
HAL Id: hal-00094755
https://hal.science/hal-00094755

Submitted on 14 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Triangulation for Points on Lines
Adrien Bartoli, Jean-Thierry Lapresté

To cite this version:
Adrien Bartoli, Jean-Thierry Lapresté. Triangulation for Points on Lines. 2006, pp.189-200. �hal-
00094755�

https://hal.science/hal-00094755
https://hal.archives-ouvertes.fr

ECCV’06 – In Proceedings of the European Conference on
Computer Vision, Graz, Austria, May 2006.

Triangulation for Points on Lines

Adrien Bartoli and Jean-Thierry Lapresté

LASMEA – CNRS / Université Blaise Pascal
Clermont-Ferrand, France
Adrien.Bartoli@gmail.com

Abstract. Triangulation consists in finding a 3D point reprojecting the
best as possible onto corresponding image points. It is classical to min-
imize the reprojection error, which, in the pinhole camera model case,
is nonlinear in the 3D point coordinates. We study the triangulation of
points lying on a 3D line, which is a typical problem for Structure-From-
Motion in man-made environments. We show that the reprojection error
can be minimized by finding the real roots of a polynomial in a single
variable, which degree depends on the number of images. We use a set
of transformations in 3D and in the images to make the degree of this
polynomial as low as possible, and derive a practical reconstruction al-
gorithm. Experimental comparisons with an algebraic approximation al-
gorithm and minimization of the reprojection error using Gauss-Newton
are reported for simulated and real data. Our algorithm finds the opti-
mal solution with high accuracy in all cases, showing that the polyno-
mial equation is very stable. It only computes the roots corresponding
to feasible points, and can thus deal with a very large number of views
– triangulation from hundreds of views is performed in a few seconds.
Reconstruction accuracy is shown to be greatly improved compared to
standard triangulation methods that do not take the line constraint into
account.

1 Introduction

Triangulation is one of the main building blocks of Structure-From-Motion al-
gorithms. Given image feature correspondences and camera matrices, it consists
in finding the position of the underlying 3D feature, by minimizing some error
criterion. This criterion is often chosen as the reprojection error – the Maximum
Likelihood criterion for a Gaussian, centred and i.i.d. noise model on the image
point positions - though other criteria are possible [5, 9, 10].

Traditionally, triangulation is carried out by some sub-optimal procedure
and is then refined by local optimization, see e.g. [7]. A drawback of this is that
convergence to the optimal solution is not guaranteed. Optimal procedures for
triangulating points from two and three views were proposed in [6, 13].

We address the problem of triangulating points lying on a line, that is, given
image point correspondences, camera matrices and a 3D line, finding the 3D
point lying on the 3D line, such that the reprojection error is minimized.

Our main contribution is to show that the problem can be solved by comput-
ing the real roots of a degree-(3n-2) polynomial, where n is the number of views.
Extensive experiments on simulated data show that the polynomial is very well
balanced since large number of views and large level of noise are handled. The
method is valid whatever the calibration level of the cameras is – projective,
affine, metric or Euclidean.

One may argue that triangulating points on a line only has a theoretical
interest since in practice, triangulating a line from multiple views is done by
minimizing the reprojection error over its supporting points which 3D positions
are hence reconstructed along with the 3D line. Indeed, most work consider the
case where the supporting points do not match accross the images, see e.g. [3].
When one identifies correspondences of supporting points accross the images,
it is fruitful to incorporate these constraints into the bundle adjustment, as
is demonstrated by our experiments. This is typically the case in man-made
environments, where one identifies e.g. matching corners at the meet of planar
facades or around windows. Bartoli et al. [2] dubbed Pencil-of-Points or ‘pop’ this
type of features. In order to find an initial 3D reconstruction, a natural way is to
compute the 3D line by some means (e.g. by ignoring the matching constraints
of the supporting points, from 3D primitives such as the intersection of two
planes, or from a registered wireframe cad model) and then to triangulate the
supporting point correspondences using point on line triangulation. The result
can then be plugged into a bundle adjustment incorporating the constraints.

Our triangulation method is derived in §2. A linear least squares method
minimizing an algebraic distance is provided in §3. Gauss-Newton refinement is
summarized in §4. Experimental results are reported in §5 and our conclusions
in §6.

Notation. Vectors are written using bold fonts, e.g. q, and matrices using sans-
serif fonts, e.g. P. Almost everything is homogeneous, i.e. defined up to scale.
Equality up to scale is denoted ∼. The inhomogenous part of a vector is denoted
using a bar, e.g. qT ∼ (q̄T 1) where T is transposition. Index i = 1, . . . , n, and
sometime j are used for the images. The point in the i-th image is qi. Its elements
are qT

i ∼ (qi,1 qi,2 1). The 3D line joining points M and N is denoted (M,N).
The L2-norm of a vector is denoted as in ‖x‖2 = xTx. The Euclidean distance
measure de is defined by:

d2
e(x,y) =

∥∥∥∥ x
x3
− y

y3

∥∥∥∥2

=
(

x1

x3
− y1

y3

)2

+
(

x2

x3
− y2

y3

)2

. (1)

Related work. Optimal procedures for triangulating points in 3D space, and
points lying on a plane were previously studied. Hartley and Sturm [6] showed
that triangulating points in 3D space from two views, in other words finding
a pair of points satisfying the epipolar geometry and lying as close as possible

to the measured points, can be solved by finding the real roots of a degree-6
polynomial. The optimal solution is then selected by straightforward evaluation
of the reprojection error. Stewénius et al. [13] extended the method to three
views. The optimal solution is one of the real roots of a system of 3 degree-
6 polynomials in the 3 coordinates of the point. Chum et al. [4] show that
triangulating points lying on a plane, in other words finding a pair of points
satisfying an homography and lying as close as possible to the measured points,
can be solved by finding the real roots of a degree-8 polynomial.

2 Minimizing the Reprojection Error

We derive our optimal triangulation algorithm for point on line, dubbed ‘Poly’.

2.1 Problem Statement and Parameterization

We want to compute a 3D point Q, lying on a 3D line (M,N), represented by
two 3D points M and N. The (3× 4) perspective camera matrices are denoted
Pi with i = 1, . . . , n the image index. The problem is to find the point Q̂ such
that:

Q̂ ∼ arg min
Q∈(M,N)

C2n(Q),

where Cn is the n-view reprojection error:

C2n(Q) =
n∑

i=1

d2
e(qi,PiQ). (2)

We parameterize the point Q ∈ (M,N) using a single parameter λ ∈ R as:

Q ∼ λM + (1− λ)N ∼ λ(M−N) + N. (3)

Introducing this parameterization into the reprojection error (2) yields:

C2n(λ) =
n∑

i=1

d2
e(qi,Pi(λ(M−N) + N)).

Defining bi = Pi(M−N) and di = PiN, we get:

C2n(λ) =
n∑

i=1

d2
e(qi, λbi + di). (4)

Note that a similar parameterization can be derived by considering the inter-
image homographies induced by the 3D line [12].

2.2 Simplification

We simplify the expression (4) of the reprojection error by changing the 3D co-
ordinate frame and the image coordinate frames. This is intended to lower the
degree of the polynomial equation that will ultimately have to be solved. Since
the reprojection error is based on Euclidean distances measured in the images,
only rigid image transformations are allowed to keep invariant the error function,
while full projective homographies can be used in 3D. We thus setup a standard
canonical 3D coordinate frame, see e.g. [8], such that the first camera matrix be-
comes P1 ∼ (I 0). Note that using a projective basis does not harm Euclidean
triangulation since the normalization is undone once the point is triangulated.
The canonical basis is setup by the following simple operations:

H←
(

P1

0 0 0 1

)
Pi ← PiH

−1 M← HM N← HN.

Within this coordinate frame, we can write MT = (• • 1 •) and NT = (• •
1 •) without loss of generality, as pointed out in [7, §A6], from which we get:

b1 = P1(M−N) = (b1,1 b1,2 0)T

d1 = P1N = (d1,1 d1,2 1)T.

We then apply a rigid transformation Ti in each image defined such that Tibi

lies on the y-axis and such that Tidi = TiPiN lies at the origin. This requires
that the point N does not project at infinity is any of the images. We ensure this
by constraining N to project as close as possible to one of the image points1, say
q1. The reprojection error (4) for the first view is C21(λ) = d2

e(q1, λb1 + d1) =
‖λb̄1 + d̄1 − q̄1‖2. We compute λ as the solution of ∂C2

1
∂λ = 0, which gives, after

some minor calculations, λ = (q̄1 − d̄1)
Tb̄1/‖b̄1‖2. Substituting in equation (3)

yields the following operations:

N← (P1N− q1)
TP1(M−N)

‖P1(M−N)‖2
(M−N) + N.

Obviously, the di = PiN must be recomputed. These simplications lead to:

b1 = (0 b1,2 0)T d1 = (0 0 1)T bi>1 = (0 bi,2 bi,3)
T di>1 = (0 0 di,3)

T
.

The rigid transformations Ti are quickly derived below. For each image i, we look
for Ti mapping di to the origin, and bi to a point on the y-axis. We decompose
Ti as a rotation around the origin and a translation:

Ti =
(

Ri 0
0T 1

)(
I −ti

0T 1

)
.

1 Note that this is equivalent to solving the single view triangulation problem.

The translation is directly given from Tidi ∼ (0 0 1)T as ti = d̄i/di,3. For the
rotation, we consider Tibi ∼ (0 • •)T, from which, setting ri = b̄i − bi,3ti, we

obtain Ri =
(

ri,2 −ri,1

ri,1 ri,2

)
/‖r̄i‖.

This leads to the following expression for the reprojection error (4) where we
separated the leading term:

C2n(λ) = q2
1,1 + (λb1,2 − q1,2)2 +

n∑
i=2

(
q2
i,1 +

(
λbi,2

λbi,3 − di,3
− qi,2

)2
)

.

The constant terms q2
1,1 and q2

i,1 represent the vertical counterparts of the
point to line distance in the images. This means that only the errors along the
lines are to be minimized.

2.3 Solving the Polynomial Equation

Looking for the minima of the reprojection error C2n is equivalent to finding the
roots of its derivative, i.e. solving ∂C2

n

∂λ = 0. Define Dn = 1
2

∂C2

∂λ :

Dn(λ) = (λb1,2 − q1,2)b1,2 +
n∑

i=2

(
λbi,2

λbi,3 + di,3
− qi,2

)(
bi,2di,3

(λbi,3 + di,3)2

)
.

This is a nonlinear function. Directly solving Dn(λ) = 0 is therefore very difficult
in general. We thus define D̃n(λ) = Dn(λ)Kn(λ), where we choose Kn in order to
cancel out the denominators including λ in Dn. Finding the zeros of D̃n is thus
equivalent to finding the zeros of Dn. Inspecting the expression of Dn reveals
that Kn(λ) =

∏n
i=2(λbi,3 + di,3)3 does the trick:

D̃n(λ) = (λb1,2 − q1,2)b1,2

n∏
i=2

(λbi,3 + di,3)3

+
n∑

i=2

bi,2di,3 (λbi,2 − qi,2(λbi,3 + di,3))
n∏

j=2,j 6=i

(λbj,3 + dj,3)3

 .

(5)

As expected, D̃n is a polynomial function, whose degree depends on the number
of images n. We observe that cancelling the denominator out for the contribution
of each (i > 1)-image requires to multiply Dn by a cubic, namely (λbi,3 + di,3)3.
Since the polynomial required for image i = 1 is linear, the degree of the poly-
nomial to solve is 3(n− 1) + 1 = 3n− 2.

Given the real roots λk of D̃n(λ), that we compute as detailled below for
different number of images, we simply select the one for which the reprojection
error is minimized, i.e. λ̂ = arg mink C2n(λk), substitute it in equation (3) and
transfer the recovered point back to the original coordinate frame:

Q̂ ∼ H−1
(
λ̂M +

(
1− λ̂

)
N
)

.

A single image. For n = 1 image, the point is triangulated by projecting its
image onto the image projection of the line. The intersection of the associated
viewing ray with the 3D line gives the 3D point. In our framework, equation (5)
is indeed linear in λ for n = 1: D̃1(λ) = (λb1,2 − q1,2)b1,2 = b2

1,2λ− q1,2b1,2.

A pair of images. For n = 2 images, equation (5) gives:

D̃2(λ) = (λb1,2 − q1,2)b1,2(λb2,3 + d2,3)3 + b2,2d2,3(λb2,2 − q2,2(λb2,3 + d2,3)),

which is a quartic in λ that can be solved in closed-form using Cardano’s for-
mulas: D̃2(λ) ∼

∑4
d=1 cdλ

d, with:
c0 = −q2,2d

2
2,3b2,2 − b1,2q1,2d

3
2,3

c1 = d2,3(b2
2,2 − 3b1,2q1,2b2,3d2,3 + b2

1,2d
2
2,3 − q2,2b2,3b2,2)

c2 = 3b1,2b2,3d2,3(b1,2d2,3 − q1,2b2,3)
c3 = b1,2b

2
2,3(3b1,2d2,3 − q1,2b2,3)

c4 = b2
1,2b

3
2,3.

Multiple images. Solving the n ≥ 3 view case is done in two steps. The first step
is to compute the coefficients cj , j = 0, . . . , 3n-2 of a polynomial. The second
step is to compute its real roots. Computing the coefficients in closed-form from
equation (5), as is done above for the single- and the two-view cases, lead to very
large, awkward formulas, which may lead to roundoff errors. We thus perform a
numerical computation.

A standard root-finding technique is to compute the eigenvalues of the ((3n-
2)×(3n-2)) companion matrix of the polynomial, see e.g. [1]. Computing all the
roots ensures the optimal solution to be found. This can be done if the number
of images is not too large, i.e. lower than 100, and if computation time is not an
issue. However, for large numbers of images, or if real-time computation must be
achieved, it is not possible to compute and try all roots. In that case, we propose
to compute only the roots corresponding to feasible points.

Let λ0 be an approximation of the sought-after root. For example, one can
take the result of the algebraic method of §3, or even λ0 = 0 since our parame-
terization takes the sought-after root very close to 0. Obviously, we could launch
an iterative root-finding procedure such as Newton-Raphson from λ0 but this
would not guarantee that the optimal solution is found.

One solution to efficiently compute only the feasible roots is to reparameter-
ize the polynomial such that those lie close to 0, and use an iterative algorithm
for computing the eigenvalues of the companion matrix on turn. For example,
Arnoldi or Lanczos’ methods, compute the eigenvalues with increasing magni-
tude starting from the smallest one. Let λc be the last computed eigenvalue, and
Q1 and Q2 the reconstructed points corresponding to λc and −λc. If both Q1

and Q2 reproject outside the images, the computation is stopped. Indeed, the
next root that would be computed would have greater magnitude than λc, and
would obviously lead to a point reprojecting further away than the previous one
outside the images.

The reparameterization is done by computing a polynomial Pn(λ) = D̃n(λ+
λ0). A simple way to achieve this reparameterization is to estimate the coef-
ficients cj , j = 1, . . . , 3n-1, of Pn, as follows. We evaluate z ≥ 3n-1 values
vk = D̃n(λk + λ0) from equation (5) for λk ∈ [−δ, δ], and solve the associated
Vandermonde system:

∑3n−2
j=0 cjλ

j
k = vk for k = 1, . . . , z. We typically use

z = 10(3n-1). The parameter δ ∈ R∗+ reflects the size of the sampling interval
around λ0. We noticed that this parameter does not influence the results, and
typically chose δ = 1. Obviously, in theory, using z = 3n-1, i.e. the minimum
number of samples, at distinct points, is equivalent for finding the coefficients.
However we experimentally found that using extra samples evenly spread around
the expected root λ0 has the benefit of ‘averaging’ the roundoff error, and sta-
bilizes the computation.

One could argue that with this method for estimating the coefficients, the
simplifying transformations of §2.2 are not necessary. A short calculation shows
that this is partly true since if the canonical 3D projective basis were not used
along with the normalization of the third entries of M and N to unity, then the
degree of the polynomial would be 3n instead of 3n-2.

3 An Algebraic Criterion

We give a linear algorithm, dubbed ‘Algebraic’, based on approximating the
reprojection error (2) by replacing the Euclidean distance measure de by the
algebraic distance measure da defined by d2

a(x,y) = S[x]×y with S = (1 0 0
0 1 0),

and where [x]× is the (3×3) skew-symmetric matrix associated to cross-product,
i.e. [x]×y = x× y. This gives an algebraic error function:

E2
n(λ) =

n∑
i=1

d2
a(λbi + di,qi) =

n∑
i=1

‖λS[qi]×bi + S[qi]×di‖2.

A closed-form solution is obtained, giving λa in the least squares sense:

λa = −
∑n

i=1 bT
i [qi]×Ĩ[qi]×di∑n

i=1 bT
i [qi]×Ĩ[qi]×bi

with Ĩ ∼ STS ∼
(

1 0 0
0 1 0
0 0 0

)
.

4 Gauss-Newton Refinement

As is usual for triangulation and bundle adjustment [7], we use the Gauss-Newton
algorithm for refining an estimate of λ̂ by minimizing the nonlinear least squares
reprojection error (2). The algorithm, that we do not derived in details, is dubbed
‘Gauss-Newton’. We use the best solution amongst Poly and Algebraic as
the initial solution.

5 Experimental Results

5.1 Simulated Data

We simulated a 3D line observed by n cameras Pi. In order to simulate realistic
data, we reconstructed the 3D line as follows. We projected the line onto the
images, and regularly sampled points on it, that were offset orthogonally to
the image line with a Gaussian centred noise with variance σl. The 3D line
was then reconstructed from the noisy points using the Maximum Likelihood
triangulation method in [3], which provided M and N. Finally, a point lying on
the true 3D line was projected onto the images, and corrupted with a Gaussian
centred noise with variance σp, which gave the qi. We varied some parameters
of this setup, namely n and σp, and the spatial configuration of the cameras, in
order to compare the algorithms under different conditions. We compared two
cases for the cameras: a stable one, in which they were evenly spread around the
3D line, and an unstable one, in which they were very close to each other. The
default parameters of the setup are σl = 0.1 pixels, σp = 3 pixels, n = 10 views
and stable cameras.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Noise level (pixels)

R
ep

ro
je

ct
io

n
er

ro
r

(p
ix

el
s)

Algebraic
Gauss−Newton
Poly
3DTriangulation

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise level (pixels)

3D
 E

rr
or

 (
m

et
er

s)

Algebraic
3DTriangulation
Gauss−Newton
Poly

Fig. 1. Reprojection error (left) and 3D error (right) versus the level of noise.

We had two main goals in these experiments. First, we wanted to determine
what in practice is the maximum number of views and noise that the proposed
triangulation method can deal with, for stable and unstable camera configu-
rations. Second, we wanted to determine to which extent the line constraint
improves the accuracy of the reconstructed 3D point, compared to standard
unconstrained triangulation. We measured two kinds of error: the reprojection
error, quantifying the ability of the methods to fit the measurements, and a 3D
error, quantifying the accuracy of the reconstruction.

We compared the three algorithms, described in the paper (Poly, §2 ; Alge-
braic, §3 ; Gauss-Newton, §4) and 3DTriangulation, which is a standard
Maximum Likelihood triangulation, ignoring the line constraint, e.g. [7].

Figure 1 shows the results for varying noise level on the image points (σp =
1, . . . , 10 pixels), and figure 2 for varying number of views (n = 2, . . . , 200). Note
the logarithmic scaling on the abscissa. General comments can be made about
these results:

– 3DTriangulation always gives the lowest reprojection error.
– Algebraic always gives the highest reprojection error and 3D error.
– Poly and Gauss-Newton always give the lowest 3D error.

Small differences in the reprojection error may lead to large discrepancies in
the 3D error. For example, Poly and Gauss-Newton are undistinguisable on
figures 1 (left) and 2 (left), showing the reprojection error, while they can clearly
be distinguished on figures 1 (right) and 2 (right), showing the 3D error. This is
due to the fact that Gauss-Newton converges when some standard precision
is reached on the reprojection error. Increasing the precision may improve the
results, but would make convergence slower.

For n = 10 views, figure 1 shows that the accuracy of the 3D reconstruction is
clearly better for the optimal methods Poly and Gauss-Newton using the line
constraint, compared to 3DTriangulation that does not use this constraint.
The difference in 3D accuracy is getting larger as the noise level increases. For
a σp = 1 pixel noise, which is what one can expect in practice, the difference in
accuracy is 1 cm, corresponding to 1% of the simulated scene scale. This is an
important difference.

However, for σp = 3 pixels, beyond 20 views, figure 2 (left) shows that the re-
projection error for 3DTriangulation and Poly/Gauss-Newton are hardly
distinguishable, while we expect from figure 2 (right) the difference in 3D error
to be negligible beyond 200 views.

2 3 4 5 6 8 10 20 30 40 60 100 200
0

1

2

3

4

5

6

7

8

9

10

Number of views

R
ep

ro
je

ct
io

n
er

ro
r

(p
ix

el
s)

Algebraic
Gauss−Newton
Poly
3DTriangulation

2 3 4 5 6 8 10 20 30 40 60 100 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of views

3D
 E

rr
or

 (
m

et
er

s)

Algebraic
3DTriangulation
Gauss−Newton
Poly

Fig. 2. Reprojection error (left) and 3D error (right) versus the number of views.

The results presented above concern the stable camera setup. For the unstable
case, we obtained slightly lower reprojection errors, which is due to the fact that

the 3D model is less constrained, making the observations easier to “explain”.
However, as was expected, the 3D errors are higher by a factor of around 2.
The order of the different methods remains the same as in the stable case. We
noticed that incorporating the line constraint improves the accuracy compared
to 3DTriangulation to a much higher extent than in the stable case.

5.2 Real Data

We tested the four reconstruction algorithms on several real data sets. For two of
them, we show results. We used a Canny detector to retrieve salient edgels in the
images, and adjusted segments using robust least squares. Finally, we matched
the segments by hand between the images, except for the 387 frame ‘building’
sequence where automatic traking was used. The point on line correspondences
were manually given, again besides for the ‘building’ sequence for which corre-
lation based tracking was used. We reconstructed the 3D lines from the edgels
by the Maximum Likelihood method in [3].

The ‘Valbonne church’ sequence. We used 6 views from the popular ‘Valbonne
church’ image set. Some of them are shown on figure 3, together with the 6 input
segments and 13 inputs points. The cameras were obtained by Euclidean bundle
adjustment over a set of points [11]. The reprojection errors we obtained were:
Algebraic→ 1.37 pixels ; Poly→ 0.77 pixels ; Gauss-Newton→ 0.77 pixels.
Figure 4 (a) shows lines and points reprojected from the 3D reconstruction. The

Frame 1 Frame 3 Frame 6

Fig. 3. 3 out of the 6 images taken from the ‘Valbonne church’ sequence, overlaid with
6 matching segments and 13 corresponding points.

reprojection errors we obtained for the points shown on figure 4 (b) were:

Point Algebraic Poly Gauss-Newton
1 4.03 pixels 2.14 pixels 2.14 pixels
2 6.97 pixels 1.95 pixels 1.95 pixels
3 2.84 pixels 2.21 pixels 2.21 pixels
4 4.65 pixels 2.14 pixels 2.14 pixels

11

22
33

44
Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

1

2

3

4

(a) (b)

Fig. 4. Reprojected 3D lines and 3D points. (a) shows 4 different numbered points, for
which (b) shows a close up for all the 6 images. The squares are the original points, the
diamonds are the points reconstructed by Algebraic, and the circles are the points
reconstructed from Poly and Gauss-Newton (they are undistinguishable).

The ‘Building’ sequence. This sequence is a continuous video stream consisting
of 387 frames, showing a building imaged by a hand-held camera, see figure 5.
We reconstructed calibrated cameras by bundle adjustment from interest points
that were tracked using a correlation based tracker.

The segment we tracked is almost the only one that is visible throughout
the sequence, and thus allows to test our triangulation methods for a very large
number of views, namely 387. For the 7 points we selected, we obtained a mean
reprojection error of 4.57 pixels for Algebraic, of 3.45 pixels for Poly and
Gauss-Newton. Unconstrained triangulation gave a 2.90 pixels reprojection
error. These errors which are higher than for the two previous data sets, are
explained by the fact that there is non negligible radial distortion in the images,
as can be seen on figure 5.

Frame 1 Frame 387

Fig. 5. 2 out of the 387 images of the ‘building’ sequence, overlaid with the matching
segments and 7 corresponding points.

6 Conclusions

We proposed an algorithm for the optimal triangulation, in the Maximum Like-
lihood sense, of a point lying on a given 3D line. Several transformations of 3D
space and in the images lead to a degree-(3n-2) polynomial equation. An efficient
algorithm computes the real roots leading to feasible points only. Experimental
evaluation on simulated and real data show that the method can be applied to
large numbers of images, up to 387 in our experiments. The experiments were
done for many different real data sets, indoor and outdoor, small, medium and
large number of images, calibrated and uncalibrated reconstructions. Compari-
son of triangulated points with ground truth for the case of simulated data show
that using the line constraint greatly improves the accuracy of the reconstruc-
tion.

Acknowledgements. The first author thanks F. Schaffalitzky and A. Zisserman
for having provided the projection matrices of the ‘Valbonne church’ sequence.

References

1. F. S. Acton. Numerical Methods That Work. Washington: Mathematical Associa-
tion of America, 1990. Corrected edition.

2. A. Bartoli, M. Coquerelle, and P. Sturm. A framework for pencil-of-points
structure-from-motion. European Conference on Computer Vision, 2004.

3. A. Bartoli and P. Sturm. Multiple-view structure and motion from line correspon-
dences. International Conference on Computer Vision, 2003.

4. O. Chum, T. Pajdla, and P. Sturm. The geometric error for homographies. Com-
puter Vision and Image Understanding, 97(1):86–102, January 2005.

5. R. Hartley and F. Schaffalitzky. L∞ minimization in geometric reconstruction
problems. Conference on Computer Vision and Pattern Recognition, 2004.

6. R. Hartley and P. Sturm. Triangulation. Computer Vision and Image Understand-
ing, 68(2):146–157, 1997.

7. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2003. Second Edition.

8. Q.T. Luong and T. Vieville. Canonic representations for the geometries of multiple
projective views. Computer Vision and Image Understanding, 64(2):193–229, 1996.

9. D. Nistèr. Automatic Dense Reconstruction From Uncalibrated Video Sequences.
PhD thesis, Royal Institute of Technology, KTH, March 2001.

10. J. Oliensis. Exact two-image structure from motion. ieee Transactions on Pattern
Analysis and Machine Intelligence, 24(12):1618–1633, 2002.

11. F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets.
In Proceedings of the European Conference on Computer Vision, 2002.

12. C. Schmid and A. Zisserman. The geometry and matching of lines and curves over
multiple views. International Journal of Computer Vision, 40(3):199–234, 2000.

13. H. Stewénius, F. Schaffalitzky, and D. Nistér. How hard is 3-view triangulation
really? In Proceedings of the International Conference on Computer Vision, 2005.

