

Letting (A, t) represent the aligning (3 x 3) affine transformation, the Maximum
Likelihood Estimator is formulated by

ggc%QAQ) st. Q;=AQ;+t . (5)

4.2 A Factorization-Based Algorithm

Our method to solve problem (5) uses a three-step factorization strategy. We first
describe it in the occlusion-free case and then propose an iterative extension for
the missing data case.

Step 1: Orthonormalizing. We propose the important concept of orthonormal
bases. We define a reconstruction to be in an orthonormal basis if the joint
projection matrix is column-orthonormal. Given a joint projection matrix P,
one can find a 3D affine tranformation represented by the (3 x 3) matrix N,
which applies as B in (3), such that PN is column-orthonormal, i.e. such that
NTPTPN = I(3x3). We call the transformation N an orthonormalizing transfor-
mation. The set of orthonormalizing tranformations is 3-dimensional since for
any 3D rotation matrix U, NU still is an orthonormalizing transformation for
P. We use the QR decomposition P = QR, see e.g. [9], giving an upper trian-
gular orthonormalizing transformation N = R~!. Other choices are possible for
computing an N, e.g. if P = ULV is an svD of P, then N = VI ! has the
required property. Henceforth, we assume that all 3D models are expressed in
orthonormal bases

P — PN Q—N"1'Q
P — PN and Q/ - lelg/ .

An interesting property of orthonormal bases is that P = PT. Hence, triangu-
lating points in these bases is simply done by @ = PTX.

Note that the matrix P computed by factorization, see Sect. 3, may already
satisfy PTP = 1. However, if at least one of the cameras is not used for the
alignment, e.g. if none of the 3D point correspondences project in this camera,
or if the cameras come as the result of the alignment of partial 3D models, then
P will not satisfy PTP = I, thus requiring the orthonormalization step.



Step 2: Eliminating the translation. The translation part of the sought-after
transformation can not be computed directly, but can be eliminated from the
equations. First, center the image points to eliminate the translation part of the
cameras: X;; < X;; — t; and xj; « X; — t;. Second, consider that the partial

derivatives of the reprojection error (4) with respect to t must vanish: 88—%2 =0.

By using the constraint Q; = /:\Q] +t from (4) and expanding using (4), we get

NE

>

=1

(P;TP;E —P'x), +PTPIAQ; ) =

)
)

<
Il
—

0
0

M

(PP P Y+ PTPAQ,

1
mP Pt —mP Y +mP TPAQ =0 |

J

~ —1 — A R
which leaves us with t = (P/'P’) (P'T) — P'TP'AQ) that, thanks to the
orthonormal basis property Pt = pr T, further simplifies to

t=P Yy —AQ . (6)

Note that if the same entire sets of reconstructed points are used for the align-
ment, then we directly obtain t = 0 since ) = 0 and Q = 0. This is rarely the
case in practice, especially if the alignment is used to merge partial 3D models.

Third, consider that the m partial derivatives of the reprojection error (4)
ac?
aQ;

with respect to each Qj must vanish as well: = 0, and expand as above

S (PTPiQ, — PTxy) + 3 (ATPITPIAQ, - ATPITx, + ATP[TPIE) 0
i— i=1

=1

PTPQ; —PTY; + ATP T PAQ; — ATP Y + ATP TP =0 .
The sum over j of all these derivatives also vanishes, giving
PTPO—PTY + ATPTPAQ — ATPTY 4 ATP TP =0 .
By replacing t by its expression (6), and after some minor algebraic manipula-
tions, we obtain - -
PTPO-PYy=0 = Q=7 (7)
and by substituting in (6) and using the orthonormal basis property, we get

t=PTY —APTY . (8)

It is common in factorization methods to center the data with respect to their
centroid to cancel the translation part of the transformation. Equation (8) means



that the data must be centered with respect to the reconstructed centroid of the
image points, not with respect to the actual 3D centroid.

Obviously, if the 3D models have been obtained by the factorization method
of Sect. 3, then the centroid of the 3D points corresponds to the reconstructed
centroid, i.e. Q = PTY and Q' = P’TJ_)’, provided that the same sets of views
are used for reconstruction and alignment.

To summarize, we cancel the translation part out of the sought-after trans-
formation by translating the reconstructions and the image points as shown

below _ _
Qj — Qj - PT)) X5 < Xij — PZPTy

/ / PIT 1)/ and / / P/PIT 7
Qj — Qj - Y Xig X5 — Yy

j
The reprojection error (4) is rewritten

2 AN

nm

(1% =PQI* +[1x" - P'Q|) )
and problem (5) is reformulated as

minC*(Q, Q) st Q) =AQ; . (10)
Q.9

Step 3: Factorizing. Thanks to the orthonormal basis property PTP = I, and
since for any column-orthonormal matrix A, || Ax|| = ||x||, we can rewrite the
reprojection error for a single set of cameras as

R*(P,Q) o« [X¥-PQ|* = |[PTx-Q|*.

This allows to rewrite the reprojection error (9) as

. . . Tx )
2(0,8) x [PTx - QP+ |Px — Q| = ||(7’ )—(Q)W.

PITX/ Q/
A A

By introducing the constraint Q' = AQ from (10) and, as in Sect. 3, an unknown
global affine transformation B we can write

_ (1 -1 — B —1
A = <A> BBTQ = <AB)B Q .
——

M

The problem is reformulated as
min |A — MO .
M, Q

A solution is given by the sVvD of matrix A

Noxm) = U6x6)Z(6x6)V (sxm) -



As in Sect. 3, let ¥ = ¥,%, be any decomposition of matrix ¥. We obtain
M =(UL,) and Q = 4T (VL]). Using the partitioning M = (M ), we get

M/
B=M
A=MB-!
Q=BQ9

Obviously, one needs to undo the effect of the orthonormalizing transformations,
as follows
{AeNﬁNl
Q—NQ
This algorithm runs with m > 4 point correspondences.

Note that it is possible to solve the problem without using the orthonor-
malizing transformations. This solution requires however to compute the SvD of
a (2(n + n') x m) matrix, made by stacking the measurement matrices X and
X', and is therefore much more computationally expensive than the algorithm
above, and may be intractable for large sets of cameras and points.

4.3 Dealing with missing data.

The missing data case arises when some of the 3D points used for the alignment
are not visible in all views. We propose an Expectation Maximization based
extension of the algorithm to handle this case.

The EM algorithm is an iterative method which estimates the model parame-
ters, given an incomplete set of measurement data. The main idea is to alternate
between predicting the missing data and estimating the model. Since the log
likelihood cannot be maximized using factorization, due to the missing data, it
is replaced by its conditional expectation given the observed data, using the cur-
rent estimate of the parameters. In the case where the log likelihood is a linear
function of the missing data, this simply consists in replacing the missing data
by their conditional expectations given the observed data at current parameter
values. This approximated log likelihood is then maximized so as to yield a new
estimate of the parameters. Monotone convergence to a local minimum of the
Maximum Likelihood residual error (4) is shown e.g. in [11].

Since the reconstruction of both camera sets using factorization needs a com-
plete data set, we are limited to the points visible in all views for the initial
reconstruction. This allows to reconstruct all cameras, but only part of the 3D
points. We then triangulate the missing points in order to complete the 3D point
cloud. This preliminary expectation step yields a completed set of 3D data, that
can be used in the alignement algorithm.

However, the reprojection error, i.e. the negative log likelihood, still cannot
be minimized because of the incomplete measurement matrix X. The expectation
step predicts the missing image points by reprojecting them from the completed
3D points, namely for the missing point x;;, we set x;; « Pin + t;.



Table 1. The proposed Maximum Likelihood alignment algorithm.

OBJECTIVE

Given m > 4 3D point correspondences {Q; < Q} obtained by affine reconstruction
and triangulation of the missing data from two sets of images, with respectively n
cameras {(P;,t;)} and n’ cameras {(P},t;)}, as well as measured image points {x;;}
and {x};} forming an incomplete data set, compute the affine transformation (A, f:) and
corrected point positions {QJ > Q;} such that the reprojection error e is minimized.

ALGORITHM
1. Compute the orthonormalizing transformations:
T
(---P,-T...)T £ PN"!' and (P;T) ® oyt

2. Form the ‘joint projection’ and the measurement matrices:

]

3. Expectation-Maximization:
a) Expectation. Predict the missing point x;; by setting x;; < P;Q;. Compute
i J i
the reconstructed centroids:

PT m P{T m .
C=— i ! = '
- Z Xij and C p— Z Xij
j=1 : j=1
Cancel the translations:
X=] (xi —P;C) --- and X = (XILJ_P/LC/)

(b) Maximization. Factorize:

T
X v ~
(’;)/TX’> L UZV' and set ([\li//:’) =¢(UVE) and Q=17"(VWI) .
(c) Recover the corrected points. Set O =NMQ and 9’ = N'M’'Q.
(d) Transfer the points to the original coordinate frames. Extract the
corrected points Q; from Q. Translate them as Q; «— Q; + C.
(e) Compute the reprojection error:
Set e? = 51 (L7, (Diy d2(xiy — PiQy) + X0, d(x; — Pi@))) ).
(f) Loop. If convergence is not reached (see Sect. 4.3), loop on step (a).
4. Recover the transformation: Set A= N'M'M~'N~! and t = C’ — AC.




The maximization step consists in applying the algorithm described in the
complete data case. This yields an estimate of the sought-after transformation
(A,t) as well as corrected point positions {Q; — Q;}

These two steps are alternated, thus forming an iterative procedure where
the corrected points are used in the expectation at the next iteration. In order to
decide whether convergence is reached, the change in reprojection error between
two iterations is measured. When the reprojection error stabilizes, the final result
is returned.

Table 1 gives a summary of the algorithm with its EM extension.

5 Other Algorithms

We briefly describe two other alignment algorithms. They do not yield Maxi-
mum Likelihood Estimates under the previously-mentioned hypotheses on the
noise distribution. They rely on 3D measurements and therefore naturally handle
missing image data.

5.1 Minimizing the Non-Symmetric Transfer Error

This algorithm, dubbed “TRERROR’, is specific to the two camera set case. It is
based on minimizing a non-symmetric 3D transfer error £(A) as follows

. . 1 & . R
min E3(A, t with EXA) = — L AQ; —t|* .
nin £2(A, ) 8= 1 219 - A, — i

Differentiating £2 with respect to t and nullifying the result allows to eliminate
the translation by centering each 3D point set on its centroid. By rewriting the
error function and applying standard linear least-squares, one obtains

A =0Q0 and t = Q-AQ.

5.2 Direct 3D Factorization

This algorithm, dubbed ‘FAcT3D’, is based on directly factorizing the 3D recon-
structed points. It is not restricted to the two camera set case, but for simplicity,
we only describe this case. Generalization to multiple camera sets is trivial. The
algorithm computes the aligning transformation (A, f:) and perfectly correspond-
ing points {QJ > Q;} The reconstructed cameras are not taken into account
by this algorithm, which entirely relies on 3D measures on the reconstructed
points. Under certain conditions, this algorithm is equivalent to the proposed
FactTMLE-EM.
The problem is stated as

min D*(Q, Q)  sit. Q,=AQ; +1t,
Q,Q’



where the 3D error function employed is defined by
A oA 1 ~ ~
2 A o 2 ' A2
p2(0.9) =5 (le- QP +Q - Q) .

Minimizing this error function means that if the noise on the 3D point coordi-
nates were Gaussian, centered and i.i.d., which is not the case with our actual
hypotheses, then this algorithm would yield the Maximum Likelihood Estimate.

Step 1: Eliminating the translation. By using the technique from Sect. 4.2, we
obtain t = Q' —AQ As in most factorization methods, cancelling the translation
part out according to the error function D is done by centering each set of 3D
points on its actual centroid: Qj — Qj —Q and Q; — Q; — Q’. Henceforth, we
assume to work in centered coordinates. The problem is rewritten as

min DQ(Q, Q') s.t. Q; =AQ; .

Step 2: Factorizing. Following the approach in Sect. 4.2, we rewrite D as

D%gév«n(g)—(3)W=|£§2—£§Q§£9W-

A M
Using svD of matrix A = UZVT, we obtain M = ¢(UL,) and @ = ¢T(VZ)).
By using the partitioning M = (MM’)T, we get

A=MM"? and Q= MQ .

6 Experimental Evaluation

We evaluate our algorithm using simulated and real data. The implementation
of all three compared algorithms, i.e. FACTMLE-EM, TRERROR and FACT3D,
as well as the generation of simulated data, have been done in C++.

6.1 Simulated Data

We generate m 3D points and two sets of n weak perspective cameras each. The
pose of a camera is defined by its three dimensional location, viewing direction
and roll angle (rotation angle around the optical axis). The corresponding affine
projection matrix is given by a (2 x 3), truncated, rotation matrix R; together
with a two-dimensional translation vector t;, both of which premultiplied by
an internal calibration matrix. More precisly, we use weak perspective cameras
P, = A;R; and t; = A;T;, where A, is the internal calibration matrix

7'1'0
Ai_ki(o 1)



The scale factor k; models the average depth of the object and the focal length
of the camera, and 7 models the aspect ratio that we choose very close to 1.
The 3D points are chosen from a uniform distribution inside a thin rectangular
parallelepiped with dimensions 1 x 1 x (1—d), and the scale factors k; are chosen
so that the points are uniformly spread in 400 x 400 pixel images.

We generate three point sets containing the point visibles (i) in the first
camera set, (ii) in the second one and (iii) in both camera sets. The third subset
contains m, points, whereas the two first subsets both contains m — m, points.
Hence, m points are used to perform SFM on each camera set, while m,. points
are used for the alignment. The points are projected onto the images where they
are visible and gaussian noise with zero mean and standard deviation o is added.

In order to assess the behaviour of the algorithms in the presence of non-
perfectly affine cameras, we introduce the factor 0 < a < 1. Let Z;; be the depth
of the j-th 3D point with respect to camera i, we scale the projected points x;;
by xi; — %xij with v = a + (1 — a)Z,;, meaning that for a = 1, the points
does not change and the projection is perfectly affine, and when a tends towards
0, the points undergo stronger and stronger perspective effects. The points are
further scaled so that their standard deviation remains invariant, in order to
keep them wellspread in the images.

So as to simulate the problem of incomplete data, e.g. due to occlusions, we
generate a list of missing image points. We introduce the probability ppein+ that
any given 3D point is occluded in some images and the probability pimage that it
is occluded in one particular image. For simplicity, we take ppoint = Pimage = P,
which gives a rate of missing data of p2.

A 3D model is reconstructed from each of the two camera sets using the
factorization algorithm described in Sect. 3. Once the camera matrices and 3D
points are estimated, only the m, points common to the two camera sets are
considered for the alignment. We define the overlap ratio of the two camera sets
to be 6 = m¢/m, i.e. for § = 1 all points are seen in all views, while for § = 0,
the two sets of cameras do not share corresponding points.

Each of the three alignment algorithms yields estimates for the 3D affine
transformation and corrected point clouds, except TRERROR which only gives
the transformation. The comparison of the algorithms being based on the re-
projection error, the point clouds used to compute it need to be re-estimated so
that this error is minimized, given an estimated transformation. This must be
done for TRERROR and FACT3D, but is useless for FACTMLE-EM.

We use the following default setting for the simulations: n = 5 views, m =
250 points, § = 0.2 (i.e. a 20% overlap and m. = 50 points common to the
two 3D models), o = 3.0 pixels, d = 0.95 (flat 3D scene), a = 1 (perfectly
affine projections) and p = 0.3 (rate of missing data p?> = 0.09). We vary each
parameter at a time. Figures 2, 3 and 4 show the reprojection error averaged
over 500 simulations for the three algorithms for different parameter values.

In Fig. 2, we vary the number of common points m.. (coupled with the total
number of points m, so as to keep the overlap constant) and the number of
cameras n, the former from 4 to 60, corresponding respectively to m = 20 and
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Fig. 4. Reprojection error against (a) the deviation a from the affine projection model
and (b) the scene flatness d. For a = 1, the projection is perfectly affine. For d = 1, all
3D points lie on a plane.



m = 300, and the latter from 2 to 15. We see that for m. > 20, the number
of points has a much smaller influence on the errors. Whereas FACT3D and
TRERROR show similar behaviour, FACTMLE-EM is distinguished by its lower
reprojection error. The difference between our method and the other two seems
to be more important in the cases where we have few points or few cameras.

In Fig. 3, the rate of missing data and the overlap ratio (coupled with the
number of common points m., so as to keep the total number of points m
constant) are varied, the former from 0 to 0.5 and the latter from 0.1 to 1.0.
In order to emphasize the contribution of the EM scheme, in Fig. 3(a) we also
display the reprojection error of FACTMLE-EM after the first iteration. When
the rate of missing data grows, the three methods show different tendencies.
Whereas FACTMLE-EM handles missing data well, the other methods prove
to be unstable. However, considering only one iteration of FACTMLE-EM, the
reprojection error increases just as for the other methods. The difference in
performance is thus provided by the EM iterations.

In Fig. 4 the deviation from the affine model a varies from 0 to 1, from
a perfectly affine projection, and the flatness of the simulated data d varies
from 0 to 1, i.e. from a cube to a plane. Despite the fact that the alignement
is affine, even completely projective cameras seem to be well modeled by the
three methods. In fact, the error induced by the affine approximation is small
compared to the added noise. The flatness of the scene does not change the
result, except for very flat scenes making the algorithms unstable, FACT3D and
TRERROR somewhat more than FACTMLE-EM. This result was expected since
planar scenes are singular for the computation of a 3D affine transformation.

Simulations with varying o reveal a quasi linear relationship between the
the noise level and the reprojection error. The slope is somewhat less steep in
the case of FACTMLE-EM than for the other two methods, indicating that our
method is less sensitive to noise.

Although the three algorihtms have similar behaviour throughout the se-
quence of tests, except when varying the rate of missing data, FACTMLE-EM
consistently outperforms the other ones.

6.2 Real Data

We applied the algorithms to real image sequences as follows. A number of
images of a scene were taken from different angles and grouped into two sets.
A certain number of point correspondences were defined within each one of the
image sets, as well as for all the images, thus forming the measurement matrices
X and X',

The camera used is an uncalibrated digital Nikon D100 with a lens of focal
length 80 — 200 mm, giving an image size of 2240 x 1488 pixels.

The ‘books’ sequence. We used a series of images of a rather flat scene, together
with a large set of point correspondences, given by a tracking algorithm, shown
in Fig. 5(a). So as to keep the experimental conditions close to the hypothesis of
affine cameras, the photos are taken far away from the object using a large zoom.



(a) One image from the ‘books’ sequence (b) A detail from the image in (a) show-

overlaid with the m. = 196 point cor- ing the original points in black and repro-
respondences in white and reprojected jected points in white, from FACTMLE-
points in black. EM (points), FACT3D (stars) and TR-

ERROR (crosses).

Fig. 5. Results from the ‘books’ sequence.

This group of images consists of two sets of respectively n = 2 and n’ = 3 images,
together with the m. = 196 common point correspondences, and respectively
m = 628 and m’ = 634 correspondences for the two sets, giving an approximate
overlap of 80%. The reprojection errors we obtained are:

FactMLE-EM 1.90 pixels
Fact3D 1.97 pixels
TRERROR 2.17 pixels

A detail of an image with the reprojected points due to all three methods is
shown in Fig. 5(b). As predicted by the tests on simulated data, FACTMLE-EM
performs better than FACT3D and TRERROR.

The ‘cylinder head’ sequence. This sequence was acquired under different condi-
tions than the previous one. The photos were taken with the same camera, using
a lens with a focal length of 12 mm, at a distance of 60 cm of the object, which
is 40 cm long. The points, shown in Fig. 6(b), were manually entered. Using
these settings, the affine camera model does not apply and the reconstruction
performed prior to the alignment is therefore less reliable. Nevertheless, the re-
sult of the alignment is rather good. This group of images consists of two sets
of respectively n = n’ = 2 images, together with the m, = 18 common point
correspondences, and respectively m = 22 and m’ = 23 correspondences for the
two sets, giving an approximate overlap of 31%. The reprojection errors are:

FactMLE-EM 3.03 pixels
FacT3D 3.04 pixels
TRERROR 3.05 pixels

The two sets of images are displayed in Fig. 6(a) and the given point matches
together with the FACTMLE-EM reprojections are displayed in Fig. 6(b).



(a) The two sets of images of the (b) The original points in black together with
‘cylinder head’ sequence. their FACTMLE-EM reprojections in white.

Fig. 6. Results from the ‘cylinder head’ sequence.

The ‘building’ sequence. The point correspondences are once again given by a
tracking algorithm, but this time the data set is incomplete. We need at least
two views of a 3D point in order to use it for the reconstruction, so we keep
only those points that are present in two or more images. We then define a point
correspondence to be common to the two sets and thus used for the alignment of
the two reconstructions, as soon as it is present in (at least two images in each
one of) the two sets. This group of images consists of two sets of respectively
n = n’ = 5 images, together with the m. = 40 common point correspondences,
and respectively m = 94 and m’ = 133 correspondences for the two sets, giving
an overlap of 43% and 30% respectively. The rates of missing data are for the
first camera set 31% (13% for the common points) and for the second camera
set 22% (11% for the common points). We note that the missing points are
essentially not due to occlusions but to failure in the tracking algorithm or to
the points being out of range in the images. The reprojection errors we obtained
are:

FactTMLE-EM 0.78 pixels
FacT3D 0.84 pixels
TRERROR 0.85 pixels

As predicted by the simulations with varying rate of missing data, the differ-
ence between the methods is more important when processing incomplete data.
Whereas FACT3D and TRERROR yield similar errors, FACTMLE-EM distin-
guishes itself with a significantly lower error. The results are displayed in Fig. 7.

7 Conclusions

We presented a method to compute the Maximum Likelihood Estimate of 3D
affine transformations, under standard hypotheses on the noise distribution,
aligning sets of 3D points obtained from uncalibrated affine cameras. The method



Fig. 7. The original common points in white together with their FACTMLE-EM re-
projections in black. The two images are the first ones in the respective camera sets.

computes all aligning transformations in a single computation step in the oc-
clusion-free case, by minimizing the reprojection error over all points and all im-
ages. An iterative extension is presented for the missing data case. Experimental
results on simulated and real data show that the proposed method consistently
performs better than other methods based on 3D measurements.

Future work could be devoted to the incorporation of other types of features.
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