
HAL Id: hal-00094756
https://hal.science/hal-00094756

Submitted on 14 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards 3D Motion Estimation from Deformable
Surfaces

Adrien Bartoli

To cite this version:
Adrien Bartoli. Towards 3D Motion Estimation from Deformable Surfaces. 2006, pp.Publication
électronique seulement. �hal-00094756�

https://hal.science/hal-00094756
https://hal.archives-ouvertes.fr


Towards 3D Motion Estimation
From Deformable Surfaces

Adrien Bartoli
CNRS / LASMEA – Adrien.Bartoli@gmail.com
24, avenue des Landais – 63177 Aubière cedex, France

Abstract— Estimating the pose of an imaging sensor is a central
research problem. Many solutions have been proposed for the
case of a rigid environment. In contrast, we tackle the case of
a non-rigid environment observed by a 3D sensor, which has
been neglected in the literature. We represent the environment
as sets of time-varying 3D points explained by a low-rank shape
model, that we derive in its implicit and explicit forms. The
parameters of this model are learnt from data gathered by the
3D sensor. We propose a learning algorithm based on minimal
3D non-rigid tensors that we introduce. This is followed by
a Maximum Likelihood nonlinear refinement performed in a
bundle adjustment manner. Given the learnt environment model,
we compute the pose of the 3D sensor, as well as the deformations
of the environment, that is, the non-rigid counterpart of pose,
from new sets of 3D points. We validate our environment learning
and pose estimation modules on simulated and real data.

I. INTRODUCTION

Aligning 3D views – sets of 3D points – gathered by a
3D sensor, such as a calibrated stereo rig, is important for
constructing comprehensive 3D models of the environment or
updating the position of a mobile imaging sensor. When the
environment is rigid, the 3D views are related by rigid Eu-
clidean transformations. Many approaches have been proposed
to compute these transformations, e.g. [1]. Aligning 3D views
is one of the building blocks of hierarchical approaches to
Structure-From-Motion. However, the assumption of rigidity
is violated in many cases of interest, for instance a garment
deforming as a person moves. The alignment problem is then
particularly challenging because a different shape is observed
in each 3D view.

A large body of work has been done in the medical imaging
community but with the aim of estimating dense deformation
fields from dense, often voxel-based, reconstructions. Dealing
with non-rigid scenes coming from single-camera footage has
received an increasing attention over the last few years. The
problem is highly challenging since both the cameras and the
non-rigid shape have to be recovered. A major step forwards
for such cases was made by Bregler et al. [2] and Brand [3].
Building on the work of [4], they developed and demonstrated
factorization of images of non-rigid scenes, where the non-
rigidity was represented as a linear combination of basis
shapes. It is shown in [5] how the constraints coming from
two synchronized cameras can be incorporated into non-rigid
factorization.

We tackle the problem of computing the pose of a 3D
sensor with respect to a non-rigid scene, that we represent

using the low-rank shape model used in non-rigid factorization
methods. Most previous work, e.g. [3], [2], [5], [6] use the
weak perspective camera model. In contrast, we do not specify
a camera model, since we directly consider 3D views. We
assume that spatial and temporal point correspondences are
established. Pose estimation in a non-rigid environment raises
two main problems. First, one has to define the meaning
of non-rigid pose. One benefit of using the low-rank shape
model is that the ‘true’ camera pose is recovered. Second,
contrarily to classical model-based pose estimation in a rigid
environment, a prior model of the non-rigid environment is
not available in many cases. We propose to learn this model
from a collection of unregistered 3D views gathered by the 3D
sensor. Once this learning stage has been passed, our non-rigid
pose estimator can be launched.

We bring the following contributions. First, §III, we state
the implicit and explicit low-rank shape models, and state
the notion of pose in this context. Second, §IV, we propose
algorithms to learn the non-rigid environment. The implicit
model parameters are learnt using a factorization technique,
while for the explicit model, we use what we call minimal 3D
non-rigid tensors. Third, §V, we show how the pose of the
3D sensor can be computed with respect to the learnt model
while the environment is moving and deforming. Experimental
results on simulated and real data are reported in §VI. We give
our conclusions in §VII.

II. NOTATION

Matrices are written in sans-serif fonts, e.g. R, and vectors
using bold fonts, e.g. x. The n 3D views are sets of m points
denoted Qtj , where t is the time index and j the point index.
We do not use homogeneous coordinates, e.g. Qtj is a 3-
vector. The identity matrix of size (s× s) is written I(s), the
zero matrix 0 and the zero vector 0. We use I for the (3× 3)
identity matrix. The Kronecker product is written ⊗, matrix
Frobenius norm as ‖·‖ and the Moore-Penrose pseudo-inverse
as †.

III. NON-RIGID SHAPE AND POSE

A. Non-Rigid Shape

We describe the low-rank non-rigid shape model. The pose
of the 3D sensor is modeled by 3D Euclidean transformations
{(Rt,yt)} with Rt an orthonormal matrix and yt ∈ R3 such
that Q̂tj = RtQ̃tj +yt. The {Q̃tj} form a motionless version
of the 3D views, i.e. that do not undergo any ‘global motion’,

bartoli
Text Box
Appeared in the 2006 IEEE ICRA, Orlando, Florida, USA



but are deforming through time. The low-rank shape model
represents the {Q̃tj} as linear combinations of l basis shapes
{Bkj}: Q̃tj =

∑l
k=1 ξtkBkj . The time-varying {ξtk} are the

configuration weights. Introducing the {(Rt,yt)}, we obtain
the explicit model:

Q̂tj = Rt

(
l∑

k=1

ξtkBkj

)
+ yt (1)

= MtBj + yt with (2)
Mt = Rt

(
ξt1I · · · ξtlI

)
. (3)

We call Mt a (3 × r) explicit non-rigid motion matrix and
Bj =

(
BT

1j · · · BT
lj

)
a (r × 1) non-rigid basis shape

vector. Parameter r = 3l is the rank of the model. For reasons
that are made clearer below, we derive a bilinear implicit
model. Let A be a (3l × 3l) rank-3l matrix. It is seen that
Q̂tj = MtBj + yt = (MtA−1)(ABj) + yt, yielding:

Q̂tj = NtSj + yt, (4)

with Nt = MtA−1 and Sj = ABj . We call Nt and Sj the
implicit non-rigid motion matrix and shape vector, and A a
corrective transformation matrix.

B. Non-Rigid Pose

Pose in a non-rigid environment has a rigid and a non-
rigid counterpart. The rigid part {(Rt,yt)} represents the
‘global’ motion of the environment relative to the sensor. It
gives the ‘true’ relative sensor displacement. In contrast, the
non-rigid part only concerns the environment, and not the
imaging sensor. In the above-described model, it is represented
by the configuration weights {ξtk}, giving the intrinsic, i.e.
motionless, deformations of the environment at each time
instant. The motionless and deformationless environment is
modeled by the basis shapes {Bkj}.

The implicit model is useless for pose estimation: it can be
seen as an ‘uncalibrated’ model of the environment. However,
its ML (Maximum Likelihood) Estimate can be computed very
reliably, as will be seen in the next section.

IV. LEARNING THE ENVIRONMENT

Given a collection of 3D views, we learn the environment
by estimating the parameters of the low-rank shape model.
Note that only the basis shapes {Bkj} are subsequently used
for pose estimation, see §V. However, to get an ML Estimate,
all parameters of the model must be computed.

We state the ML residual error and show how to compute
the translations. We first tackle the case of the implicit model
and then the explicit one. We assume all points to be visible
in all 3D views.

A. Maximum Likelihood residual error

Assuming that the error on the 3D points is Gaussian,
centred and i.i.d., the ML residual error is:

D2 =
1
nm

n∑
t=1

m∑
j=1

d2(Q̂tj ,Qtj), (5)

where d2(X,Y) = ‖X − Y‖2 is the Euclidean distance
measure and {Q̂tj} are corrected points, exactly explained
by the non-rigid shape model.

B. Computing the Translations

We show that the translations yt can be eliminated prior
to estimating the other parameters. By substituting equation
(1) or equation (4) in the residual error (5) and nullifying
its partial derivatives with respect to yt, we obtain yt =
1
m

(∑m
j=1 Qtj − Q̂tj

)
. The origin of the r-dimensional space

containing the non-rigid shape vectors is arbitrary and is
chosen such that

∑m
j=1 Sj = 0 in the implicit case and∑m

j=1 Bj = 0 in the explicit case, giving for the translation yt

the centroid yt = 1
m

∑m
j=1 Qtj = Q̄t of the t-th 3D view. This

means that one cancels the translations out by centring each
set of 3D points on its centroid: Qtj ← Qtj−Q̄t. Henceforth,
we assume that this has been done.

C. Shape Learning With the Implicit Model

We consider the implicit non-rigid shape model of equation
(4). We factorize the 3D views {Qtj} into implicit non-rigid
motion matrices {Nt} and shape vectors {Sj}. The problem
is to minimize the ML residual error (5) over the {Q̂tj} such
that Q̂tj = NtSj . Rewrite (5) as:

D2 ∝ ‖Q̂ − Q‖2,

where Q is the (3n×m) measurement matrix:

Q =

Q11 · · · Q1m

...
. . .

...
Qn1 · · · Qnm

 ,

and Q̂ is defined by the implicit (3n × 3l) ‘non-rigid joint
motion matrix’ N and the (3l×m) ‘non-rigid joint structure
matrix’ S as Q̂ = NS with NT =

(
NT

1 · · · NT
n

)
and

S =
(
S1 · · · Sm

)
. Since N has 3l columns and S has

3l rows, Q̂ has maximum rank 3l. The problem is to find
the closest rank-3l matrix Q̂ to Q. Let Q = UΣVT be a
Singular Value Decomposition (SVD) of matrix Q, see e.g. [7],
where U and V are orthonormal matrices and Σ is diagonal
and contains the singular values of Q. Let Σ = ΣuΣv be
any decomposition of Σ, e.g. Σu = Σv =

√
Σ. The non-

rigid joint motion and structure matrices are obtained by,
loosely speaking, ‘truncating’ the decomposition by nullifying
all but the 3l largest singular values, which leads, assuming the
singular values in decreasing order in Σ, to N = ψ3l(UΣu)
and S = ψT

3l(VΣT
v ), where ψc(W) is formed with the c leading

columns of matrix W.

D. Shape Learning With the Explicit Model

The aim is to compute the ML Estimate of the configuration
weights, rotation matrices and non-rigid structure in equation
(1) by minimizing the residual error (5). This is a nonlinear
problem for which two approaches have been followed in the
non-rigid factorization litterature. On the one hand Bregler et
al. [2], Brand [3], Aanaes et al. [8], Del Bue et al. [5] and



Xiao et al. [6] compute a matrix A that upgrades the implicit
motion matrix N so that the metric constraints of the explicit
model are enforced. Xiao et al. show that in order to get the
correct solution, two types of metric constraints must be taken
into account: the rotation constraints and the basis constraints,
from which they derive a closed-form solution for matrix A.

On the other hand, Torresani et al. [9] directly learn the pa-
rameters of the explicit model. They propose a comprehensive
system based on a generalized EM (Expectation Maximiza-
tion) algorithm. An important, still unsolved problem is to find
a suitable initialization, since EM performs local optimization
only.

Our solution lies in the second category: a suboptimal
initialization is computed and subsequently refined in a bundle
adjustment manner. These two steps are presented below,
followed by an analysis of the ambiguities of the solution.

1) Initializing:
a) The rotations: Brand proposes a solution based on

upgrading the implicit motion matrices [3], which requires
at least n ≥ l(9l+3)

4 3D views to compute a corrective
transformation and is thus not feasible for many practical
cases. For example, at least 39 views giving independent
constraints are necessary to use this method with the sequence
presented in §VI-B. In [5], the authors compute a block-
diagonal corrective transformation matrix. Another solution
used in [8] is to assume that the environment has a sufficiently
strong rigid component, and to estimate the rotation using a
standard procedure such as [1]. This approach is not feasible
for highly deforming environments.

In contrast, we propose an approach taking the non-rigid
nature of the environment into account. Our algorithm is
presented below in the occlusion-free case for simplicity, but
can be easily extended to the missing data case. Consider the
explicit non-rigid joint motion equation Q =MB with:

M =

(
ξ11R1 ··· ξ1lR1

...
. . .

...
ξn1Rn ··· ξnlRn

)
and B =

(
B11 ··· B1m

...
. . .

...
Bl1 ··· Blm

)
.

Define two subsets A and B of na and nb 3D views respec-
tively, Qa =MaB and Qb =MbB. Our goal is to eliminate
the structure B from the equations. We assume without loss
of generality rank(Qb) ≥ 3l. This implies nb ≥ l. We express
B in terms of Qb and Mb using the equation subset B as
B = M†

bQb. Plugging this into the equation subset A yields
Qa =MaB =MaM†

bQb that we rewrite:(
I(3na) −(MaM†

b)
)︸ ︷︷ ︸

Z

Qab = 0(3na×m) (6)

where nab = na + nb and QT
ab = (QT

a QT
b ). We call matrix

Z(3na×3nab) a 3D non-rigid tensor. Let us examine more
closely the expression ofMaM†

b. The joint motion matrix can
be rewritten as M = R(Ξ⊗ I) where R = diag(R1, . . . ,Rn)
is an orthonormal matrix and Ξ is an (n× l) matrix containing
the {ξik}. Similarly,Ma = Ra(Ξa⊗I) andMb = Rb(Ξb⊗I),

yielding:

MaM†
b = Ra(Ξa ⊗ I)(Rb(Ξb ⊗ I))†

= Ra(Ξa ⊗ I)((Ξb ⊗ I))†RT
b ,

since Rb is an orthonormal matrix. We make use of the
following properties: (S⊗ I)† = S† ⊗ I and (S⊗ I)(S′ ⊗ I) =
(SS′)⊗ I to get:

MaM†
b = Ra

(
(ΞaΞ†

b)⊗ I
)
RT

b .

Substituting in equation (6) and multiplying on the left by the
orthonormal RT

a yields:(
RT

a −
(
(ΞaΞ†

b)⊗ I
)
RT

b

)
Qab = 0(3na×m). (7)

From this equation, knowing Ra and using the orthonormality
constraints on Rb to eliminate the weights ΞaΞ†

b should allow
to compute Rb. We use the fact that the coordinate frame can
be aligned on a reference view t, i.e. such that Rt = I and
choose one view in the initial set of 3D views A to be the
reference one.

The first idea that comes to mind to solve this problem is to
consider the left nullspace of Qab. Define a (3nab × (3nab −
3l)) matrix U whose columns span the left nullspace of Qab:
UTQab = 0. Using equation (7), we obtain:(

RT
a −

(
(ΞaΞ†

b)⊗ I
)
RT

b

)
= HUT,

where H accounts for the fact that any linear combination of
the columns of U are in the left nullspace of Qab. While this
approach works fine in the absence of noise contaminating the
data, it is however very unstable and useless when even very
slight noise is present in the data. Indeed, if one employs
e.g. SVD to compute matrix U, then the singular vectors
corresponding to the lowest singular values will be selected,
and will not in general allow to recover the sought-after
rotations, since the SVD mixes the singular vectors to obtain
the lowest residual error as possible.

The second idea that comes to mind is to estimate each
rotation in B and the corresponding weight at a time. Consider
a 3D view g ∈ A. Equation (7) induces the following residual
error:

m∑
j=1

‖RT
g Qgj −

∑
t∈B

ζtR
T
t Qtj‖2, (8)

where {ζt} are unknown weights. Initialize all rotations in
Rb to the identity: R0

t = I, t ∈ B. Let p← 0 be the iteration
counter. The idea is to iteratively compute the t-th rotation
for t ∈ B while holding the other nb − 1 rotations in B
until convergence, by minimizing the residual error (8) that
we rewrite:

m∑
j=1

‖Ep
j − ζ

p+1
t

(
Rp+1

t

)T

Qtj‖2 (9)

with:

Ep
j = RT

g Qgj −

(∑
t∈B

(Sp
t )

TQtj

)
, (10)



where Sp
t is the latest estimate, i.e. :

Sp
t =

{
ζp+1
t Rp+1

t if it is computed
ζp
t Rp

t otherwise.

We use a standard procedure for computing the 3D rotation
and scale from 3D point correspondences – here {Ep

j ↔
Qij} – due to [1] to solve this problem. Our algorithm is
summarized in table I. Note that at most l rotations in Rb

can be computed at each iteration which implies that the
number of rotations in Rb must be l. This is why only the
smallest, i.e. minimal 3D non-rigid tensors can be used by
our algorithm. Also, the unknown Mb must be full-rank. We
use the corresponding implicit Nb to check that this is the
case, since there exists a full-rank corrective transformation
matrix A such that NaA =Ma. In the case of missing data,
the sum in equations (8) and (9) is simply replaced by a sum
over the points seen in subsets A and B.

OBJECTIVE

Given n 3D views {Qtj} of m corresponding points and the rank
3l of the non-rigid model, compute the relative pose {(Rt,yt)}
of the 3D sensor, the non-rigid pose of the environment, i.e. the
configuration weights {ξtk}, while learning the low-rank non-rigid
shape model {Bkj}.

ALGORITHM

1) Set initial equation sets. A is any 3D view t, B is any l
3D views at least one of them not in A and such that Nb is
full-rank, Rt ← I and Ra ← I.

2) Compute the rotations:
a) Set initial rotations R0

t ← I, t ∈ B and the iteration
counter p← 0.

b) For t ∈ B: form the {Ep
j}, equation (10). Compute Rp+1

t

by minimizing (9), see Horn et al. [1].
c) p← p + 1.
d) If the decrease in the residual error is smaller than ε, go

to step 3 else go to step b.
3) Test convergence. If all rotations are computed, stop.
4) Update equation sets. A← A ∪ B and B is any l 3D views,

at least one of them not in A and such that Nb is full-rank.
5) Iterate. go to step 2.

TABLE I
THE PROPOSED INITIALIZATION ALGORITHM FOR THE EXPLICIT MODEL

PARAMETERS.

b) The configuration weights and non-rigid structure:
Consider the ML residual error (5) that we rewrite below for
convenience:

D2 =
1
nm

n∑
t=1

m∑
j=1

‖Qtj − Rt

(
l∑

k=1

ξtkBkj

)
‖2.

Let Q̃tj = RT
t Qtj be a motionless version of the 3D points,

the residual error transforms in:

D2 =
1
nm

n∑
t=1

m∑
j=1

‖Q̃tj −

(
l∑

k=1

ξtkBkj

)
‖2.

Introduce matrices L(n×3m) and T(l×3m) which are obtained
by reorganizing Q̃ and B, respectively:

L̃ =

 Q̃T
11 ··· Q̃T

1m

...
. . .

...
Q̃T

n1 ··· Q̃T
nm

 and T =

BT
11 ··· BT

1m

...
. . .

...
BT

l1 ··· BT
lm

 .

The residual error is rewritten D2 = 1
nm‖L̃ − ΞT ‖2. This

means that matrix L̃ has rank l at most. Similarly to §IV-C,
let L̃ = UΣVT be an SVD of matrix L̃, we get Ξ = ψl(UΣu)
and T = ψT

l (VΣT
v ).

2) Bundle Adjustment: Starting from the above-derived
initial solution, we minimize the ML residual error (5) using
nonlinear least-squares in a bundle adjustment manner, see
e.g. [10]. We use the Levenberg-Marquardt algorithm, imple-
mented to exploit the sparse block structure of the Jacobian
and (Gauss-Newton approximation of) the Hessian matrices.
Bundle adjustment in the non-rigid case is developed in [8],
[5], where the authors show that compared to the rigid case,
additional ‘gauge freedoms’ in the recovered structure and
motion must be handled. However, the Levenberg-Marquardt
optimization engine deals with those by damping the approx-
imated Hessian matrix which makes it full rank. We found
that the regularization term employed in [5] does not have a
significant effect on the results we obtained. This is mainly
due to the fact that we directly use 3D data, while [5] use
image points.

3) Ambiguities of the Solution: The ambiguity of the
solution demonstrated by Xiao et al. [6] in the 2D case
when only the rotation constraints are used does not hold for
our algorithm. The reason is that it enforces the replicated
block structure of the joint motion matrix M, which provides
stronger constraints than the rotation constraints only. The am-
biguity matrix E on the learnt model is E = diagl(S)(Λ(l×l)⊗
I), where diagl(S) is a l block diagonal matrix for some
3D orthonormal matrix S, representing the indeterminateness
of the orientation for the global coordinate frame. Matrix
Λ(l×l) ⊗ I models linear combinations of the basis shapes.
This shows that it is not possible to recover the ‘true’ basis
shapes and configuration weights, but that ‘true’ camera pose
can still be computed.

V. COMPUTING POSE

Given the non-rigid model of the environment – the basis
shapes {Bkj} – and a 3D view {Qj}, we want to estimate the
pose of the 3D sensor, namely the Euclidean transformation
(R,y), jointly with the non-rigid counterpart of the pose, i.e.
the configuration weights {ξk}. Note that we drop index t
since only one 3D view is considered in this section. It is not
necessary to observe all points used in the learning phase to
compute pose. The ML residual error is:

C2 =
1
m

m∑
j=1

d2(MBj + y,Qj). (11)

It must be minimized over (R,y) and {ξk}. Matrix M is
defined by equation (3).



We propose to nonlinearly minimize the ML residual error
(11) using the Levenberg-Marquardt algorithm. It is not pos-
sible to use a direct estimator as [1] due to the configuration
weights. Note that, as shown below, the translation y can
be eliminated from the equation. The minimization is thus
performed over R and {ξk}. Such an algorithm as Levenberg-
Marquardt requires one to provide an initial solution. Our
algorithm for finding it is described below.

a) Eliminating the translation: The derivatives of the ML
residual error (11) with respect to y must vanish: ∂C2

∂y = 0,
which leads to y = 1

m

∑m
j=1 (Qj −MBj). This result means

that y is given by the difference between the centroid of the
points {Qj} and the centroid predicted by the points from the
shape model {MBj}, which vanishes if the set of points used
for computing the pose is exactly the same as the one used in
the learning phase. In any case, by centring the points on their
centroid, the translation vanishes. Henceforth, we assume this
has been done and rewrite the ML residual error (11) as:

C2 =
1
m

m∑
j=1

d2(MBj ,Qj). (12)

b) Initializing the rotation and configuration weights:
We linearly compute a motion matrix M̃ without enforcing
the correct replicated structure by minM̃

∑m
j=1 d

2(M̃Bj ,Qj),
which yield:

M̃ =
(
Q1 · · · Qm

) (
B1 · · · Bm

)†
.

We extract the {ξk} and R from M̃ by solving
minR,{ξk}

∑l
k=1 ‖M̃k − ξkR‖2, where the M̃k are (3 × 3)

blocks from M̃. By vectorizing and reorganizing the residual
error, we obtain:

‖

vectT(M̃1)
...

vectT(M̃l)


︸ ︷︷ ︸

Λ

−

ξ1...
ξl


︸ ︷︷ ︸

ξ

vectT(R̃)︸ ︷︷ ︸
r̃

‖2,

which is a rank-1 approximation problem that we solve by
‘truncating’ the SVD Λ = UΣVT, as in §IV-C: ξ = ψ1(UΣ)
and r̃ = ψT

1 (V). Note that ‖r̃‖ = ‖R̃‖ = 1. Matrix R̃
must be subsequently corrected to give R by enforcing the
orthonormality constraints. This is done by finding the closest
orthonormal matrix to R̃ using SVD, see [1]: R̃ = UΣVT

gives R = 1
3 tr(Σ) det(U) det(V)UVT, while compensating the

possible sign change by ξ ← det(U) det(V)ξ.

VI. EXPERIMENTAL EVALUATION

A. Simulated Data

We report experimental results on simulated data. The
default simulation setup consists of n = 15 time-varying 3D
views, each containing m = 35 points. They are generated by
randomly drawn linear combinations of l = 3 basis shapes,
all of them lying in a sphere with unit radius. An additive,
zero-mean Gaussian noise with variance σ = 0.01 (i.e. 1% of
the scene scale) is added to the 3D points. We vary each of

these parameters in turn. We average the error measures over
100 trials. The true number of basis shapes is used by the
algorithms.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Percentage of added noise

M
L 

re
si

du
al

 e
rr

or
 (

m
et

er
s)

PoseInit
PoseLM
ExpInitMean
ExpInitIter
ExpLM
Imp

2 4 6 8 10
0

1

2

3

4

5

6

7

8

Number of basis shapes

P
os

e 
es

tim
at

io
n 

er
ro

r 
(d

eg
re

es
) PoseLM

ExpLM
RigPoseLM
RigExpLM

(a) (b)

Fig. 1. (a) ML residual error against the level of added noise and (b) pose
error against the number of basis shapes.

c) Environment learning: We observe on figure 1 (a) that
the ML residual error is very close to σ. The implicit learning
IMP consistently gives a significantly lower residual error than
the explicit learning algorithms EXP?. This means that, despite
the fact that the data were generated using the explicit low-
rank shape model, the extra degrees of freedom of the implicit
model represent quite well the added Gaussian noise.

We observe that the difference between the three explicit
learning methods is small compared to the difference with
IMP. EXPLM (from §IV-D.2, ‘LM’ stands for Levenberg-
Marquardt) always performs better than EXPINITITER (from
table I), which always performs better than EXPINITMEAN
(based on [1] to get the rotations). This means that the
residual error (8), which is minimized by EXPINITITER while
estimating the minimal 3D non-rigid tensors, is well-adapted
to our problem.

Figure 1 (b) compares the error raised by the rotation part
of the pose, in degrees, between our non-rigid algorithms
and rigid SFM and pose algorithms, respectively dubbed
RIGEXPLM and RIGPOSELM. We observe that the proposed
EXPLM gives errors independent of the number of basis
shapes, while, as could have been expected, RIGEXPLM
rapidly degrades as the number of basis shapes grows.

d) Pose computation: Figure 1 (a) shows that all pose
algorithms POSE? consistently give a higher residual error
than the explicit learning algorithms. This is explained by the
fact that pose estimation suffers from the errors in the learnt
model and in the 3D view. POSEINIT gives quite high errors,
roughly 5σ, while POSELM converges to roughly 1.5σ which
is reasonable. The same remarks as for the learning algorithms
can be made in the case of pose, for figure 1 (b).

Another experiment was intended to assess to which extent,
reliable pose estimate can be obtained when the environment
is deforming in a very different way compared to the learning
stage. Let ν be the mean value of the configuration weights.
We alter them by adding randomly drawn perturbations with
increasing magnitude µ, and generate a 3D view with these
parameters, from which pose is estimated. Obviously, the
results depend on the simulation setup, the number of points,
views, basis shapes and the level of noise. However, we



observe that for µ ≤ 1.3ν, the residual error indicates that
the pose estimate is reasonable for most configurations. For
µ > 1.3ν, the pose estimate rapidly degrades.

B. Real Data

We tested our algorithms on sets of 3D points reconstructed
from a calibrated stereo rig. The sequence consists of n =
650 pairs of views. The m = 30 point tracks were obtained
semi-automatically and reconstruction was performed using
ML triangulation, i.e. by minimizing the reprojection error.
The reprojection error we obtained is 4.7276 pixels, which is
rather large and explained by the low quality of the manually
entered point tracks.

Fig. 2. One out of the 650 stereo pairs used in the experiments, overlaid
with the 30 point tracks.

We used a subset of the full sequence, made of 1 3D view
over 25 from 1 to 551, that is 23 3D views, for learning
the environment. The remaining 3D views are registered by
computing pose. For views 1 < i < 551, this can be viewed
as ‘interpolation’ since the surrounding 3D views are used for
learning the environment, while for views 551 < i < 650 this
can be viewed as an ‘extrapolation’ of the model since new
pose and deformations are seen in these views.

An important aspect is the choice of the number l of basis
shapes. If l is too low, the model is not able to represent all
the possible deformations, while if l is too high, the noise
is modeled, resulting in unreliable pose estimates in both
cases. We propose to manually choose l by examining the
graphs shown on figure 3. It shows the ML residual errors
and the reprojection errors, i.e. the Sum of Squared Differences
between measured and predicted image points, resulting of the
learning algorithms for different numbers of basis shapes. We

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Number of basis shapes

M
L 

re
si

du
al

 e
rr

or
 (

m
et

er
s)

ExpInitMean
ExpInitIter
ExpLM
Imp

2 4 6 8 10
4.5

5

5.5

6

Number of basis shapes

R
ep

ro
je

ct
io

n 
er

ro
r 

(p
ix

el
s)

ExpInitMean
ExpInitIter
ExpLM
Imp
SFM

(a) (b)

Fig. 3. (a) ML residual error and (b) 2D reprojection error versus the number
of basis shapes.

observe that the 3D ML residual error and the 2D reprojection
error decrease while l increases, the former towards 0 and the

latter towards the reconstruction error, shown by an horizontal
line ‘SFM’ on the graph, which was expected. Based on this
graph, we choose l = 4, for which the EXPLM ML residual
error is 5.32 centimeters and the 2D reprojection error is
4.7922 pixels. For comparison, a rigid environment model
gives a 23.58 centimeters ML residual error and a 5.7605
pixels 2D reprojection error. It is important to note that for
l = 5 and l = 6 basis shapes, very similar pose estimates are
subsequently obtained.

The learnt path appears visually satisfying, However, the
mean difference in the rotations is 2.81 degrees, which is
significant, but difficult to illustrate visually. The mean ML
residual errors are 8.66 and 12.83 centimeters for the ’inter-
polated’ and the ‘extrapolated’ poses respectively.

The computation time for the learning phase is of the order
of a minute while pose estimation is roughly a tenth of a
second.

VII. CONCLUSIONS

One weakness of the approach is to rely on 3D point
correspondences. We are currently working on using more
robust types of inputs, such as contours or image patches,
that can be reliably tracked through sequences of stereo pairs
using e.g. particule filtering techniques. This is intended to be
part of an iterative deforming environment learning system.
Essential issues that will be dealt with are assessing what
kind of deformations can be represented by the low-rank shape
model and choosing the number of basis shapes, which will
be examined in the framework of model selection.

REFERENCES

[1] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form
solution of absolute orientation using orthonormal matrices,” Journal
of the Optical Society of America A, vol. 5, no. 7, pp. 1127–1135, July
1988.

[2] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-rigid
3D shape from image streams,” in Proceedings of the International
Conference on Computer Vision and Pattern Recognition, 2000.

[3] M. Brand, “Morphable 3D models from video,” in Proceedings of the
International Conference on Computer Vision and Pattern Recognition,
2001.

[4] M. Irani, “Multi-frame optical flow estimation using subspace con-
straints,” in Proceedings of the International Conference on Computer
Vision, 1999.

[5] A. D. Bue and L. Agapito, “Non-rigid 3D shape recovery using stereo
factorization,” in Proceedings of the Asian Conference on Computer
Vision, 2004.

[6] J. Xiao, J.-X. Chai, and T. Kanade, “A closed-form solution to non-rigid
shape and motion recovery,” in Proceedings of the European Conference
on Computer Vision, 2004.

[7] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore:
The Johns Hopkins University Press, 1989.

[8] H. Aanæs and F. Kahl, “Estimation of deformable structure and mo-
tion,” in Proceedings of the Vision and Modelling of Dynamic Scenes
Workshop, 2002.

[9] L. Torresani and A. Hertzmann, “Automatic non-rigid 3D modeling from
video,” in Proceedings of the European Conference on Computer Vision,
2004.

[10] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
ajustment — a modern synthesis,” in Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, 2000.




