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IMAGE REGISTRATION BY COMBINING THIN-PLATE SPLINES
WITH A 3D MORPHABLE MODEL
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ABSTRACT

Registering images of a deforming surface is a well-studied
problem. It is common practice to describe the image defor-
mation fields with Thin-Plate Splines. This has the advantage
to involve small numbers of parameters, but has the draw-
back that the 3D surface is not explicitly reconstructed. We
propose an image deformation model combining Thin-Plate
Splines with 3D entities — a 3D control mesh and a camera —
overcoming the above mentioned drawback. An original so-
lution to the non-rigid image registration problem using this
model is proposed and demonstrated on simulated and real
data.

1. INTRODUCTION

Registering images of deformable surfaces is important for
tasks such as video augmentation, dense Stucture-From-
Motion, or deformation capture. This is a difficult problem
since the appearance of imaged surfaces varies due to several
phenomena such as camera pose, surface deformation, light-
ing and motion blur. Recovering a generic 3D surface, its de-
formations and the imaging sensor parameters from monocu-
lar video sequences is intrinsically ill-posed. For this reason,
most work avoid a full 3D model by directly using image-
based deformation models [1, 2, 3]. The obvious drawback
of these approaches is that they do not reconstruct the 3D sur-
face.

We propose a novel approach which jointly register the
images and computes the 3D surface. It has two main origi-
nalities. First, we propose a mixed 3D and image-based gen-
erative model combining Thin-Plate Splines (TPS) with a 3D
mesh and a camera. This model is dubbed 3D+TPS. It in-
duces a piecewise smooth image deformation field while al-
lowing one to reconstruct a 3D surface corresponding to each
image of the sequence. In order to deal with the ill-posedness
of the 3D surface and camera pose recovery, admissible sur-
face deformations are learnt as a 3D Morphable Model [2, 4].
Second, we extend a tracking method that was successfully
applied to twodimensional cases [1]. It consists in learning an
interaction matrix, modeling as a Jacobian matrix does, the

relationship between the image intensity variations and those
of the model parameters.

Our 3D+TPS model is described in §2 and image regis-
tration in §3. Experimental results are reported in §4 and our
conclusions are given in §5.

Notation. Vectors are typeset using bold fonts, e.g. q,
matrices using sans-serif fonts, e.g. E, and scalars in italics,
e.g. . Matrix and vector transposition in denoted as in AT.

Previous Work. The registration of images of deformable
objects using a single camera has received a growing attention
over the past decade. Many approaches have been proposed,
based on features or direct image intensity comparison.

Feature-based approaches locate image features on the
model, then solve for the registration. For example, a highly
efficient surface detection approach is proposed in [5]. The
authors use a 2D regularized surface mesh in conjunction with
a highly robust estimator to match feature points.

Direct approaches minimize an error expressed on image
intensities. Active Appearance Models [1] are 2D learnt gen-
erative models that can be fitted to images to track deforming
objects. They have been recently extended to 3D [6]. In [3],
Radial Basis Mappings represent the transformation.

2. A GENERATIVE IMAGE MODEL

We present the image-based and 3D approaches to modeling
image deformations, and then show how to combine them in
a single model, drawing on the strengths of both approaches.

2.1. The Image-Based Part: Thin-Plate Splines

A TPS represents a smooth image deformation field. It maps
a point x from the reference image 7, to the corresponding
point X’ = 7(x;q¢) = 7(x) in the target image Z;, see
e.g. [3] with:

T(xiq) = Ax+y + > wis(llx — ail),
j=1

where (A, y) represents a 2D affine transformation and the w
and the q; are respectively the coefficients and the centers of



the transformation. The kernel function is ¢(u) = p? log(i).
TPS are traditionally estimated from point correspondences,
see e.g. [7].

2.2. The 3D Part: Control Mesh and Camera

A piecewise planar 3D control mesh approximating the sur-
face is used along with a camera model to explain the defor-
mations in the images. So as to deal with the ill-posedness in-
herent to deforming surface recovery, a 3D Morphable Model
is used for the control mesh. The typical deformations are
learnt prior to image registration, using PCA (Principal Com-
ponent Analysis) on a collection of admissible meshes. More
details are given in §4.1. The 3D mesh Q; is thus expressed
in terms of a mean mesh E and [ eigenmeshes Ej, and pa-
rameterized by view-dependent configuration weights o, so
that a 3D vertex is given by:

I
Qi =E; + ZatkEkj~
k=1

The 3D mesh can be rotated and translated to account for
camera pose: Q;; = R(a;)Qu; + y:, where a; is a 3-
vector containing the 3 rotation angles. A projective camera
with fixed intrinsic parameters is used. Defining the vector
of parameters S| = (a],y/,a}), the projection is written
q: = II(S;), where q, contains the vertices of the imaged
mesh.

2.3. The 3D+TPS Model

The main idea for building the 3D+TPS model is that a TPS 7,
can be controlled by using as centers the projected vertices of
the 3D control mesh in the reference and target image ¢. The
registration error induced by the TPS will in turn constrain the
3D entities parameters. This tight coupling allows us to infer
3D information from images only.

The transfer function 7, induced by the 3D+TPS model
is used in two ways. First, in the interaction matrices learn-
ing stage, for generating images from locally perturbed model
parameters. Second, in the registration stage, for warping the
target image Z; onto the reference image. In the first case,
Tt_l is required for warping the reference image onto the per-
turbed image, while in the second case, 7; is required. We
propose an efficient approximation of 7~ for image warping
in §3.2.

To sum up, our 3D+TPS model has the advantage of ex-
plicitly involving a simple 3D surface mesh and camera pose
and produces a smooth deformation field.

3. REGISTERING IMAGES

3.1. The Error Function

A great variety of feature and intensity based error function
are proposed in the litterature. We adopt the direct approach

and minimize the sum of squares of intensity differences over
pixels /C which are Canny edge points in the reference image:

C(Se) =D (Tolx] =T, [r(x; 1(S))])*. (D

xeX

We work with edge points only because they carry the most
important texture information. Minimizing C is a nonlin-
ear least squares problem. One of the most convincing ap-
proaches in the litterature is [8]. The error criterion (1) is
linearized around Sy yielding:

0Sog = F -vect(dZ), 2)

where vect is the matrix vectorization operator. A closed-
formed expression is derived for matrix F using the inverse
Jacobian image. Cootes et al. [1] propose to estimate JF from
training images obtained by perturbing the generative model
parameters around Sy. The learnt matrix F is called the in-
teraction matrix.

3.2. Learning the Interaction Matrix

Perturbations are drawn randomly and selected if the maxi-
mum displacement of image vertices is below some threshold
~ that we typically choose as a few pixels. For each selected
perturbation, a synthetic image is generated in order to com-
pute the change in appearance, see figure 1. Given the gener-
ative model parameters S’ for the perturbed image, we form
the transfer function 7—! and warp the texture image:

T'x] = Tolr ™ (x;TI(S)))-

This function is implemented using a TPS interpolating the
vertices. To compute the TPS coefficients, we generate a reg-
ular grid where vertices play the role of centers for the TPS.
Thanks to the vertex correspondences between the reference
and the perturbed images, we lineary compute the TPS param-

eters and so the transfer function 7 1.

[1(So + 6S%)

771 (% [1(So + 6S7))

‘Warping
—_—

Iy Ii[x] = Io[r = (x; TI(So + 0S7))]

Fig. 1. Training images, needed to learn the interaction ma-
trices, are generated by perturbing the model parameters.



3.3. Registration of an Image Sequence

We proceed as follows. We initialize S; to any initial guess,
for example S; < S;_;. We warp the current image Z; to
7, using the mapping induced by S;, and compute the dif-
ference image 6Z; = Zy — 7. The local update §Sy is then
computed from (2) as §Sy = F - vect(dZ;). It must be com-
posed with the current S; in order to update it, as illustrated
on figure 2. This is a forward compositional strategy [9]. How
to compose the local mapping correction §Sy with S; is not
straightforward. We solve this problem by mapping the con-
trol mesh vertices from the reference to the target view giv-
ing q; = 7(II(Sp + 0Sp); S¢), and minimizing the discrep-
ancy between these vertices and the vertices predicted by the
model, i.e. the reprojection error, over S;:

min [l —TI(S)||”. 3

The minimization is solved using the nonlinear least squares
algorithm Levenberg-Marquardt.

As underlined above, the linear relationship (2) repre-
sents a local approximation of the cost function around Sy.
Obviously, the validity of the approximation is conditioned
upon the magnitude v (expressed in pixels), of the pertur-
bation used for generating the training images. In order to
increase the speed of convergence and widen the size of the
bassin of convergence, we learn not only one, but rather a se-
rie 71, ..., F, of interaction matrices, with a gradually lower
perturbation magnitude. This forms a coarse to fine set of
linear approximations to the error function, that we apply in
turn.

This approach is different from the one in [6], which pe-
nalizes a 2D Active Appearance Model, by jointly computing
a 3D Morphable Model. In the approach we propose, the 3D
model and the TPS are represented with the same set of pa-
rameters. One of the differences with [1] is that they assumed
that the domain where the linear relationship (2) is valid cov-
ers the whole set of registrations, thus avoiding the need of
the difficult composition step. This however not appears to be
a valid choice in practice.

4. EXPERIMENTAL RESULTS

4.1. The Control Mesh

Depending on the kind of surface that one may want to reg-
ister, different surface generation schemes are used. For in-
stance, the 3D Morphable Model proposed in [4] can be used
for faces. We are interested in registering images of surfaces
such as a rug or a sheet of paper, and follow [2] to generate
a set of training meshes by deforming a regular, flat mesh by
randomly changing the angles between the different facets.

Parameters Sy

3 Composition

a: = 7([1(So +3S0); [1(S¢))

Image ¢
Parameters S;

0Sy = F;01 |2 Local alignement

7(x; [1(81))

1 Warping

4 Update
min s, [, — [T(Se)|*

Fig. 2. Our image registration algorithm follows the forward
compositionnal strategy, see text for details.

4.2. Simulated Data

In order to assess the behaviour of our algorithm in differ-
ent conditions, we synthesized images under controlled con-
ditions. Given a reference image, we applied a random per-
turbation to our model such that the mean rigid displacement
of the pixels, caused by the relative displacement between the
camera and the control mesh, is dg, and the mean non-rigid
displacement of the pixels, caused by the deformation of the
control mesh, is d y g. We added gaussian noise, with variance
o % of the maximum greylevel value, to the warped image.
We varied each of these parameters independently, using the
following default values: dp = 5 pixels, dyr = 3 pixels,
o = 1% while measuring the residual error defined as the
mean of Euclidean distance between the vertices of the mesh
which generated the warped image, and those of the estimated
mesh. Figure 3 shows the results we obtained. We observed
on figure 3 (a) that when the magnitude of the perturbation
is greater than 20 pixels, the registration efficiency quickly
decreases. Those perturbation magnitudes have actually not
been learnt, causing the linear approximation being less accu-
rate. We expect the average displacement between consecu-
tive images to be far less than 20 pixels in real cases. Figure
3 (b) shows that the alignment error in pixels is approxima-
tively linear in the variance of the noise on image intensities.
In practice, one can expect the noise magnitude to be in the or-
der of 2% of the maximum grey value, making our algorithm
well-adapted to many real image sequences.

4.3. Real Data

We tested our algorithm on several image sequences. One of
them, consisting of 40 images see figure 5, is used to demon-
strate our approach. To initialize the tracker, we made the
assumption that the 3D mesh associated to the first image was
flat. Consequently, the initialisation problem is equivalent to
estimating the relative pose of a plane. Even if some images
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Fig. 3. Registration of simulated data. The results are median
over 100 trials. (a) shows the residual error when the magni-
tude of the perturbation d or dy g is varied. (b) shows the
residual error for varying noise on the image intensities.

of the sequence are blurred, our algorithm achieved successful
alignment. In some cases, however, the model drifted away
from its ideal position due to lack of constraints in the texture,
making some contour points sliding along their edge. Figure
4 shows the composition error and the registration error for
each frame. We observed that the composition error, the one
minimized in equation (3), is kept around a pixel, meaning
that the composition step is successful. The registration error,
proportional to equation (1), and expressed in image intensity
unit, is kept around typical values, indicating that our model
reliably fits the images. The algorithm has been implemented
in Matlab, the registation is done at about 7s per image on a
pentium IV 3GHz.
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Fig. 4. The composition (a) and the registration (b) errors for
the sequence shown in figure (5)

5. CONCLUSIONS

We proposed a novel generic approach to image registration
based on a mixed 3D and image-based model. Combining
TPS with a 3D mesh and a camera yields smooth image de-
formation fields while allowing one to recover a 3D surface
for each image of a sequence. We plan to extend the method
to deal with occlusions, by exploiting the reconstructed 3D
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Fig. 5. (Top left) the reference image and his associated mesh.
(Next) registration of an image sequence, the projected 3D
mesh is shown in white. (Bottom right) the recovered 3D
mesh for the last image.

surface to predict self-occlusions.
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