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Abstract

We study the challenging problem of registering im-
ages of a non-rigid surface by estimating a Radial
Basis Mapping from feature matches. We cast the
problem as a Maximum Likelihood Estimation cou-
pled with nested model selection. We propose an
algorithm based on dynamically inserting centres
and refining the transformation parameters under
the control of a selection model criterion. We vali-
date the algorithm using extensive simulations and
by building on recent feature extraction and match-
ing techniques, we report convincing results on real
data.

1 Introduction

The problem of registering images of a non-rigid
surface arises in several domains such as augmented
reality, medical imaging and video footage process-
ing, for instance changing the texture of a deform-
ing garment. In this context, deriving a physically-
based motion model is difficult. Another solution
is to compute a parametrized image transforma-
tion. Radial Basis Mappings (RBMs) have been
shown to be effective in representing various non-
rigid image deformations. RBMs are non-linear
functions defined by centres and coefficients, see
e.g. [3, 7, 9, 10].

There exist two main categories of estimation
methods: direct and feature-based methods. In di-
rect methods, images are registered by minimiz-
ing the intensity difference between the aligned im-
ages, e.g. [7, 10]. Feature-based methods match
features extracted from the images, such as corners
or contours, or use landmarks to estimate the trans-
formation. Most of existing methods are defeated
by strong deformations, i.e. when change in pose

or surface deformation yield very distorted images,
and by varying appearance, due e.g. to change in
lightning. Recent work on feature extraction and
matching [12] suggests that feature-based methods
are more appropriate in the strong deformation case.

The main difficulty in estimating an RBM is due
to the varying number of parameters depending,
via the number of centers, on the extent of non-
rigidities between the images. Computing the right
number of centres and their location is crucial to get
a good RBM. A possible approach is to use a pre-
defined set of centres such as the nodes of a regular
grid or the extracted features. However this either
drastically constrain the registration e.g. if the grid
is too small, or is too flexible, badly extrapolating
to the rest of the image.

We tackle the problem of estimating an RBM
from feature correspondences. We bring two main
contributions. First, 3, we cast the problem as
a Maximum Likelihood Estimation (MLE) in a
nested model selection framework. We derive a
cost function with a data and a complexity term.
Second, 4, we propose an algorithm to effectively
compute the transformation. The main idea is to
iteratively insert centres and jointly minimize the
ML cost function over the centres and the trans-
formation coefficients. Inserting centres causes the
data term to decrease and the complexity term to
increase. An optimization refining the centres and
the coefficients is performed at each iteration, see
6. We found this step crucial for the algorithm to

effectively converge to the right solution. The dy-
namic centre insertion procedure is outlined in 5.
Experimental results are reported in 7 and our con-
clusions in 8 The next section gives some notation
and preliminaries.

VMV 2005 Erlangen, Germany, November 16–18, 2005



2 Notation and preliminaries

We briefly overview the Radial Basis Mappings
(RBMs). For more details, see e.g. [3, 7, 10]. A

RBM is defined by a basis function ,
e.g. the Thin-Plate Spline kernel ,
a set of centres and a coefficient
matrix

` ´
as:

X
(1)

Parameters
` ´

control the affine part.
The non-rigid part is a sum of weighted terms with
coefficients

` ´
, of the basis func-

tion applied to the distance between and the cen-
tres .

3 A Model Selection Approach

Constructing an automatic non-rigid registration al-
gorithm raises hard steps since the number of cen-
tres as well as their locations and the coeffi-
cients are unknown. We use a Maximum Like-
lihood (ML) and nested model selection approach.
Let be the measured point matches.
Assuming that the noise on image point position is
Gaussian centred and i.i.d., our goal is to minimize
the following cost function:

X

| {z }
(2)

over corrected point positions in the first image,
the centres and the coefficient matrix of the
transformation. We define as the data term and

as the complexity term.
There exist many model selection criteria for bal-

ancing the residual and the degrees of freedom of
the model. Most of them are based on statistical
and information-theoretic criteria. The most widely
used criteria are the Akaike’s criterion (AIC) and
the Minimum Description Length (MDL)1:

where is the number of degrees of freedom of the
transformation (proportional to in our case and de-
pending on the effective unknown values: the

1We present the geometric MDL (gMDL) due to [8].

1. Initialization: compute an initial affine transfor-
mation.

2. Initial centres: insert centres, see 5. .

3. Refinement: refine the centre positions and the
transformation coefficients, see 6.

4. Model selection: if the cost function (2) de-
creases insert a new centre ( , see
5) and loop on 3 else stop.

Table 1: The proposed registration algorithm.

may be included as unknowns). The noise level
cannot be simply estimated from the residuals

since an interpolating transformation is reached by
increasing the number of centres, causing to van-
ish. We rather estimate based on the uncertainty
of the feature extractor. The following table shows
the criteria compared in our experiments:

Criterion Complexity term Reference

AIC [1]
CAIC [2]
BIC [6]

MDL [8]
gMDL [8]

4 Algorithm Overview

We propose an algorithm to minimize the cost func-
tion (2) based on dynamic centre insertion. The idea
is, starting from a rigid affine transformation, to it-
eratively insert new centres to increase the extent of
non-rigidy until it becomes irrelevant. We optimize
both the tranformation coefficients and the centre
positions at each iteration. The algorithm is sum-
marized in table 1. Described in the next section is
the dynamic centre insertion procedure. More de-
tails on the computation of the coefficient matrix
and the centres, given their number , are given in
6.

5 Dynamic centre insertion

When inserting a centre, we have to choose its posi-
tion according to some criterion. One may think
of some heuristic procedures. In the context of
intensity-based direct methods, [10] proposes to in-
sert the center by considering peaks in the differ-
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ence image. Experiments show that this method
can not be directly employed in the feature-based
case. This is due to the leveraging and averaging
effects in the least-squares estimation of the ini-
tial affine transformation. Spreading out the centres
uniformly in the image is another possible heuris-
tic insertion procedure. Without prior knowledge
about the transformation, a uniform distribution is
used.

Both previous heuristic solutions tend to over-
fit the global transformation since the first inserted
centers may be badly located. We propose to use
a global optimization method proposed by Nelder
and Mead in 1965, see e.g. [11]. It uses a sim-
plex in the parameter space, for instance a triangle
in , to search a globally optimal solution. Each
vertex is associated with a value of the criterion to
be optimized so that the vertices are sorted. The
Nelder-Mead algorithm heuristically improves the
worst vertex. Several elementar yet general oper-
ations such as reflection, expansion, contraction of
the vertices drive the search. This update procedure
is repeated until the variance of the cost function or
the volume of the simplex fall below a threshold. In
our implementation the optimization is performed
over the centre positions ( parameters) and the
criterion is the registration error computed with
the linear estimate of for a candidate set of cen-
tres. The side-conditions are enforced
using numerical elimination via QR decomposition
of matrix [4].

6 Estimation Given the Number of
Centres

When the number of centres is fixed, the complex-
ity term of the cost function (2) becomes irrele-
vant.

6.1 Linear Estimation

We propose to minimize an approximation to the
ML data term , over the coefficients , given by
the least-squares transfer error :

X ` ´

(3)
where the -th row of is

` ´
and the -

th entry of is . Ensuring the side

Figure 1: Simulated data: the reference image and
injected transformation represented by the black
grid.

conditions is important to get a well-
behaved transformation [3]. We employ a QR-
based method to solve the resulting constrained lin-
ear least squares problem [4].

6.2 Maximum Likelihood Refinement

Given the initial solution, we minimize over the
centres and coefficients. The Levenberg-Marquardt
algorithm is used, adapted to exploit the sparse
block structure of the Jacobian matrix. We use the
netlib software ODRPACK which implements the
Boggs et al. algorithm [5].

7 Experimental Results

7.1 Simulated data

The aim of these experiments is to validate the al-
gorithm and determinate conditions under which it
converges. As figure 1 shows, we inject a trans-
formation involving centers to an im-
age. The grid illustrate the deformation
and serves as ground-truth. Uniformly chosen cor-
respondences are shown by
blue circles, independently corrupted with a gaus-
sian centred noise with standard deviation .

Figure 2 shows a correct estimation of the non-
rigidities thanks to model selection. At each iter-
ation an estimate with increasing degrees of free-
dom is provided (affine model at iteration 1, 4 cen-
tres inserted at iteration 2 and one more centre for
each following step). For each estimate the refer-
ence grid is transferred on the second image. The
distances between these transferred nodes and the
target ones give the ground truth error. The small
noise level allows a good superimposition between
the blue plot and this ground thruth. Both AIC
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Figure 2: Simulated data ( pixel). trans-
fer error and ground truth are similar (lowest plots)
and model selection criteria perform well (hightest
plots)

Criteria Underfit Correct +1/2 Overfit

AIC 0% 40% 42% 18%
CAIC 2% 45% 46% 7%
BIC 4% 59% 34% 3%

MDL 0% 41% 39% 20%
gMDL 0% 55% 27% 18%

Table 2: Results with

and gMDL criteria detect the correct dof at
the 5-th iteration.

The following tables (tables 2 and 3) report some
results about the fitted transformations after exten-
sive simulations (averages over 50 runs). For a
moderate noise ( pixels) most of the cri-
teria perform well.

We notice that all criteria tend to overfit the data.
The worst criteria is this case are AIC, MDL and
gMDL.If we increase the noise level ( pixel)
most criteria become very unstable: AIC and MDL
underfit and overfit, CAIC and BIC underfit and
gMDL largely overfit the data. In the light of these
results, we recommend CAIC or BIC if the noise
variance is subpixel and CAIC if the noise is strong
than a pixel.

Criteria Underfit Correct +1/2 Overfit

AIC 12% 39% 37% 12%
CAIC 21% 48% 30% 1%
BIC 37% 57% 6% 0%

MDL 12% 40% 37% 11%
gMDL 0% 1% 31% 68%

Table 3: Results with

Figure 3: The ‘baby carpet’ image pair.

7.2 Real data

We apply our algorithm to the images shown in fig-
ures 3 and 6. These images were acquired by crum-
pling some patterned materials. The extracted fea-
tures, shown on figure 4, are the affine covariant
features of [12]. Visually the registrations, shown
on figures 5 and 7, are satisfying. A registration er-
ror (obtained from manual landmark selection) has
been computed to assess the performance. These er-
rors are below 3 pixels in average and confirm good
visual results.

Figure 4: Extracted affine covariant features.
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Figure 5: Estimated deformation.

Figure 6: The ‘kitchen towel’ image pair.

Figure 7: The ‘kitchen towel’ deformation.

8 Conclusions and Further Work

We tackled the problem of registering images of a
non-rigid surface. We built on recent feature ex-
traction and matching techniques and state a Maxi-
mum Likelihood Estimation problem for Radial Ba-
sis Mappings. A framework based on nested model
selection allows us to derive an original algorithm
using data-driven, dynamic centre insertion, to re-
fine the estimated transformation. This provides a
theoretically derived way of assessing convergence.
Possible avenues for future work include robustness
to outliers and a mixed feature-based and direct ap-
proach.
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