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Using Subdivision Surfaces for 3–D
Reconstruction from Noisy Data

Slobodan Ilíc
Deutsche Telekom Laboratories

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
Slobodan.Ilic@telekom.de

Abstract

In this work, we developed a method which effectively uses subdivision sur-
faces to fit deformable models to noisy 3–D data. The subdivision models
provide a compact low dimensional representation of model parameter space.
They also allow a free form deformation of the objects of arbitrary geometry.
These two properties make them ideal for fitting deformable models to noisy
data.

We tested our approach on stereo data acquired from uncalibrated monoc-
ular video sequences, then on data acquired from low qualitylaser scans, and
compared them. We have shown that it can be successfully usedto recon-
struct human faces as well as the other 3D objects of arbitrary geometry.

1 Introduction

The subdivision surfaces are very popular approach for smooth surface representation.
They has been extensively used in Computer Graphics for geometric modeling, and com-
puter animation [15, 12, 4]. The problem of 3D reconstruction from unorganized data
points using the subdivision surfaces has also been addressed by the graphics commu-
nity [7, 9, 11, 14, 2, 8]. Those methods use noise free data produced by high quality laser
scanners. In Computer Vision the 3D shapes were extracted from the images which in-
volve very noisy information. Since this problem is highly under-constrained, the generic
models were extensively used [6, 13, 1] to constrain the solution of the reconstruction
task. The main challenge is to find a suitable model parameterization where the number
of parameters is small compared to the overall dimensionality of the problem. On the
other hand the parameterization has to support a full free form deformation of the tar-
get surface. The subdivision surfaces naturally possess those properties. They produce a
smooth mesh from a coarse one as shown in Fig. 2. The initial coarse mesh,control mesh,
is a very rough representation of the object of interest. It can be of arbitrary topology, and
subdivision can be appliedN times to it. The final smooth mesh,model mesh, entirely
depends on the initial control mesh. Its shape can be modifiedin a free form manner.
Also, the number of control mesh vertices is far smaller thanthe number of actual model
vertices. In this paper we develop a method which relays on subdivision surface models
to reconstruct 3D objects from noisy data shown in Fig. 1 as opposed to clean laser scan
data used in Computer Graphics. We are not aware of any other method which uses sub-
division surfaces for 3D shape recovery from nosy data. Besides valuable properties such
as free form deformation and low dimensionality, subdivision models, allowed us to use
the initial control mesh as a regularizer in our optimization framework.
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(a)

(b)

Figure 1: Reconstruction of 3D objects from noisy data: (a) 3–D data clouds correspond-
ing to stereo and laser scans respectively. First two imageson the left side are stereo
data clouds obtained from uncalibrated, Fig 5, and calibrated, Fig 6, image sequences
respectively, while the other two correspond to the laser scans.(b) Reconstruction results
obtained by fitting generic subdivision models to the data from (a). For faces a generic
face model was used, while for the frog model is extracted from the scan.

We chose to demonstrate and evaluate our technique mainly inthe context of face-
modeling from uncalibrated and calibrated images sequences and from the laser scan
data. We compare the recovered models from images to those ofthe laser scans in order
to verify the quality of the reconstruction. To demonstratethat our method can be applied
to objects of different geometry we reconstructed a ceramicstatue of the frog from its
laser scan. The data we are dealing with are noisy and incompletge as it can be seen in
Fig 1(a), and, yet, we obtained realistic models, whose geometry is correct, as depicted in
Fig. 1(b).

According to these experiments we argue that the approach isgeneric and can be
applied to any task for which deformable facetized models exist. We therefore view our
contribution as the integration of a powerful shape representation technique into a robust
least-squares framework.

In the remainder of the paper, we first describe subdivision parameterization in more
details. We then introduce our least-squares optimizationframework and, finally, present
results using laser scanned data, calibrated and uncalibrated image sequences.

2 Subdivision Surface Parameterization

The key property of subdivision models is that the smooth high resolution mesh models
are represented by very coarse initial control mesh. The control mesh consists of rela-
tively small number of vertices and completely controls theshape of the smooth mesh
model. The model mesh is obtained by subsequent subdivisionof the initial coarse mesh
as depicted in Fig. 2.
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(a)

(b)

Figure 2: Generic models and their subdivisions. (a) The first image on the left corre-
sponds to the average face model of [1]. The next image shows the actual control mesh
we use. It is obtained by reducing the average face model for 98.8% decreasing number
of vertices from 53235 to only 773. The following images represent model meshes cor-
responding to one and two levels of subdivision. The last image is just shaded version
of two times subdivided control mesh. (b) Now, the first imageon the left corresponds
to the laser scan of the ceramic frog statue. Following images represent control mesh,
model mesh with one and two levels of subdivision and two times subdivided control
mesh shown as shaded.

Our method requires a generic model of the object we want to reconstruct. To quickly
produce those models we take advantage of the property of thesubdivision that it can be
applied to meshes of arbitrary geometry and topology. Thus,the generic control mesh can
be quickly extracted from already existing high quality generic models or directly form
the data as discussed in Sec. 4 and depicted by Fig. 2.

In the reminder of this section we will review Loop subdivision schema for one level
of subdivision and discuss the hierarchy of subdivision if multiple levels of subdivision
are applied.

2.1 Loop Subdivision

The Loop scheme is a simple approximating face-split schemeapplicable only to trian-
gular meshes proposed by Charles Loop [10]. The edge splitting producesodd vertices
while vertex splitting produceseven vertices. The new vertices areweighted sumof con-
trol point neighbors from previous level of subdivision. The weights define subdivision
rules and differ for interior and boundary vertices. These rules can be illustrated by a local
masks called subdivision masks as shown in Fig. 3.

Because of well established rules, the computation of the coefficients and dependen-
cies between control and model vertices is straightforward. The coefficients can be as-
sembled into a subdivision matrix. Therefore we can parameterize our subdivided mesh
by control mesh as matrix multiplicationVmod

m×1 = Sm×nVctrl
n×1, whereSm×n is a subdivision

matrix withm being the number of vertices of subdivided mesh andn number of vertices
of control mesh.
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Figure 4: Schematic representation of the dependency graph. Three levels of subdivision
are depicted, because of the simplicity, for a single triangle.

To parameterize the model when more levels of subdivision are used we apply a hi-
erarchy of subdivision. In that case we do the following matrix multiplication Vk+1 =
SkSk−1 · · ·S1V1. In theory this is a compact way of representing subdivisionoperation,
but in practice multiplication of huge matrices requires significant computation resources
what is impractical. In order to avoid matrix multiplication we have to find out which ver-
tices at any subdivision level are influenced by selected control vertex. We can compute
these dependencies by using graph data structure. For that purpose we build adependency
graphof Fig. 4. Each layer of this graph represents a subdivision level and each edge rep-
resents an influence relation to which we attach weight coefficient from the subdivision
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masks. In order to find out which vertices are influenced by theselected control vertex
we should propagate all weights at each level. We recursively traverse the graph to find
the influenced vertices. Note that this relation is permanent and has to be computed once
in the beginning.

3 Optimization Framework for Subdivision Surface
Fitting

In this section, we introduce the framework we have developed to fit subdivision surfaces
to noisy image data. We fitmesh modelssuch as the ones of Fig. 2 corresponding to
several levels of subdivision. Our goal is to deform the surface—without changing its
topology—so that it conforms to the image data. The deformation is controled by the
control mesh, such as one of Fig. 2. In this work data is made of 3–D points computed us-
ing stereo or laser scan data. In standard least-squares fashion, for each point observation
xi , we write an observation equation of the formd(xi,S) = εi , whereS is a state vector
corresponding to the vertices of the control mesh which defines the shape of the surface,
d is the distance from the point to the surface andεi is the residual error measuring the
deviation of the data from the model. In practiced(xi ,S) is taken to be the orthonormal
distance ofxi to the closest surface triangulation facet. This results innobsobservation
equations forming a vector of residualsF(S) = [ε1, ...,εi , ...]

T
1≤i≤nobsthat we minimize in

the least squares sense by minizing its square norm:

χ2 =
1
2

F(S)TWF(S) =
nobs

∑
i=1

wid(xi ,S)2
. (1)

Because some of the observations, may be spurious, we weigh them to eliminate
outliers. Weighting is done as the preprocessing step, before the real fitting is started.
Observation weightwi are taken to be inversely proportional to the initial distanced(xi ,S)
of the data point to the model surface. More specifically we computewi weight of theobsi
as:

wi = exp(
di

di
),1≤ i ≤ nobs (2)

wheredi is the median value of thed(xi,S). In effect, we used(xi ,S) as an estimate
of the noise variance and we discount the influence of points that are more than a few
standard deviations away. Because of the non-differentiability of the distance function we
recompute the point to facet attachments before every minimization procedure.

In theory we could take the parameter vectorS to be the vector of allx,y, andz
coordinates of the model mesh. However, because the data we are dealing with are very
noisy and the number of parameters is huge we found that the fitting process to be very
brittle since we deal with very ill-conditioned problem.

3.1 Subdivision parametrization

We therefore use verticescontrol meshsuch as the one of Fig. 2 to be our state vector.
More precisely, in our scheme, we take the state vectorSto be the vector of 3-D displace-
ments of the control mesh vertices, which is very natural using the subdivision formalism.

Proceedings of the Workshop on Image Registration in Deformable Environments, Edinburgh, UK, Sept. 2006

Page 5



For each vertex on the model mesh, obtained by several subdivisions of the initial control
mesh, we extract the control vertices and their weights influencing those model vetices
using dependency graph of Fig. 4. This allows us to express displacement of every model
vertexi afterk subdivisions as the weighted linear combination of displacements of con-
trol points from previous subdivision levels which influence them as:

△Vk
i = Vnk

i −Vk
i =

Nck−1

∑
ck−1=1

Nck−2

∑
ck−2=1

· · ·

Nc0

∑
c0=1

wck−1wck−2 · · ·wc0 △V0
c0

. (3)

whereVnk
i is the new position after the deformation andVk

i is the initial position of the
ith model vertex obtained afterk subdivisions. Indicesck− j count number of infulencing
control verteces on the previous subdivision levelk− j, j = n,0 wheren is the number of
subdivision levels. Equally,Nck− j , j = n,0 is the actual number of control vertices on the
subdivision levelk− j influencing the position of theith model vetrex. Weightswck− j are
associated weights from Loop’s subdivision masks of the control vetices on the previous
subdivision level.

(a)

(b)

(c)

(d)

Figure 5: Reconstruction from an uncalibrated video sequences. (a) Three images cho-
sen from two short video sequence where the total number of used images is 15 and 6
respectively. (b) Stereo data clouds shown in the same projection as the input images. (c)
Reconstructed faces shown as shaded models. Note the figureswhere we did not use regu-
larization during the fitting. The amount of noise seriouslyinfluenced reconstruction. (d)
Texture-mapped version of the recovered 3–D models viewed from different view points.
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(a)

(b)

Figure 6: Reconstruction from an calibrated video sequence. (a) Five images chosen
from the calibrated video sequence, courtesy of IGP, ETH Zürich. (b) Reconstructed face
shown as shaded model overlapped on the original image in thesame perspective in order
to highlight the quality of the reconstruction.

3.2 Regularization

Because there are both noise and potential gaps in the image data, we found it necessary
to introduce a regularization term. Since we start with a generic model, we expect the
deformation between the initial shape and the original one to be smooth. This can be
effectively enforced by preventing deformations at neighboring vertices of the control
mesh to be too different. If the control points formed a continuous surface, a natural
choice would, therefore, be to take this term to be the sum of the square of the derivatives
of the△V0

i displacements across the initial control mesh. By treatingits facets asC0

finite elements, we can approximate regularization energyED as the quadratic form

ED = λSTKS= λ
(

∆t
xK∆x + ∆t

yK∆y + ∆t
zK∆z

)

(4)

whereλ is small regularization constant,K is a very sparse stiffness matrix,S is a state
vector containing displacements of along thex,y or z coordinates at each point of this
control surface.

4 Results

We demonstrate and evaluate our technique mainly in the context of face modeling since
many tools for that are available to us. We show its flexibility also by using it to fit a
generic model of the frog to the noisy scan data.

4.1 Reconstruction from Image Sequences

We recover faces from uncalibrated sequances of Fig. 5(a) and calibrated one of Fig. 6(a)
sequences. In the first row of Fig. 5(a) we choose to show threeimages from two different
uncalibrated video sequences. In both cases, we had no calibration information about the
camera or its motion. We therefore used a model-driven bundle-adjustment technique [6]
to compute the relative motion and, thus, register the images. We then used the tech-
nique [5] to derive the clouds of 3–D points depicted by Fig. 5(b). Because we used fewer
images and an automated self-calibration procedure as opposed to a sophisticated manual
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(a) (b) (c) (d) (e)
Figure 7: Reconstruction from an laser scan data and comparison with the reconstruction
of the same subjects obtained from the images. (a,b) Laser scan data clouds of two persons
from Fig 5 shown in different positions. (c,d) Reconstructed faces shown as shaded model.
(e) Quantitative evaluation of the facial reconstructionsform images, where the models
reconstructed from the scans are used as a ground truth. For the subjects of Fig. 5, we
show the proportion of the 3–D vertices in the models reconstructed from the laser scans
that are within a given distance of the reconstructed model from the images, after they
have been aligned using an affine transformation.

one, the resulting cloud of 3–D points is much noisier and harder to fit. Shaded models
obtained after the fitting are depicted on Fig. 5(c). These models can also be reused to
re-synthesize textured images such as the ones of Fig. 5(d).The initialization is done by
finding an affine transformation between the model face and the data cloud according to 5
manually provided points on the — top of the nose and corners of the eyes and the mouth
— through the least-square minimization.

We also illustrate the effectiveness of our approach using relatively clean stereo data.
We use the sequence of forty 512x512 calibrated images wheresome are depicted by the
first row of Fig. 6(a). The reconstructed face is then overlapped on the images using the
same projection matrices as the once producing the images. Note that the reconstruction
appears to be precise as shown in Fig. 6(b).

4.2 Reconstruction from Laser Scan Data

To evaluate our method and quantify the quality of the reconstruction from images, we
have used a Minoltatm laser scanner to acquire data of the subjects of Figs. 7(c,d). Those
results were obtained by fitting the generic model of Fig. 2(a). The same model was
used for reconstruction from images. Since the laser data are cleaner, but, yet, not per-
fect, the reconstruction seems to be of greater precision. Because of that we used them
as the ground truth and compared the image-based reconstructions to them. We there-
fore compute an affine transform that brings the reconstructed image-based model to the
scan-based model. This is done by least-squares minimization where we look for the
affine transformation which brings two models together. This is correct since the intrinsic
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(a)

(b)

Figure 8: Reconstruction of the laser scanned frog statue. (a) Laser scan data shown
in different position indicating holes and ambiguous partscoming from stitching of the
individual scans. (b) Reconstructed frog model shown in similar positions as the scan.
Note, that the holes are filled and the noise is smoothed out.

camera parameters are given the approximate values during bundle-adjustment procedure.
This resulted in stereo reconstruction precise up to the affine transformation. In Fig. 7(e),
we plot for both subjects, the proportion of the 3–D verticesof the laser-based recovered
model that are within a given distance of the image-based reconstructed model, after it
has been deformed using the affine transform discussed above. The median distances
are 0.833858mmand 0.815620mmrespectively. Comparing the reconstruction from im-
ages to the original laser scan data gives the increase of themedian error to 1.94mmand
2.28mmrespectively. This is normal since the original laser scan data are noisy in contrast
to the model fitted to it and used as ground truth in Fig 7.

Our scanner has a theoretical precision of around 0.3mm. However, this does not take
into account some of the artifacts it produces, such as thosethat occur when stitching
together several scans of the target object seen from different viewpoints. A median dis-
tance between two independent reconstructions being under1.0mm is therefore a good
indication that our results are consistent with each other.Finally, we show the result of
reconstructing the frog from the noisy laser scan. The frog statue is made of smooth ce-
ramic material. Since our scanner is static it required the object to be turned and individual
scans to be stitched. The specularities on the eyes producedholes in the scan. As it can be
seen in the Fig. 8(a) the scan has quite a lot of ambiguities and missing parts what made
it challenging for reconstruction. The results we obtainedare smooth. The ambiguities,
such as one back on the left leg are smoothed and the holes on the eyes are filled as shown
in Fig. 8(b). In this way we managed to significantly improve the reconstruction from the
scan, by simply extracting the model from the scan and then fitting it back to the original
data.

5 Conclusion

In this work, we proposed to use the subdivision surfaces to fit generic surface models to
noisy 3–D image and laser scan data. We demonstrated the effectiveness and robustness
of our technique in the context of face modeling where the generic model was available.
We also showed that, in fact, we can model other complex shape, such as frog statue, for

Proceedings of the Workshop on Image Registration in Deformable Environments, Edinburgh, UK, Sept. 2006

Page 9



which a deformable triangulated model exists.
In future work we intend to investigate the possibility of using reverse subdivision

to produce even better generic models out of the available hight quality models. We
also intend to investigate the use of such models in the context of model-based bundle
adjustment where both shape and camera parameters can be extracted simultaneously
from image feature correspondences.
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Abstract

We are interested in reconstructing paper-like objects from images. These
objects are modeled by developable surfaces and are mathematically well-
understood. They are difficult to minimally parameterize since the number
of meaningful parameters is intrinsically dependent on the actual surface.

We propose a quasi-minimal model which self-adapts its set of param-
eters to the actual surface. More precisly, a varying number of rules is
used jointly with smoothness constraints to bend a flat mesh, generating the
sought-after surface.

We propose an algorithm for fitting this model to multiple images by min-
imizing the point-based reprojection error. Experimental results are reported,
showing that our model fits real images accurately.

1 Introduction
The behaviour of the real world depends on numerous physical phenomena. This makes
general-purpose computer vision a tricky task and motivates the need for prior models of
the observed structures, e.g. [1, 4, 8, 10]. For instance, a 3D morphable face model makes
it possible to recover camera pose from a single face image [1].

This paper focuses on paper-like surfaces. More precisly, we consider paper as an un-
stretchable surface with everywhere vanishing Gaussian curvature. This holds if smooth
deformations only occurs. This is mathematically modeled by developable surfaces, a
subset of ruled surfaces. Broadly speaking, there are two modeling approaches. The first
one is to describe a continous surface by partial differential equations, parametric or im-
plicit functions. The second one is to describe a mesh representing the surface with as
few parameters as possible. The number of parameters must thus adapts to the actual
surface. We follow the second approach since we target at computationally cheap fitting
algorithms for our model.

One of the properties of paper-like surfaces is inextensibility. This is a nonlinear
constraint which is not obvious to apply to meshes, as Figure 1 illustrates. For instance,
Salzmann et al. [10] use constant length edges to generate training meshes from which a
generating basis is learnt using Principal Component Analysis. The nonlinear constraints
are re-injected as a penalty in the eventual fitting cost function. The main drawback of this
approach is that the model does not guarantee that the generated surface is developable.
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Figure 1: Inextensibility and approximation: A one dimensional example. The curve C

represents an inextensible object, A and B are two points lying on it. Linearly approximat-
ing the arc (AB) leads to the segment AB. When C bowes, although the arc length (AB)
remains constant, the length of the segment AB changes. A constant length edge model is
thus not a valid parameterization for inextensible surfaces.

We propose a model generating a 3D mesh satisfying the above mentioned proper-
ties, namely inextensibility and vanishing Gaussian curvature at any point of the mesh.
The model is based on bending a flat surface around rules together with an interpolation
process leading to a smooth surface mesh. We only assume a convex object shape. The
number of parameters lies very close to the minimal one. This model is suitable for image
fitting applications and we describe an algorithm to recover the deformations and rigid
pose of a paper-like object from multiple views.

Previous work. The concept of developable surfaces is usually chosen as the basic mod-
eling tool. Most work uses a continuous representation of the surface [3, 4, 7, 9]. They
are thus not well adapted for fast image fitting, except [4] which initializes the model
parameters with a discrete system of rules. [11] constructs developable surfaces by parti-
tioning a surface and curving each piece along a generalized cone defined by its apex and
a cross-section spline. This parameterization is limited to piecewise generalized cones.
[6] simulates bending and creasing of virtual paper by applying external forces on the sur-
face. This model has a lot of parameters since external forces are defined for each vertex
of the mesh. A method for undistorting paper is proposed in [8]. The generated surface is
not developable due to a relaxation process that does not preserve inextensibility.

Roadmap. We present our model in §2 and its construction from multiple images in
§3. Experimental results on image sequences are reported in §4. Finally, §5 gives our
conclusions and some further research avenues.

2 A Quasi-Minimal Model
We present our model and its parameterization. The idea is to fold a flat mesh that we
assume rectangular for sake of simplicity. We underline however that our model deals
with any convex shape for the boundary.

2.1 Principle
Generating a surface mesh using our model has two main steps. First, we bend a flat mesh
around ‘guiding rules’. Second, we smooth its curvature using interpolated ‘extra rules’,
as illustrated in Figure 2. The resulting mesh is piecewise planar. It is guaranteed to be
admissible, in the sense that the underlying surface is developable.
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Step 1: Bending with guiding rules. A ruled surface is defined by a differentiable
space curve α(t) and a vector field β (t), with t in some interval I, see e.g. [11]. Points on
the surface are given by:

X(t,v) = α(t)+ vβ (t) , t ∈ I v ∈ R β (t) 6= 0. (1)

The surface is actually generated by the line pencil (α(t),β (t)). This formulation is
continuous.

Since our surface is represented by a mesh, we only need a discrete system of rules
(sometimes named generatrices), at most one per vertex of the mesh. Keeping all possible
rules leads to a model with a high number of parameters, most of them being redundant
due to surface smoothness. In order to reduce the number of parameters, we use a subset
of rules: The guiding rules. Figure 2 (left) shows the flat mesh representing the surface
with the selected rules. We associate an angle to each guiding rule and bend the mesh
along the guiding rules accordingly. Figure 2 (middle) shows the resulting guiding mesh.
The rules are choosen such that they do not to intersect each other, which corresponds to
the modeling of smooth deformations.

Step 2: Smoothing with extra rules. The second step is to smooth the guiding mesh.
To this end, we hallucinate extra rules from the guiding ones, thus keeping constant the
number of model parameters. This is done by interpolating the guiding rules. The folding
angles are then spread between the guiding rules and the extra rules, details are given in
the next section. Figure 2 (right) shows the resulting mesh.

Flat mesh Guiding mesh Smoothed mesh

Figure 2: Surface mesh generation. (left) Flat mesh with guiding rules (in black). (middle)
Mesh folded along the guiding rules. (right) Mesh folded along the guiding and extra
rules.

2.2 Parameterization
A guiding rule i is defined by its two intersection points Ai and Bi with the mesh boundary.
Points Ai and Bi thus have a single degree of freedom each. A minimal parameterization
is their arc length along the boundary space curve. Since the rules do not intersect each
other on the mesh, we define a ‘starting point’ Ps and an ‘ending point’ Pe such that all
rules can be sorted from Ps to Pe, as shown on Figure 3 (left). Points Ai (resp. Bi) thus
have an increasing (resp. decreasing) arc length parameter. The set of guiding rules
is parameterized by two vectors sA and sB which contain the arc lengths of points Ai
and Bi respectively. The non intersecting rules constraint is easily imposed by enforcing
monotonicity on vectors sA and sB.

Proceedings of the Workshop on Image Registration in Deformable Environments, Edinburgh, UK, Sept. 2006

Page 13



As explained above, the model is smoothed by adding extra rules. This is done by
interpolating the guiding rules. Two piecewise cubic Hermite interpolating polynomials
are computed from the two vectors sA and sB. They are called fA and fB. This interpolation
function has the property of preserving monotonicity over ranges, as required. Figure 3
(right) shows these functions and the control points sA and sB. The bending angles are
interpolated with a spline and rescaled to account for the increasing number of rules.
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Figure 3: (left) The generated mesh with the control points (Ai,Bi). (right) Arc lengths sA
and sB of the control points with the interpolating functions fA and fB.

Table 1 summarizes the model parameters. The model has 4 + S + 3n parameters, S
being the number of parameters describing the mesh boundary (for instance, width and
height in the case of a rectangular shape) and n being the number of guiding rules.

Parameters Description Size
n number of guiding rules 1
ne number of extra rules 1
S mesh boundary parameters S
Ps arc length of the ‘starting point’ 1
Pe arc length of the ‘ending point’ 1
sA arc lengths of the first point defining the guiding rules n
sB arc lengths of the second point defining the guiding rules n
θ bending angles along the guiding rules n

Table 1: Summary of the model parameters. (top) Discrete parameters (kept fixed during
nonlinear refinement step). (bottom) Continuous parameters.

The deformation is parameterized by the guiding rules. Those are sorted from the
‘starting point’ to the ‘ending point’, making wavy the deformation.

We define a directrix as a curve on the surface that crosses some rules once. A min-
imal comprehensive set of directrices has the least possible number of directrices such
that each rule is crossed by exactly one directrix. It is obvious that this set is reduced to
a single curve for our model, linking the ‘starting point’ to the ‘ending point’. Conse-
quenctly surfaces requiring more than one directrix can not be generated by our model,
as for example a sheet with the four corners pulled up. The model however shows to be
experimentally very effective.
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3 A Multiple View Fitting Algorithm
Our goal is to fit the model to multiple images. We assume that a 3D point set and
camera pose have been reconstructed from image point features by some means. We use
the reprojection error as an optimization criterion. As is usual for dealing with such a
nonlinear criterion, we compute a suboptimal initialization that we iteratively refine.

3.1 Initialization
We begin by reconstructing a surface interpolating the given 3D points. A rule detection
process is then used to infer our model parameters.

Step 1: Interpolating surface reconstruction. Details about how the 3D points are
reconstructed are given in §4.1. The interpolating surface is represented by a 2D to 1D
Thin-Plate Spline function [2], mapping some planar parameterization of the surface to
point height. Defining a regular grid on the image thus allows us to infer the points on the
3D surface. Figure 4 and Figure 6 show two examples.

Step 2: Model initialization by rule detection. The model is initialized from the 3D
surface. The side length is choosen as the size of the 3D mesh.

Guiding rules must be defined on the surface. This set of n rules must represent the
surface as accurately as possible. In [3] an algorithm is proposed to find a rule on a
given surface. It is a method that tries rules on several points on the surface with varying
direction. We use it to compute rules along sites lying on the diagonal, the horizontal and
the vertical axes. These sites are visible on Figure 4.

Figure 4: Model initialization. (left) Reconstructed 3D points and the interpolating sur-
face. (right) Points where rules are sought.

The rules are described by the arc length of their intersection points with the mesh
boundary. The two arc lengths defining a rule i can be interpreted as a point Ri in R

2,
as shown in Figure 5 . Our goal is now to find the vectors sA and sB which define the
guiding rules, such that their interpolating functions fA and fB, defining the parametric
curve ( fA, fB) in R

2, describe the rules. We thus compute sA and sB such that the distance
between the curve ( fA, fB) and the points Ri is minimized. We fix the number of guiding
rules by hand, but a model selection approach could be used to determine it from the set
of rules.

This gives the n guiding rules. The bending angle vector θ is obtain from the 3D
surface by assuming it is planar between two consecutive rules. The initial suboptimal
model we obtain is shown on Figure 6.
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Figure 5: The points in gray represent the detected rules. The black curve is the parametric
curve ( fA, fB) and the black points are the estimated controls points that define the initial
rules.

3.2 Refinement
The reprojection error describes how well the model fits the actual data, namely the image
feature points. We thus introduce latent variables representing the position of each point
onto the modeled mesh with two parameters. Let L be the number of images and N the
number of points, the reprojection error is:

e =
N

∑
i=1

L

∑
j=1

(m j,i −Π(C j,M(S,xi,yi)))
2
. (2)

In this equation, m j,i is the i-th feature point in image j, Π(C,M) projects the 3D point M
in the camera C and M(S,xi,yi) is a parameterization of the points on the surface, with S
the surface parameters. The points on the surface are initialized by computing each (xi,yi)
such that their individual reprojection error is minimized, using initial surface model.

To minimize the reprojection error, the following parameters are tuned: The parame-
ters of the model (the number of guiding and extra rules is fixed), see Table 1, the pose of
the model (rotation and translation of the generated surface) and the 3D point parameters.

The Levenberg-Marquardt algorithm [5] is used to minimize the reprojection error.
Upon convergence, the solution is the Maximum Likelihood Estimate under the assump-
tion of an additive i.i.d. Gaussian noise on the image feature points.

4 Experimental Results
We demonstrate the representational power of our fitting algorithm on several sets of
images. First, we present the computation of a 3D point cloud. Second, we show the
results for the three objects we modeled. Third, we propose some augmented reality
illustrations.

4.1 3D Points Reconstruction
The 3D point cloud is generated by triangulating point correspondences between several
views. These correspondences are obtained while recovering camera calibration and pose
using Structure-from-Motion [5]. Points off the object of interest and outliers are removed
by hand. Figure 4 shows an example of such a reconstruction.
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Figure 6: (top) 3D surfaces. (bottom) Reprojection into images. (left) Interpolated sur-
face. (middle) Initialized model. (right) Refined model.

4.2 Model Fitting
Even if our algorithm deals with several views, the following results have been performed
with two views. Figure 6 and Figure 7 show the 3D surfaces, their reprojection into im-
ages and the reprojection errors distribution for the paper sequence after the three main
steps of our algorithm: The reconstruction (left), the initialization (middle) and the refine-
ment (right). Although the reconstruction has the lowest reprojection error, the associated
surface is not satisfying, since it is not enough regular and does not fit the borders of the
sheet. The initialization makes the model more regular, but is not enough accurate to fit
the boundary of the paper, so that important reprojection errors remain. At last, the refined
model is visually acceptable and its reprojection error is very close to the reconstructed
one. It means that our model accurately fits the image points, while being governed by
a much lower number of parameters than the set of independant 3D points has. More-
over the reprojection error significantly decreases thanks to the refinement step, which
validates relevance of this step.
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Figure 7: Reprojection errors distribution for the images shown in Figure 6. (left) 3D
point cloud. (middle) Initial model. (right) Refined model.

We have tested our method on images of a poster. The results are shown in Figures 8.
The reprojections of the computed model are acceptable: The reprojection error of the
reconstruction is 0.35 pixels and the one for the refined model is 0.59 pixels.

At last, we fit the model to images of a rug. Such an object does not really sat-
isfy the constraints of developable surfaces. Nevertheless, it is stiff enough to be well-
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Figure 8: Poster mesh reconstruction. (left) Estimated Model. (middle) Reprojection onto
the first image. (right) Reprojection onto the second image.

approximated by our model. The results are thus slightly less accurate than for the paper
and the poster: The reprojection error of the reconstruction step is 0.34 pixels and the one
of the final model is 1.36 pixels. Figure 9 shows the reprojection of the model onto the
images used for the reconstruction.

Figure 9: Rug mesh reconstruction. (left) Estimated Model. (middle) Reprojection onto
the first image. (right) Reprojection onto the second image.

4.3 Applications
We demonstrate the proposed model and fitting algorithm by unwarping and augmenting
images, as shown on Figures 10 and 11. Knowing where the paper is projected onto the
images allows us to change the texture map or to overlay some pictures. The augmenting
process is described in Table 2. Since we estimate the incoming lighting, the augmented
images look realistic.

AUGMENTING IMAGES

1. Run the proposed algorithm to fit the model to images

2. Unwarp one of the images chosen as the reference one to get the texture map

3. Augment the texture map

4. For each image automatically do

4.1 Estimate lighting change from the reference image

4.2 Transfer the augmented texture map

Table 2: Overview of the augmenting process.
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Figure 10: Some applications. (left) Unwarped texture map of the paper. (middle) Chang-
ing the whole texture map. (right) Augmented paper.

Figure 11: Augmentation. (left) Augmented unwarped texture map. (middle) Augmented
texture map in the first image. (right) Synthetically generated view of the paper with the
augmented texture map.

5 Conclusion and Future Work
This paper describes a quasi-minimal model for paper-like objects and its estimation from
multiple images. Although there are few parameters, the generated surface is a good
approximation of smoothly deformed paper-like objects. This is demonstrated on real
image sequences thanks to a fitting algorithm which initializes the model first and then
refines it in a bundle adjustment manner.

There are many possibilities for further research. The proposed model could be em-
bedded in a monocular tracking framework or used to generate sample meshes for a
learning-based model construction.

We currently work on alleviating the model limitations mentioned earlier, namely
handling a general boundary shape and the comprehensive set of feasible deformation.
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Abstract

We describe a multiscale representation for diffeomorphisms. Our rep-
resentation allows synthesis – e.g. generate random diffeomorphisms – and
analysis – e.g. identify the scales and locations where the diffeomorphism
has behavior that would be unpredictable based on its coarse-scale behav-
ior. Our representation has a forward transform with coefficients that are
organized dyadically, in a way that is familiar from wavelet analysis, and an
inverse transform that is nonlinear, and generates true diffeomorphisms when
the underlying object satisfies a certain sampling condition.

Although both the forward and inverse transforms are nonlinear, it is pos-
sible to operate on the coefficients in the same way that one operates on
wavelet coefficients; they can be shrunk towards zero, quantized, and can
be randomized; such procedures are useful for denoising, compressing, and
stochastic simulation. Observations include: (a) if a template image with
edges is morphed by a complex but known transform, compressing the mor-
phism is far more effective than compressing the morphed image. (b) One
can create random morphisms with and desired self-similarity exponents by
inverse transforming scaled Gaussian noise. (c) Denoising morpishms in a
sense smooths the underlying level sets of the object.

1 Introduction
Temporal or spacial deformation is a common underlying source of variability in many
signal and image analysis problems. This deformation may be the result of measurement
distortions, as in the case of satellite imagery [1] and GC/MS data [12] or the deformation
may be the actual phenomenon of study [9, 11]. In the first case, the deformation is seen
as a nuisance and must be removed before further analysis. In the second case, the goal
is not the removal of the deformation but rather the extraction of the deformation. Once
the deformation has been extracted, understanding the phenomenon at hand consists of
analyzing the deformation itself. This paper presents a novel representation for the defor-
mation after extraction that takes advantage of smoothness and multiscale organization to
both ease the computational burden of analysis and reveal geometric structure.
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For the problem of deformation analysis we will limit ourselves to deformations that
are diffeomorphisms–special deformations that are invertible, smooth, and have smooth
inverses – this specialization allows us to limit the problem to one that is mathemati-
cally amenable. Although they are one of the basic building blocks of modern theoretical
mathematics, and an everyday object in pure mathematics, diffeomorphisms are a new
data type in image and signal analysis. This new data type needs a representation native
to its own structures. This representation should allow for fast computation and storage
while maintaining as much transparency as possible. In this paper we present one possible
approach to addressing this need.

We present a novel nonlinear invertible multiscale transform on the space of diffeo-
morphisms that can be used to store, manipulate, and analyze the variability in a collec-
tion of signals that are all diffeomorphic to a given template. This multiscale transform is
known as the Morphlet Transform. The use of such a transform is motivated by the suc-
cess of multiscale methods in data compression [5], noise removal [4], and fast template
registration [7]. Many realistic diffeomorphisms that appear in image and signal analysis
are sparsely represented in the Morphlet transform space.

There is one chief obstacle to representing diffeomorphisms: the space of diffeomor-
phisms is not a linear function space. Diffeomorphisms are functions, and so any given
diffeomorphism may be expressed in a basis expansion. But perturbations or manipula-
tions of the expansion coefficients may produce, after reconstruction, a function that is no
longer a diffeomorphism. This will be true regardless of the basis functions that are used.

There are two typical strategies for representing diffeomorphisms. The first is to
restrict to a parametric family of functions like affine maps, polynomials, or thin-plate
splines. Although these methods are attractive due to their simplicity, with the exception
of affine maps, none of these methods can guarantee that the matching function is in fact
a diffeomorphism. The second strategy is to use a deformation vector field such as in [6].
The diffeomorphism is then the unit time flow induced by the vector field. The vector field
representation has three drawbacks: first, calculating features of the full diffeomorphism
involves solving a first order PDE, which can be computationally intensive; second, the
representation is global, so the values of the vector field outside of some region can ef-
fect the value of the diffeomorphism in the region; third, because of the global nature of
the vector field the multiscale structure of the field may not correspond to the multiscale
structure of the diffeomorphism. In contrast, the Morphlet transform offers a local and
computationally efficient description for diffeomorphisms that ensures that the matching
functions are, in fact, diffeomorphisms.

The Morphlet transform takes uniform samples of the diffeomorphism on the standard
tetrahedral lattice and returns a collection of coefficients indexed by scale and location.
These coefficients have the same organizational structure as the coefficients produced by
the wavelet transform. Like the wavelet transform, the Morphlet coefficients reflect the
deviation of the diffeomorphism at one scale and location from the behavior predicted
from the next coarser scale values. Unlike the wavelet transform, a given coefficient no
longer corresponds to an element of a basis set. Rather, both decomposition and recon-
struction are nonlinear.
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1.1 Related Work
There is now a long history of the use of multiscale methods in image registration and
deformation [8]. On the question of representing diffeomorphism, D. Mumford and E.
Sharon have worked on the question of the conformal fingerprint for conformal diffeo-
morphisms between two simply connected regions of the plane [11]. T.F. Cootes et al.[2]
work on building a parametric statistical model on the space of diffeomorphisms. A great
deal of interest in pattern analysis using diffeomorphic registration has been generated in
the field of computational anatomy. See [6, 9].

2 Template Warping and Diffeomorphisms
Before we continue, let us define some terms and make precise the problem we wish to
address. For our purposes, a diffeomorphism is a smooth function from Rn to Rn which
is one to one, onto, and has a smooth inverse. We shall model signals and images as
real-valued functions on Rn. The deformation of a signal will be the action of a diffeo-
morphism on the signal.

Ideform(x) = φ
∗(I)(x) = I ◦φ

−1(x). (1)

We assume we have a collection of signals {In}N
n=1 and a fixed template signal Itemplate

such that for each signal In there exists a diffeomorphism φn such that:

In = φ
∗
n (Itemplate). (2)

We will not address the question of how to calculate φn given In and Itemplate. There is
a large existing literature devoted to solving the diffeomorphic registration problem [10],
and we postpone discussing the relationship between the morphlet transform and regis-
tration algorithms for a later publication. We will simply assume that we can calculate φn
satisfying (2) or some appropriate regularization.1

Once the set of registering diffeomorphisms, {φn}N
n=1, has been obtained, all of the

information contained in the sample {In}N
n=1 is now contained (up to the accuracy of

the diffeomorphic assumption) in the set of registering diffeomorphisms and the template
Itemplate. If we want to study the variability of {In}N

n=1 we need only study the variability of
{φn}N

n=1. This is advantageous due to the smoothness of the registering diffeomorphisms.
Typically, the measured signals are not smooth. In 1-d, the signals may have jumps

and spikes. In 2-d, the images have edges and textures. Representing these features can
be difficult, and most of the science of image analysis focuses on ways of dealing with
these non-smooth features. In contrast, the registering diffeomorphisms are frequently
very smooth functions with a few localized regions of sharp transition. These regions of
sharp transition in the registering diffeomorphisms are exactly the regions responsible for
the variability in the collection of signals {In}N

n=1.
Bijections that are smooth except for a few local singularities have sparse Morphlet

transforms. Thus, even when analyzing images with high spatial resolution, only a small
fraction of the morphlet coefficients of the resulting registering diffeomorphisms will be
large. Only these large coefficients are important. Morphlet transform preserves diffeo-
morphisms, and has approximation properties similar to the wavelet transform. Thus, if

1In the presence of noise, (2) is never satisfied. Rather, registration algorithms typically search for a diffeo-
morphism that satisfies a regularized least squares problem.
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we threshold and discard small coefficients, the reconstructed diffeomorphism will have a
sparse representation and will be very close to the original diffeomorphism. We will give
examples of such a reconstruction in section 5.2.

3 The Interpolating Wavelet Transforms
The Morphlet transform is a nonlinear variant of the wavelet transform. We do not have
the space to give a thorough introduction to the theory of linear wavelet transforms, but
because the Morphlet transform explicitly builds off of the interpolating wavelet transform
[3] we will briefly describe its construction and properties. For ease of presentation we
will only discuss the one dimensional case; the higher dimensional case is similar.

The linear interpolating wavelet transform is defined on the dyadic samples of a con-
tinuous real-valued function. Let f be a continuous function on R. Fix integers J0 and J1
which will serve as the coarsest and finest dyadic sampling scales respectively. Sample f
at k

2J1
for k ∈ Z. Define β

j
k as:

β
j

k = f (
k
2 j ) (3)

for J0 ≤ j ≤ J1.
Fix a positive odd integer D. And define the prediction Pred j

k as:

Pred j
k = π

j
k (

k
2 j +

1
2 j+1 ), (4)

where π
j

k is a local interpolating polynomial of order D. Specifically,

π
j

k interpolates the values (
k + i
2 j ,β j

k+i) for i =−D−1
2

, . . . ,
D+1

2
. (5)

We define the linear interpolating wavelet transform as the set of coefficients:{
β

J0
k ,α j,linear

k

}
j,k∈Z

(6)

where
α

j,linear
k = β

j+1
2k+1−Pred j

k. (7)

Thus, α
j,linear

k measures the discrepancy between the true value of the function and
the value predicted by using the samples at the next coarser scale. The coefficients {β

J0
k }

are called the coarse scale coefficients and {α
j,linear

k } are called the detail coefficients. In
regions where f is smooth, the detail coefficients decay exponentially in j. The rate of
decay measures the degree of smoothness of f . If a function is smooth everywhere except
for a few isolated singularities, then the fine scale coefficients of the wavelet transform
will be very small away from the singularities.

To invert the transform we employ a pyramidal scheme starting with the coarsest
sample β

J0
k . For each scale j, we predict the values at the next finer scale j + 1 using (4)

and reconstruct the samples at scale j +1 using:

β
j+1

2k+1 = α
j,linear

k +Pred j
k. (8)

Both the forward and inverse transforms involve O(N) flops, where N is the number of
samples of f .
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4 The Morphlet Transform
The Morphlet transform acts on the dyadic samples of a continuous diffeomorphism of
Rn. We will show the 2-d version of the transform, as the simplicity of diffeomorphisms in
dimension n = 1 makes the 1-d transform insufficiently instructive. The high dimensional
versions follow the same pattern as the 2-d transform.

4.1 The Sampling Condition
Due to a sampling condition, the Morphlet transform is only actually defined for a special
sub-manifold of the space of diffeomorphisms. The idea behind the sampling condition is
to ensure, at each scale, that the reconstructed function “looks like a diffeomorphism.” In
particular, we demand that the discrete Jacobians of the samples of the diffeomorphism
are all positively oriented affine maps at all scales. For any given diffeomorphism there
exists a dyadic scale J such that for all scales finer than J the discrete Jacobians satisfy
this condition. Thus, a diffeomorphism needs to be sufficiently finely sampled before the
Morphlet transform may be applied.

Let φ be a diffeomorphism of the plane. As in the linear case define β
j

k,l :

β
j

k,l = φ(
k
2 j ,

l
2 j ) (9)

To clarify the sampling condition, and ease the notation for the definition of the fine scale
coefficients, we define three intermediate sets of samples, {β

j,0
k,l } , {β

j,1
k,l }, and {β

j,2
k,l }.

β
j,3

k,l = β
j

k,l (10)

β
j+1,1

2k,2l = β
j+1,2

2k,2l = β
j,3

k,l (11)

β
j+1,1

2k+1,2l+1 = β
j+1,2

2k+1,2l+1 =
1
2
(β j,3

k+1,l +β
j,3

k,l+1) (12)

β
j+1,1

2k+1,2l =
1
2
(β j,3

k+1,l +β
j,3

k,l ) , β
j+1,2

2k+1,2l = β
j+1,3

2k+1,2l (13)

We say the diffeomorphism satisfies the sampling condition for the scales j ∈ [J0,J1]
if the following condition is satisfied:

Discrete Bijectivity Constraint For all j ∈ [J0,J1], (k, l) ∈ Z2, n = 0,1,2,

δ ∈ ∆ =
{
±

[
1 0
0 1

]
,±

[
1 1
−1 0

]
,±

[
0 −1
1 1

]}
: (14)

sign
(

det[β j,n
k,l −β

j,n
k+δ1,2,l+δ2,2

,β j,n
k+δ1,1,l+δ2,1

−β
j,n

k+δ1,2,l+δ2,2
]
)

= sign
(

det(δ )
)
. (15)

4.2 Defining the Morphlet Coefficients
To define the fine scale coefficients we begin by fixing a coarsest and a finest dyadic scale
J0 and J1 for which φ satisfies the Discrete Bijectivity Constraint. As in the interpolating
wavelet transform, we also fix an odd integer D which will serve as the order of an under-
lying linear interpolating wavelet transform as in section 3. In addition, we fix a sequence
of exponentially decaying integers λ j for j = J0,J0 +1, . . . ,J1. The order of the transform
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D and the rate of decay of λ j will determine the relationship between the decay of the
Morphlet coefficients and the smoothness of the diffeomorphism.

For J0 ≤ j ≤ J1 and ∆ as in (14), we first define the boundary penalty terms as:

Λ
j
i (k, l) = ∑

δ∈∆

β
j,i

k+δ1,1,l+δ1,2
−β

j,i
k+δ1,2,l+δ2,2

det[β j
k,l −β

j,i
k+δ1,2,l+δ2,2

,β j,i
k+δ1,1,l+δ1,2

−β
j,i

k+δ1,2,l+δ2,2
]
. (16)

Then we define the fine scale coefficients

α
j

2k+1,2l = α
j,linear

2k+1,2l −λ j

[
0 1
−1 0

]
Λ

j+1
1 (2k +1,2l) (17)

α
j

2k,2l+1 = α
j,linear

2k,2l+1−λ j

[
0 1
−1 0

]
Λ

j+1
2 (2k,2l +1) (18)

α
j

2k+1,2l+1 = α
j,linear

2k+1,2l+1−λ j

[
0 1
−1 0

]
Λ

j+1
3 (2k +1,2l +1) (19)

The Morphlet transform for φ is then:

M (φ) = {β
J0
k,l ,α

j
k,l}. (20)

Note that the detail coefficients of the Morphlet transform are perturbed versions of
the linear interpolating wavelet coefficients. For a smooth diffeomorphism, the difference
between the linear coefficients and Morphlet coefficients at fine scales is O(λ j). Thus,
the exponential decay of λ j indicates that the fine scale coefficient of both transforms are
very similar. The biggest difference comes in the coarse and medium scales, where the
perturbation can be large relative to λ j. The perturbation is large when, due to a Gibbs’
phenomenon, the local polynomial interpolation of the diffeomorphism has a vanishing
Jacobian. Under these circumstances, the perturbation can dominate the coefficient.

4.3 Basic Properties of the Morphlet Transform
• Functions reconstructed with the inverse transform will always be discrete diffeo-

morphisms. On the set of diffeomorphisms that satisfy the Discrete Bijectivity Con-
straint, the Morphlet transform is invertible. Both transforms require O(N) flops
where N is the number of samples, though the inverse transform requires more work
as it requires the use of Newton’s method or another similar nonlinear solver.

• If φ is an affine map then Mdetail(φ) = 0. In particular, the detail coefficients of the
identity map vanish.

• If τ ∈ R2 then Mcoarse(φ + τ) = Mcoarse(φ)+ τ and Mdetail(φ + τ) = Mdetail(φ).
The detail coefficients are invariant under translation.

• If A ∈ S0n, α
j

k,l(Aφ) = Aα
j

k,l(φ). The detail coefficients are covariant under linear
orthogonal transformation.

• If Ω ⊂ dom(φ) is a open domain such that φ |Ω and φ−1|φ(Ω) are smooth then all
Morphlet coefficients with support2 in Ω decay geometrically as a function of the

2The support of a Morphlet coefficient is the collection of all points in the domain of the bijection which
appear in the penalty term (16) and the linear coefficient (7) for the corresponding formula (17) - (19).
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discrete scale index. The rate of decay is determined by the smoothness of the
refinement scheme and the smoothness of φ .

• If λ j = O(2−(D+1) j), the approximation rate of the Morphlet transform is as good
as the approximation rate of the associated wavelet transform.

5 Stylized Applications

5.1 Random Diffeomorphisms
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Figure 1: (a) ω = 1, (b) ω = 2, (c) ω = 4, (d) ω = 5.

The inverse Morphlet transform can be used to generate random diffeomorphisms of
any preselected smoothness: first, generate a random affine diffeomorphism3; second,
subsample the affine map and use the samples as the coarse scale coefficients; third, ran-
domly generate detail coefficients with a preselected decay; finally, apply the inverse
transform. In particular, one can choose uncorrelated random Gaussian coefficients with
scale-dependents standard deviations α

j
k,l ∼ N(0,C2−ω j) for some fixed C,ω > 0. The

larger ω , the smoother the random diffeomorphism. Figure 1 shows the action of four
random diffeomorphisms on a rectangular grid. Each diffeomorphism was generated with
coarse scale coefficients set to the identity map and with C = 1. The value of ω is varied.

5.2 Compression
In the case where one must compress an image consisting of a known template that has
been deformed smoothly, note that if the template has sharp features, such as edges, it
can be very difficult to compress a warped instance by standard means. Indeed traditional
compression schemes will not work well on figure 2(b). However, as panels (c) and (d) in

3This is just a matter of linear algebra.
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(a) (b)

(c) (d)

Figure 2: (a) Image I, (b) φ ∗(I), (c) φ ∗
10%

(I), Rel. L2-error = 9.0e − 4 (d) φ ∗
2%

(I),
L2-error = 1.9e−3.

our example show, if we take the template as separately known to the compressor and the
decompressor, and simply compress the morphism, we can reconstruct the warped image
yielding a dramatically better visual fidelity than standard compression could offer.

The Morphlet coefficients of a smooth diffeomorphism decay rapidly. Because the
approximation rate of the Morphlet transform is at least as good as the approximation
rate of the wavelet transform, we may discard a large percentage of the coefficients and
still reconstruct the diffeomorphism with high accuracy. This approximation rate can be
used to “compress” an image that is a warped version of a known template. To store the
image, we store the template and the registering diffeomorphism. If we have a collection
of images all of which are diffeomorphic to the template, then the ability to compress the
diffeomorphisms translates into low storage for all of the images in the collection.

In figure 2 we show a simple “bulls-eye” template, (a), and the action of a randomly
generated diffeomorphism φ on the template, (b). Applying the Morphlet transform to
φ , we threshold all but the largest 10% of the detail coefficients and apply the inverse
transform to construct φ10%. Similarly, we threshold all but the largest 2% of the detail
coefficients to construct φ2%. We apply both φ10% and φ2% to I and record the relative
L2-error between φ ∗(I) and φ10%(I), φ2%(I) respectively. All images are resolved at 512
x 512.

Notice that thresholding the diffeomorphism and applying it to the template effectively
smooths the level curves of φ(I). No linear method can achieve this.

5.3 Interpolation
Given two diffeomorphisms, φ1 and φ0, that are affine maps at the coarsest scale, the Mor-
phlet transform can be used to interpolate between them in the space of diffeomorphisms.
To do so, we interpolate between the two affine maps at the coarsest scale4 and then we

4Pull back to the Lie algebra and linearly interpolate.
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a) The original template I, (b) φ ∗
0 (I), (c) φ ∗

1
4
(I), (d) φ ∗

1
2
(I), (e) φ ∗

3
4
(I), (f) φ ∗

1 (I).

simply linearly interpolate the respective detail coefficients of the Morphlet transform:

α
j

k,l(φt) = tα j
k,l(φ1)+(1− t)α j

k,l(φ0). (21)

Figure 3 shows a simple example of the action of interpolated diffeomorphisms on a
template. Figure 3 (a) is the original template, I. Figure 3 (b) and (f) show the action of
φ0 and φ1 on the template, respectively, where both diffeomorphisms were synthetically
generated by the authors. Both φ0 and φ1 are the identity map at the the coarsest scale.
For t = 1

4 , 1
2 , and 3

4 we interpolate between the two diffeomorphisms as in (21) and apply
the maps to the template.

This interpolation provides a cartoon model for articulated motion. The underlying
object–here a cartoon face–undergoes diffeomorphic changes. The Morphlet coefficients
act like small control knobs with which we can change the expression of the face.

6 Conclusion
The space of Euclidean diffeomorphisms is highly nonlinear. Yet, there is a large sub-
manifold of diffeomorphisms that satisfy the Discrete Bijectivity Constraint and for this
submanifold the Morphlet transform acts as an embedding into L∞ (or Rn in the finitely
sampled case). All of the coefficients are calculated using only local information and,
similar to wavelets, diffeomorphisms have sparse Morphlet transforms. The Morphlet
transform provides a representation where approximation and manipulation are simple
arithmetic operations. Future work will further explore how these properties can be used
in image and signal analysis.
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Abstract

This paper deals with the problem of non linear image registration is the case
the images include objects undergoing different types of deformation. As an
illustrative application, we consider the registration ofCT and PET images of
thoracic and abdominal regions. Registration of these two modalities has to
cope with deformations of the lungs during breathing. Potential tumors in the
lungs usually do not follow the same deformations, since they can be consid-
ered as almost rigid, and this should be taken into account inthe registration
procedure. We show in this paper how to introduce rigidity constraints into a
non-linear registration method. The proposed approach is based on registra-
tion of landmarks defined on the surface of previously segmented objects and
on continuity constraints. The results demonstrate a significant improvement
of the combination of anatomical and functional images for diagnosis and for
oncology applications.

1 Introduction

Registration between several images of the same scene is a widely addressed topic and
is important in many different domains. One of the difficult problems concerns the case
where the images include objects undergoing different types of deformation that have
to be compensated during the registration. In particular, the behavior of the registration
close to the interfaces between such objects has to be carefully controlled in order to avoid
discontinuities or other unrealistic phenomena. The aim ofthis paper is to address this
problem.

As an illustrative application, we consider Computed Tomography (CT) and Positron
Emission Tomography (PET) in thoracic and abdominal regions, which furnish comple-
mentary information about the anatomy and the metabolism ofhuman body. Their combi-
nation has a significant impact on improving medical decisions for diagnosis and therapy
[16] even with combined PET/CT devices where registration remains necessary to com-
pensate patient respiration and heart beating [14]. Registration of these two modalities is
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a challenging application due to the poor quality of the PET image and the large defor-
mations involved in these regions.

Most of the existing methods have as a limitation that regions placed inside or near the
main structures will be deformed more or less according to the registration computed for
the latter, depending on how local is the deformation. A critical example of this situation
occurs when a tumor is located inside the lungs and there is a large volume difference
between CT and PET images (due to the breathing). In this case, if the tumor is registered
according to the transformation computed for the lungs, it may take absurd shapes, such
as shown in Figure 1.

Figure 1:Axial and coronal slices in CT (first row) and in PET (second row). Result of the non-
linear registration without tumor-based constraints (third row). The absence of these constraints
leads to undesired and irrelevant deformations of the pathology. On the images of the first and
third columns, the cursor is positioned on the tumor localization in PET data, while in the second
and fourth columns, it is positioned on the tumor localization in CT data. This example shows
an erroneous positioning of the tumor and illustrates the importance of the use of tumor-specific
constraints.

In this case, two very different deformations exist: the non-linear deformations of the
lungs due to the breathing and the linear displacement of thetumor during the breathing
cycle. Thus, the aim of this paper is to avoid the undesired tumor misregistrations by
adding some rigidity constraints on the tumors. The goal is to preserve tumor geometry
and, in particular, intensity since it is critical for clinical studies, for instance based on
SUV (Standardized Uptake Value) [6], and for diagnosis and radiotherapy planning.

In Section 2, we summarize existing work related to this subject and we provide an
overview of the proposed approach. The introduction of tumor-based constraints into the
registration algorithm is detailed in Section 3. Section 4 presents some results obtained
on real data. Finally, conclusions and future works are discussed in Section 5.
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2 Related Work and Overview of the Proposed
Approach

Some approaches have already been developed for registration of multimodality images in
pathological cases (pulmonary nodules, cancer), such as in[2]. However these approaches
compute a rigid (or affine) registration for all the structures and they do not take into
account the local nature of the deformations.

Tanner et al. [15] have developed a method of non-rigid registration based on B-spline
Free-Form Deformations (FFD) as in [3]. Their algorithm is applied on MR breast im-
ages and it guarantees volume and shape preservation in the rigid regions defined by the
lesions. However, the region of the rigid transformation islarger than the lesions. Another
approach that uses B-spline FFD is the one by Rohlfing and Maurer [12]. They have used
a grid refinement and added some incompressibility constraints (using the properties of
the Jacobian) which only guarantee the preservation of the volume of the structures but
not their shape. Loeckx et al. [10] have added a local rigidity constraint in order to guar-
antee shape preservation and they have obtained very promising results. Nevertheless,
this algorithm does not enforce the considered structures to be totally rigid, therefore they
actually might be slightly deformed.

The recent work of Hachama et al. [7] uses a Bayesian framework in order to charac-
terize the pathologies as outliers of a probabilistic distribution. Their method is applied
to mammogram registration and proved to be robust. An implicit assumption is that grey
levels in both images are similar, thus making the method appropriate for mono-modality
images. This assumption should be relaxed to extend the method to multimodality images.

A different approach, that we consider closer to physical reality of human body, is
based on the combination of rigid and non-rigid deformations, as suggested by Little et
al. [9] and Huesman et al. [8]. These methods are based on the use of point interpolation
techniques, together with a weighting of the deformation according to a distance function.
Castellanos et al. [4] developed a slightly different methodology, in which local non-rigid
warpings are used to guarantee the continuity of the transformation.

The advantage of these approaches is that they take into account rigid structures and
the deformations applied to the image are continuous and smooth. The method we pro-
pose is inspired by these ones and adapted to develop a registration algorithm for the
thoracic region in the presence of pathologies. In order to illustrate our algorithm, we
have applied it on medical data. These data consist of 3D CT and PET images of patho-
logical cases, exhibiting tumors in the lungs. We assume that the tumor is rigid and thus
a linear transformation is sufficient to cope with its movements between CT and PET
images. This hypothesis is relevant and in accordance with the clinicians’ point of view,
since tumors are often a compact mass of pathological tissue. In order to guarantee a
good registration of both normal and pathological structures, the first step consists of a
segmentation of all structures which are visible in both modalities. Then we define two
groups of landmarks in both images, which correspond to homologous points, and will
guide the deformation of the PET image towards the CT image. The positions of the
landmarks are therefore adapted to anatomical shapes. Thisis an important feature and
one of the originalities of our method. The deformation at each point is computed using
an interpolation procedure based on the landmarks, on the specific type of deformation
of each landmark depending on the structure it belongs to, and weighted by a distance
function, which guarantees that the transformation will becontinuous.
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Thus, the proposed approach has two main advantages:

1. As the transformation near the tumor is reduced by using the distance weight, even
if we have some small errors in the tumor segmentation (oftenquite challenging,
mainly in CT), we will obtain a consistent and robust transformation.

2. In the considered application, one important fact is thatthe objects to register are
not the same in the two images. For instance, the volume of the“anatomical” tumor
in CT is not necessarily the same as the volume of the “functional” tumor in PET
because the two modalities highlight different characteristics of the objects. The
registration of these two views of the tumor must preserve these local differences,
which can be very useful because we could discover a part of the anatomy that
is touched by the pathology and could not be seen in the CT image. This also
advocates in favor of a rigid local registration.

3 Combining Rigid and Non-linear Deformations

Based on a segmentation of the objects visible in both images, pairs of homologous points
are defined. They constitute landmarks guiding the registration. We assume that globally
a non-linear transformation has to be found, while for some objectsO1, . . . ,On0 (tumors
in our application) specific constraints have to be incorporated. For instance, these objects
may undergo only a rigid transformation between both images. The global transformation
is then interpolated over the whole image. We introduce the rigid structures constraints so
that the non-rigid transformation is gradually weighted down in the proximity of objects
O1, . . . ,On0.

Point-Based Displacement Interpolation
The first step in a point-based interpolation algorithm concerns the selection of the

landmarks guiding the transformation. Homologous structures in both images are then
registered based on landmarks defined on their surface. The resulting deformation will be
exact at these landmarks and smooth elsewhere, which is achieved by interpolation.

Let us denote byt i then landmarks in the source image that we want to transform to
new sitesui (the homologous landmarks) in the target image.

The deformation at each pointt in the image is defined as:

f(t) = L (t)+
n

∑
j=1

BT
j σ(t, t j) (1)

under the constraints
∀i, ui = f(t i). (2)

The first term,L (t), represents the linear transformation of every pointt in the source
image. Whenn0 rigid objects (O1,O2, . . . ,On0) are present, the linear term is a weighted
sum of each object’s linear transformation. The weightswi(t) are dependent on a measure
of distanced(t,Oi) from the pointt to the objectOi as described in [9]:

wi(t) =











1 if t ∈ Oi

0 if t ∈ O j , j = 1, . . . ,n0, j 6= i
qi(t)

∑
n0
j=1 q j (t)

otherwise
where qi(t) =

1
d(t,Oi)µ (3)
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andµ = 1.5 (for the work illustrated in this paper).
Therefore, for any pointt we define our linear transformation as:

L (t) =
n0

∑
i=1

wi(t)Li (4)

whereLi , i = 1, . . . ,n0 are the linear transformations of the rigid objects. The closert is
to the objectOi , the more similar its linear transformation will be toLi .

The second term represents the non-linear transformation which is, for a pointt, the
sum ofn terms, one for each landmark. Each term is the product of the coefficients of a
matrixB (that will be computed in order to satisfy the constraints onthe landmarks) with
a functionσ(t, t j), depending on the (normalized) distance betweent andt j :

σ(t, t j) = |t − t j|. (5)

This form has favorable properties for image registration [17]. However, different func-
tions could be used, as the one described in [9].

With the constraints given by Equation 2, we can calculate the coefficientsB of the
non-linear term by expressing Equation 1 fort = t i . The transformation can then be
defined in a matricial way:

ΣB+L = U (6)

whereU is the matrix of the landmarksui in the target image (the constraints),Σi j =
σ(t i , t j) (given by Equation 5),B is the matrix of the coefficients of the non-linear term
and L represents the application of the linear transformations to the landmarks in the
source image,t i .

From Equation 6, the matrixB is obtained as:B = Σ−1(U −L). Once the coefficients
of B are found, we can calculate the general interpolation solution for every point inR

3

as shown in Equation 1.

Introducing Rigid Structures
In this section, we show how to introduce the constraints imposed by the rigid structures

in the images.
To add the influence of the rigid structuresO1, . . . ,On0, we have redefined the function

σ(t, t j) asσ ′(t, t j) in the following way:

σ ′(t, t j) = d(t,O0)d(t j ,O0)σ(t, t j) (7)

whered(t,O0) is a measure of the distance from pointt to the union of rigid objects
O0 = O1∪O2∪ . . .∪On0. It is equal to zero fort ∈ O0 (inside any of the rigid structures)
and takes small values whent is near one of the structures. This measure of the distance
is continuous overR3 and it weights the functionσ(t, t j) (see Equation 5). Thus the
importance of the non-linear deformation is controlled by the distance to the rigid objects
in the following manner:

• d(t,O0) makesσ ′(t, t j) tend towards zero when the point for which we are calcu-
lating the transformation is close to one of the rigid objects;

• d(t j ,O0) makesσ ′(t, t j) tend towards zero when the landmarkt j is near one of the
rigid objects. This means that the landmarks close to the rigid structures hardly
contribute to the non-linear transformation computation.
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Note that this formalism could be more general by replacingd(t,O0) by any function
of the distance toO0 that characterizes accurately the behavior of the surrounding regions.
Further research is necessary to define such a function in thecase of lung tumors. We have
used a linear (normalized) distance function as a first approach.

Finally, Equation 6 is rewritten by replacingΣ by Σ′, leading to a new matrixB′. We
can then calculate the general interpolation solution for every point inR

3 as in Equation 1.

Definition of landmarks and matching
Landmarks can be defined according to the needs of each specific application. They can

be uniformly distributed over the surface of homologous objects or based on points having
specific properties (maximum of curvature, points undergoing the largest deformations,
etc). In our application, we first define a set of landmarks on the surface of the lungs
on the CT image, because it has a much better resolution than the PET image. They are
approximately uniformly distributed on the surface. Then,we calculate the corresponding
points on the surface of the segmented lungs in PET. This is automatically computed by
using the Iterative Closest Point (ICP) algorithm [1] and avoids defining by hand the
landmarks on both images.

4 Results

We present in this section some results that we have obtainedon synthetic, segmented
and real images. The structures and the tumors are segmentedusing the methods in [5]
and then, based on pairs of corresponding landmarks in the CTand the PET images,
the transformation is computed over the whole image. As mentioned in Section 2, it is
reasonable to assume a rigid transformation between the tumors in CT and in PET. As
a first approach, we have used a translation. Each translation Li , i = 1, . . . ,n0 is directly
obtained from the segmentation results.

Synthetic images
This first experiment on synthetic images aims at checking that the rigid structures are

transformed rigidly, that the landmarks are correctly translated too and, finally, that the
transformation elsewhere is consistent and smooth.

Figure 2:Result on synthetic images: the effect of expanding a frame (in grey in the figure) and
translating the “tumor” (in white in the figure). The source image (with a grid) is shown on the left,
the target image is in the middle and the result of the transformation on the right. The landmarks
are located on the internal and external edges of the frame ingrey (on the corners and in the middle
of the sides). The total number of landmarks is 16.

As we are taking the PET image as the one to be deformed (sourceimage), we sim-
ulate an expansive transformation because the lungs in PET are usually smaller than in
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CT images. This is due to the fact that the CT image is often acquired in maximal in-
spiration of the patient. A simple translation of the “tumor” is simulated too. In order to
observe the transformation all over the image, we have plotted a grid on it. It can be seen
in Figure 2 that the results with the synthetic images are satisfactory as the shape of the
rigid structure (the “tumor”) is conserved and the landmarks are translated correctly. The
frame, on which the landmarks are placed, is deformed in a continuous and smooth way.
If we do not apply the constraints on the rigid structure we obtain an undesired transfor-
mation. This is illustrated in [11]. However, it must be noticed that the edges of the frame
are not totally straight after the transformation. In general, the more landmarks we have,
the better the result will be, and the positions of the landmarks are also very important.
Here we have chosen to distribute them uniformly over the internal and external edges of
the frame.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3:Results on simplified images. Top row: segmented PET images with a grid for visual-
ization purpose (landmarks are also marked in white). Middle row: segmented CT images. Bottom
row: results of the registration of the simplified PET and CT images using 4 landmarks (fixed on
the corners of the image) and additional landmarks on the walls of the lungs. Left columns: 8
landmarks are chosen on the walls of the lungs using different distributions. Right columns: 12
landmarks are chosen on the walls of the lungs using different distributions. In all the images the
cursor is centered on the tumor in the CT image.

Segmented Images
In order to appreciate more clearly the effect of the transformation, we have applied the

proposed approach on segmented images. Figure 3 shows some results on the simplified
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(segmented) images. A grid is superimposed on the segmentedPET image for better
visualization. We have fixed the corners of the images to avoid undesired deformations
(see illustrations in [11]). It can be observed that for any number of landmarks, the tumor
is registered correctly with a rigid transformation. Nevertheless, the quality of the result
depends on the quantity of landmarks and their positions. Ifthe number of landmarks
is too low or their distribution on the surfaces is not appropriate, the algorithm does not
have enough constraints to find the desired transformation.Here the results are obtained
by applying the direct transformation in order to better appreciate the influence of the
deformation in every region of the image. However it is clearthat the final result should
be based on the computation of the inverse transformation ateach point of the result image
in order to avoid unassigned points.

Real Images
Figure 4 shows the results on real images. The tumor is registered correctly with a

rigid transformation in all the cases. However, the accuracy of the registration depends
on the number and the distribution of the landmarks. If the number of landmarks is not
sufficient there are errors. It can be seen that with an appropriate number of landmarks
the registration is very satisfactory. The best results (Figure 4(d)) are obtained with 16
landmarks placed as in Figure 3(l). In particular, they include high curvature points.
The lower part of the lungs is better registered and the wallsof the lungs are perfectly
superimposed. The results are considerably improved using16 landmarks, compared
to those obtained with 12 or less landmarks. This shows that the minimal number of
landmarks does not need to be very large if the landmarks are correctly distributed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Results on real images. Superimposition of the CT image with: the original PET be-
fore registration (a), the deformed PET image using 12 (b) and 16 (c, d) landmarks. (e-h): same
results as in (a-d) showing only the contours of the lungs in PET on the CT image. The locations
and distribution of the landmarks in (c) are different from the ones in (d) what implies different re-
sults. Arrows show misregistrations. This illustrates theimportance of the choice of the appropriate
landmarks.
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5 Conclusion and Future Work

We have developed a non-linear registration method incorporating constraints on defor-
mations of specified objects. It has been shown to be adapted to images which contain
rigid structures. The method consists in computing a deformation guided by a group of
landmarks and with rigidity constraints. This method has been illustrated on the exam-
ple of CT/PET registration, in pathological cases where most tissues undergo non-linear
transformations due to breathing while tumors remain rigid. In this application, results are
very satisfactory and our algorithm avoids undesired tumormisregistrations and preserves
tumor geometry and intensity.

One of the originalities of our approach, in particular compared to the method in [9],
is that the positions of the landmarks are adapted to the shapes of the structures in the
images. In addition to this, with our algorithm, the landmarks are only defined manually
in one of the images (the CT) and automatically in the second one (the PET) by means
of the ICP algorithm. In the illustrated application, as thetransformation near the tumor
is reduced by a weight depending on a distance measure, even if the tumor segmentation
is not perfect, the registration remains consistent and robust. Moreover, the tumor in CT
and PET has not necessarily the same size and shape, therefore the registration of these
two modalities is very useful because all the information ofthe PET image is preserved.
This is very important in order to know the true extension of the pathology for diagnosis
and for the treatment of the tumor with radiotherapy, for example.

The choice of the landmarks in the CT image is done manually for the moment. How-
ever, future work aims at developing an automatic method fordefining the landmarks
homogeneously distributed all over the surface and on the regions of maximum curvature.
A quantitative measure of the alignment between the images will be used in order to find
the best distribution of the landmarks that minimizes this similarity measure.

It is also necessary to carry out a detailed study of the rigidity properties of the tis-
sues surrounding a pathology. Replacing the distance by another function would then be
straightforward using our formulation.

Although validation is a common difficulty in registration [13], we plan an evaluation
phase in collaboration with clinicians, as well as comparison with other methods.
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Abstract

Nonrigid registration of medical images usually does not model properties of
different tissue types. This results for example in nonrigid deformations of
structures that are rigid. In this work we address this problem by employ-
ing a local rigidity penalty term. We illustrate this approach on a 2D syn-
thetic image, and evaluate it on clinical 2D DSA image sequences, and on
3D CT follow-up data of the thorax of patients suffering from lung tumours.
The results show that the rigidity penalty term does indeed penalise nonrigid
deformations of rigid structures, whereas the standard nonrigid registration
algorithm compresses those.

1 Introduction

Nonrigid registration of patient data is an important technique in the field of medical
imaging. One of the remaining problems of nonrigid registration algorithms is that usually
everything in the images is treated as nonrigid tissue, even objects that are clearly rigid,
or objects for which it is desired to keep them rigid. Examples of the first are bones
and surgical instruments. Examples of the second include structures that contain contrast
material, visible in one image, but not in the other. Standard intensity based nonrigid
registration algorithms will typically give undesired compression of these structures [10,
15]. It is necessary to prevent nonrigid behaviour of these local structures, and keep them
rigid instead.

In the literature several methods have been described to constrain deformations. The
employment of a regularisation or penalty term is a well-known strategy. Examples of
such terms are the bending energy of a thin plate [12], the linear elasticity constraint
[1, 2] and the incompressibility constraint [10]. Particular methods to enforce rigidity
on structures have also been proposed. Tanner et al. [15] propose to couple the control
points of a B-spline deformation. Another approach is taken by Little et al. [6], who use
modified basis functions describing the deformation, constraining the nonlinear part of
the deformation at rigid locations by multiplication with a weight function.

Recently, some approaches similar to our own were published [7, 11], in which rigid-
ity is enforced by penalising deviation of the Jacobian from being orthonormal. In this
paper we propose a penalty term that is capable of penalising locally nonrigid transforma-
tions, which we call a rigidity penalty term. It is based on three criteria a transformation
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must meet in order to be locally rigid: linearity of the transformation, and orthonormality
and properness of the Jacobian of the transformation. First results of the method were
published previously [14].

In the following section we describe the rigidity penalty term. Standard nonrigid
registration is compared against registration using the rigidity penalty term in Section 3.
We end with a discussion in Section 4.

2 Method

Registration of a moving image M(xxx) : ΩM ⊂R
d �→R to a fixed image F(xxx) : ΩF ⊂R

d �→
R, both of dimension d, consists of finding a deformation uuu(xxx) that makes M(xxx + uuu(xxx))
spatially aligned to F(xxx). The quality of alignment is defined by a similarity or distance
measure D , such as the sum of squared differences (SSD), the correlation ratio, or the
mutual information (MI) measure.

Because this problem is ill-posed, a regularisation term or smoother S is introduced
and the registration problem is formulated as an optimisation problem in which a cost
function J is minimised w.r.t. uuu, with:

J [F,M;uuu] = D [F,M;uuu]+αS [uuu], (1)

where α weighs similarity against smoothness. Note that at the minimum the derivatives
of the similarity measure and the regularisation term are not necessarily zero. Merely, a
balance is found between the two, which is influenced by the parameter α . Therefore, the
penalty term can not be considered a hard constraint, but it is sometimes referred to as a
soft constraint.

In [14] we propose a penalty term S rigid[u] that penalises nonrigid deformations of
rigid objects, which we call the rigidity penalty term. This penalty term can be weighted
locally, so that some parts of the image are restricted to rigid movement, while other parts
are penalised partially or are allowed to deform freely.

2.1 Registration Algorithm

We employ a registration framework largely based on the papers of Rueckert et al. [12]
and Mattes et al. [8]. The similarity measure is the mutual information measure using
an implementation by Thévenaz and Unser [16]. The deformation field is parameterised
by cubic B-splines. A multiresolution approach is taken to avoid local minima, using a
Gaussian pyramid with a subsampling factor of two in each dimension. We also employ
a multiresolution approach of the deformation grid: when the image resolution in the
pyramid is doubled, the B-spline control point spacing is halved. For the optimisation
of the cost function J , we employ a stochastic gradient descent optimiser, using only a
small, randomly chosen portion of the total number of pixels for calculating the derivative
of J with respect to the B-spline parameters [5].

2.2 Construction of the Rigidity Penalty Term

The rigidity penalty term S rigid[u] is constructed by penalising deviation from three con-
ditions. For a deformation field uuu to be rigid, it must hold that uuu(xxx)+ xxx = Rxxx+ ttt, with R
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and ttt a rotation matrix and a translation vector, respectively. Note that the rotation matrix
R is the Jacobian of the transformation uuu(xxx)+ xxx. The three conditions are (given in 2D
for readability):

linearity of uuu(xxx), stating that the second order derivatives are zero:

LCki j(xxx) =
∂ 2uk(xxx)
∂xi∂x j

= 0, (2)

for all k, i, j = 1,2, not counting duplicates.

orthonormality of R, which can be expressed in terms of derivatives of uuu(xxx):

OCi j(xxx) =
2

∑
k=1

(

∂uk(xxx)
∂xi

+δki

)(

∂uk(xxx)
∂x j

+δk j

)

−δi j = 0, (3)

for all i, j = 1,2, again not counting duplicates.

properness of R: PC(xxx) = det(R)− 1 = 0, which can again be expressed in terms of
derivatives of uuu(xxx). Note that this condition basically amounts to an incompress-
ibility constraint, see also [10].

We define the rigidity penalty term S rigid[uuu] to be the sum of these conditions squared.
In order to distinguish between rigid and nonrigid tissue, the penalty term is weighted by
a so-called rigidity coefficient c(xxx) ∈ [0,1] of the tissue type at position xxx. The complete
expression reads:

S rigid[uuu] � ∑
xxx∈ΩF

c(xxx)

{

∑
k,i, j

[

LCki j(xxx)
]2

+∑
i, j

[OCi j(xxx)]
2 +[PC(xxx)]2

}

. (4)

The rigidity coefficient c(xxx) is equal to zero for pixels xxx in completely nonrigid tissue,
thereby not penalising deformations at those locations. For completely rigid tissue c(xxx)
is set to one. For other tissue types a value of c(xxx) is chosen between zero and one.
The rigidity coefficient image can be constructed by performing a manual or automatic
segmentation of structures of interest, after which rigidity coefficients can be assigned.
Depending on the application, different methods to create the rigidity coefficient image
can be considered. For the case of CT images the Hounsfield unit might be used, rescaled
to the range [0,1], since more rigid tissue usually has a higher attenuation value.

In [14] we argue the validity of this rigidity penalty term by showing that S rigid[uuu] = 0
if and only if the deformation field uuu(xxx) is locally rigid. The linearity term might be
dropped, since it can be shown that orthonormality implies linearity. However, it might
aid the penalty term by guiding the optimisation path. The proposed constraint is not
dependent on the B-spline parameterisation of the deformation field. However, from a
computational point of view, we can benefit from this parameterisation by evaluating the
rigidity penalty term only over the control points. For details we refer to [14].

3 Experiments and Results

Standard nonrigid registration using only the similarity term, as described in Section 2.1,
is compared with nonrigid registration using the rigidity penalty term. The two methods
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(a) (b) (c)

Figure 1: Comparison of registration with and without S rigid[uuu] for a 2D synthetic ex-
ample. The white square is to be kept rigid. (a) fixed image (lower) and moving image
(upper), (b) resulting deformation field of standard registration, and (c) resulting defor-
mation field including the rigidity constraint.

are illustrated on synthetic images. They are compared on clinical data, viz. 3D CT
follow-up data of the thorax containing lung tumours, and on 2D DSA image data of
different parts of the body. The computation time for registration with the rigidity penalty
term increases about 50% in 2D and about 80% in 3D with a B-spline grid spacing of
eight voxels.

All experiments were performed with software (www.isi.uu.nl/Elastix/) devel-
oped by the authors. This registration package is largely based on the Insight Segmenta-
tion and Registration Toolkit [4].

3.1 2D Synthetic Example

Rotation of a rigid object is illustrated with the square in Figure 1, where the background
represents nonrigid tissue and the square a rigid object. The rigidity coefficient c(xxx) is set
to 1.0 on the square and 0.0 elsewhere.

Both algorithms give near perfect registration results for the matching of the squares
in Figure 1. However, the underlying deformation field is highly nonlinear if no rigidity
penalty term is used. By including the penalty term the deformation field is almost per-
fectly rigid at the rigid part. This is also reflected in the rigidity constraint S rigid[uuu], which
has a value of 2.21×102 for standard nonrigid registration and a value of 1.28×10−3 for
registration using the rigidity constraint. The rigidity constraint is not perfectly zero, be-
cause some B-spline control points outside the square, but influencing the points within
the square, are not set to be rigid.

3.2 3D CT Follow-up

In order to compare 3D CT follow-up data by visual inspection of the difference im-
age, the data sets must be registered nonrigidly. We have five CT follow-up data sets of
the thorax available, of patients suffering from lung tumours, collected at the Radiology
department of the University Medical Centre Utrecht. The images are acquired under
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(a) (b) (c)

(d) (e) (f)

Figure 2: Comparison of both nonrigid registration methods for a slice taken from 3D
CT thorax images. The tumours, located within the box (see (d)), have to be kept rigid
for diagnostic reasons. (a) and (d): CT slice at time t0 (the fixed image) and time t1
(the moving image), respectively, (b) and (c): difference of the result of similarity only
nonrigid registration with the fixed image, and a part of the resulting deformation field,
respectively, (e) and (f): the same for nonrigid registration using S rigid[uuu].

breath-hold with a Philips 16 slice spiral CT scanner (Mx8000 IDT 16). The data are
of size 512× 512 by 400 - 550 slices, have voxel sizes of around 0.7× 0.7× 0.7 mm,
and are resized by a factor of 2 in each dimension before registration. The five data sets
contain 36 tumours in total, with an average volume of 2.5 ml for the first scan and 5.1 ml
at the second. The CT image taken at time t0 is set to be the fixed image, the follow-up
CT image (time t1) the moving image. For visual inspection of the tumour growth from
the difference image, the tumours must not deform nonrigidly, but only in a rigid fash-
ion. This way tumour growth can be seen from the difference image, in relation with the
anatomy shown in the CT image. For an example of the difference image in these cases,
see Figure 2(b) and 2(e). Tumour growth is effectively concealed in the similarity only
based registration.

To get a coarse alignment between fixed and moving image a rigid registration is per-
formed first. Then the nonrigid registration is performed, using a B-spline grid spacing of
8 voxels, 4 resolutions, 300 iterations per resolution, and 5000 voxel samples to calculate
(the derivative of) the mutual information. For the nonrigid registration with the rigid-
ity penalty term, the tumour regions are defined by a crude manual delineation, setting
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Table 1: Average lung overlap.

before registration rigid similarity only with S rigid[uuu]

0.64 ± 0.22 0.91 ± 0.06 0.98 ± 0.01 0.97 ± 0.02

c(xxx) = 1.0 in the tumour regions and 0.0 elsewhere.
Accuracy of the registration is measured by calculating the lung overlap of the regis-

tered image with the fixed one. For this purpose automatic lung segmentations are made
with an algorithm based on the method by Hu et al. [3,13]. The overlap measure is defined
as

overlap � 2 · |L1 ∩L2|
|L1|+ |L2| , (5)

where Li is the set of all voxels from the lung, and where |Li| is the size of set Li. From
the results reported in Table 1, we see that both registrations lead to good lung overlap.
Employing a rigidity penalty term, constrains the deformation, leading to a slightly less
accurate lung overlap. Because of the (compact) support of the B-splines, a boundary
around the tumour is influenced by the control points within the tumour. The extent of
this boundary can be controlled with the B-spline grid spacing.

Manual segmentations of the tumours are used to evaluate their rigidity. Tumour vol-
ume measurements are performed to see if the registration is at least volume preserving.
In order to compare tumours volumes with different sizes we can not use the arithmetic
mean, because large tumours influence the arithmetic mean disproportionally. Therefore,
volume growth ratios are calculated, where every tumour volume is divided by its volume
at t1. For growth ratios it is better to use the geometric mean and the geometric standard
deviation, which are defined as:

µg = n

√

n

∏
i=1

ri , σg = exp

(√

1
n

n

∑
i=1

(lnri − ln µg)2

)

, (6)

where ri denotes the growth ratio of tumour i. We report the geometric mean growth
ratios and standard deviations in Table 2. It can be appreciated that volume is much better
preserved when applying the rigidity penalty term, compared to similarity only based
registration. Part of the residual volume difference can be explained by interpolation
artifacts due to resampling, as can be seen from the results for rigid registration. From
the deformation field, see Figure 2(f) (compare with 2(c)) is can also be appreciated that
nonrigid registration using the rigidity penalty term preserves rigidity locally.

3.3 Digital Subtraction Angiography

Evaluation is also performed on 2D clinical digital X-ray angiography image data, ac-
quired with an Integris V3000 C-arm imaging system (Philips). Digital Subtraction An-
giography (DSA) imaging often suffers from motion artifacts, due to motion of or within
the patient, see Figure 3(a) - 3(c). Nonrigid registration is needed to compensate for this.
We have 26 image sequences available of twelve different patients, each containing about
10 images. Images are mostly of size 512×512 and are taken of different locations in the
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Table 2: Geometric mean tumour volume ratios. Geometric means are calculated for four
growth groups and for all growth ratios. The second group for example is the group of
tumours that corresponds to a volume ratio t1/t0 between 1 and 3/2.

group t1/t0 t0 rigid similarity only with S rigid[uuu]

(0,1] 1.18 ×/ 1.08 0.99 ×/ 1.02 1.00 ×/ 1.03 0.96 ×/ 1.06
(

1, 3
2

]

0.84 ×/ 1.05 0.96 ×/ 1.04 0.97 ×/ 1.05 1.03 ×/ 1.03
(

3
2 ,3

]

0.48 ×/ 1.10 1.00 ×/ 1.02 0.79 ×/ 1.07 1.00 ×/ 1.02

(3,∞) 0.23 ×/ 1.13 1.02 ×/ 1.03 0.69 ×/ 1.12 0.99 ×/ 1.02

all 0.52 ×/ 1.29 0.99 ×/ 1.03 0.83 ×/ 1.10 1.00 ×/ 1.03

body, such as the abdomen, the brain, neck and lungs. Because it takes time for the con-
trast bolus to travel through the vasculature, different parts of the vasculature are visible
at different times. If the whole vasculature is to be extracted, all images have to be regis-
tered to some baseline image. For this, we choose the first image in each sequence, which
is taken before arrival of the contrast bolus, to be the fixed image. For this experiment
we register only one of the other images to the fixed image: the image showing most of
the vasculature is chosen as the moving image. The nonrigid registration of DSA images
can lead to undesired compression of the vasculature, as reported in [9] for CT-DSA. Al-
though the vessels are not intrinsically rigid, they are to be kept rigid, since there exists
no information to do otherwise: vessels are visible in one image and not in the other.

We applied a rigid registration first for coarse alignment. For the nonrigid registration
we use a B-spline grid spacing of 16 pixels, 2 resolutions, 600 and 300 iterations per
resolution, and 5000 samples for calculating (the derivative of) the MI. A crude manual
segmentation of the vessels is used for defining c(xxx).

To measure the success of the nonrigid registration, the Mean Square Difference
(MSD) of the background B is calculated. The MSD is defined as:

MSD =
1

|B| ∑
xxx∈B

(

F(xxx)−M(xxx+uuu(xxx))

)2

. (7)

Results are shown in the top row of Table 3, showing improvement of this measure for
nonrigid registration. Compare also Figure 3(d) with Figure 3(e) and 3(e). As a measure
of rigidity, vessel diameter measurements are carried out to quantify vessel compression.
In every one of the 26 images six diameter measurements are carried out. The geometric
mean of the vessel diameter ratios are reported in the bottom row of Table 3. Without
employing the rigidity penalty term the vessels are severely compressed, which is avoided
with the use of S rigid[uuu]. The shape of the deformation fields confirms this, see Figure
3(g) and 3(g).

4 Conclusions and Discussion

We have proposed a method to perform nonrigid registration, while keeping user-defined
local structures rigid. This is achieved by adding a rigidity penalty term to the registration
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3: Comparison of different registration algorithms for 2D DSA images. The ves-
sels are to be kept rigid, while motion artifacts are to be reduced by the registration. (a)
DSA baseline image: the fixed image, (b) DSA image after injection of the contrast bolus:
the moving image, (c) - (f) are difference images with the fixed image, (c) with the mov-
ing image, (d) with the result of rigid registration, (e) with the result of similarity only
nonrigid registration, (f) with the result of nonrigid registration using the rigidity penalty
term. The bottom row depicts parts of the resulting deformation field of similarity only
(g), and using the rigidity penalty term (h). The black box in Figure (e) and (f) denotes
the part of the deformation field that is depicted.

framework (1). The method is illustrated on a synthetic 2D example and evaluated on 2D
and 3D clinical data.
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Table 3: Results for DSA. Arithmetic means for the MSD and geometric means for the
vessel diameter ratios compared with t1.

no registration rigid similarity only with S rigid[uuu]

MSD 231 ± 205 215 ± 181 163 ± 105 171 ± 128

diameter 1.00 ×/ 1.00 1.00 ×/ 1.00 0.85 ×/ 1.07 0.99 ×/ 1.01

From the results we can see that the rigidity penalty term indeed penalises nonrigid
deformations, but complete rigidity is sometimes not achieved. Some reasons are the
following. 1) The rigidity penalty term is not a hard constraint, it is merely a tradeoff
between similarity and penalty. 2) For the case of modelling the deformation field with
cubic B-splines, the control points outside a rigid structure influence the inside. Therefore,
if complete rigidity is wanted, the two adjacent control points outside the structure must
also be kept rigid, for example by performing a dilation on the rigidity coefficient image
c(xxx). Of course the inverse is also true: the rigid part influencing the nonrigid part, thereby
restricting the deformation at the boundaries of the rigid structure. The extent of this
boundary is controlled by the B-spline control point spacing.

The linearity condition (2) might not be necessary, since it can be shown that orthonor-
mality of the Jacobian of uuu implies linearity of uuu. However, it might guide the optimiser
in reaching rigidity; this is interesting future work.
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Abstract

We describe a modification to distance based transforms used for non–linear
registration, such as radial basis function transforms, which is both simple
and novel. In the Constrained Distance Transform (CDT), distances are con-
strained to geodesics within the domain of the object being transformed. We
show that the modified method is capable of producing large meaningful de-
formations for both an extreme synthetic case and for real biological image
data. We further show that the method is suitable for interactive use on cur-
rent workstations.

1 Introduction
Spatially mapped databases are becoming increasingly common in biomedical research.
Some of these databases, such as EMAGE [1], contain volumetric models onto which
spatially organised data are mapped through non–linear spatial transformations.

Two connected problems that are frequently encountered when defining these trans-
formations are: Large deformations, such as those required for the pose of limbs or a
curvature in the main body of an object, frequently fail to produce meaningful results;
secondly, very different deformations are frequently required for two regions which are
close in Euclidean space but distant in terms of the object. This last situation is illustrated
in figure 1, in which despite the two points H and T being close in Euclidean space they
are distant in terms of the object being transformed. It is clear that Euclidean geometry
does not provide a good description of organisms with complex shapes and that a nat-
ural coordinate system might be more appropriate. A natural coordinate system can be
defined as a “coordinate system which requires the least residual deformation to explain
variability across individuals” [8]. Defining transformations which will uncurl the object
or deform the head without deforming the tail are not possible using current methods, but
it is just such transformations that are required to establish mappings between the assay
and atlas model images shown later in figure 4.

A feature of the images shown in figure 4 is the variability of the assay images, which
frequently do not correspond in either image values or their gradients. It is clear that, given
the state of existing automatic registration algorithms, some interaction or expert guidance
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is required to register the assay images to the atlas if the registration is to generate high
quality mappings.

Existing methods which allow large deformations include articulated and fluid mod-
els. Martı́n-Fernández et al. [4] have developed articulated models for registering hand
radiographs. In these models a skeleton composed of articulated rods is registered using
landmarks at the ends of the rods and displacements away from the rods are interpolated
using weighted combination of affine transforms. These models allow large deformations
but do not appear to be a natural model for objects that do not have rigid components and
in such cases a large number of articulated components might be required to achieve a
reasonable transformation. Fluid models based on solving viscoelastic systems have been
developed for registration with large deformations. While these models are often success-
ful in producing large deformations, they are computationally expensive, non–interactive
and do not always give biologically meaningful results: ”Hands and brains do not in
general deform like honey”[5].

Radial basis function (RBF) transforms are well suited to interactive use and are fre-
quently used successfully for defining transforms with small deformations. But unfortu-
nately these transforms do not behave well for large deformations or for large deformation
gradients and even for smooth transformations they may not give diffeomorphic mappings
[5].

In this paper we propose a simple modification to RBF transforms which allows them
to be used interactively to produce high quality mappings for large deformations on com-
mon desktop workstations.

Figure 1: From left to right: Volume rendering showing points in the head (H) and tail (T),
diagram showing the path for the constrained distance between H and T, distance trans-
form showing the distance of all points in the domain from H. In the distance transform
image the distance values have been normalised to the range 0 (black) to 255 (white) for
clarity.

2 Radial Basis Function Transforms
Because of the difficulty in computing warp transformations automatically, RBF trans-
forms based on manually or semi–manually defined landmark points are frequently used
in biomedical applications. These manually defined landmarks can be combined with au-
tomatically generated landmarks through various weighting schemes. It is also possible
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to combine landmark based registration with intensity based registration [3]. Landmark
points give the set of displacements between the defined coordinates of the point pairs,
but to achieve a warp transformation it is necessary to have a displacement function that
is defined for all points within the domain of the source object. RBF transforms, in which
the displacement at any point is given by the sum of weighted functions of the radial
distances from the landmark points, are frequently used in this role.

Given a source object Os(x,y) and a target object Ot(u,v), the displacements ∆u and
∆v defined by

∆u = u− x (1)
∆v = v− y (2)

can be computed using a RBF transform with the general form

∆u = Pu(x,y)+
i=N

∑
i=1

λib(ri) (3)

∆v = Pv(x,y)+
i=N

∑
i=1

µib(ri) (4)

where Pu and Pv are two first order polynomials (the affine component), N is the number
of landmark points, λi and µi are the basis function coefficients and b is the chosen basis
function. In these equations ri is the distance of some point p(x,y) from landmark point
li.

Two frequently used basis functions are the thin plate spline (TPS) and the multi-
quadric (MQ), which in 2D have the form

bT PS(r) = r2lnr2 (5)

bMQ(r) =
√

r2 +δ 2. (6)

The value of the MQ regularisation parameter δ is chosen so as to balance the smooth
variation in displacements against exact landmark point displacements. This parameter is
application dependent, but in practise it can be computed using a simple algorithm [2].

From a set of landmark points a system of linear equations may be written using the
coefficients of the polynomial (Pu or Pv) and the RBF (λi or µi). These equations, known
as the design equations, may then be solved using a linear system solver such as singular
value decomposition. In practise it is often beneficial to rescale the parameters to reduce
the condition number of the design matrix [2].

3 Distance Transforms
A distance transform maps a set of points within some domain of interest to their distance
from a reference domain. Most distance transform algorithms assume a single rectangular
(or at least convex) domain of interest, but in this work no such restriction is imposed
and both the domains may be non–convex. In this more general case, the distances are
evaluated along geodesics that are restricted to the domain of interest.

The distance transform algorithm used is based on a region growing algorithm de-
scribed by Piper and Granum [7], but which has been implemented using efficient mor-
phological primitives based on interval coding [6]. Given two domains, Ωr the reference
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domain and Ω f the domain specifying the region of interest, a domain with a thin shell Ωi
is iteratively expanded from it’s initial domain corresponding to the reference domain Ωr.
At each iteration Ωi is dilated and clipped by it’s intersection with Ω f until Ωi becomes
the null domain /0. At each iteration the current distance is recorded in a value table which
covers the domain Ω f . This is shown in algorithm 1. To approximate Euclidean dis-
tances, the domains are rescaled using a scale parameter and dilation is performed using
a circular structuring element with a radius equal to the scale parameter. This rescaling is
relatively efficient because the morphological primitives are based on interval processing
and the number of intervals increases with a domain’s linear dimension not it’s area.

Algorithm 1 Distance Transform.
Require: Ω f ,Ωr

1: c← initial connectivity
2: s← 0
3: Vd ← new integer value table with domain Ω f
4: Ωi←Ωr
5: while Ωi 6= /0 do
6: s← s+1
7: Ωp←Ωi
8: Ωi← diffdom(Ωp,dilation(Ωp,c))
9: Ωd ←Ωi∩Ω f

10: Vd |Ωd ← s
11: end while

4 Constrained Distance Transforms
RBF transformations are relatively easy to implement and are well suited for interactive
use. But in practise there are many situations in which they fail to produce useful trans-
formations, such as where large deformation gradients are required.

In this paper we propose that a solution to the problem of interactively registering
images with large deformations can be found through reconsidering the distances used by
the RBFs (and other distance based transforms) and constraining the paths along which
the distances are evaluated to be geodesics that lie within the domain of the source object.
With regard to figure 1, it is clear that the head and tail are close in Euclidean space and
that any landmarks which create a large displacement for the head will result in a similar
displacement for the tail. However if the path along which this distance is measured is
constrained to a geodesic within the object’s domain, then the head is far from the tail
despite it’s being close in Euclidean space. By using distances constrained to the source
object’s domain, large displacements applied to the head may be effectively independent
of those applied to the tail. All that is required is to substitute constrained distances in
place of all Euclidean distances in the RBFs. We call this transformation the Constrained
Distance Transform (CDT).

When evaluating the displacement of the source domain at some point pi, using RBFs
defined using landmarks {l j}, then all distances between pi and l j must be computed for
all i and j. Because constrained distances are considerably more expensive to compute
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than Euclidean distances efficiency gains can be made by caching the the distance trans-
forms, with one distance transform cached per landmark pair. Using this approach the
cached distance transforms may be created and destroyed incrementally in step with the
interactively defined landmark points.

In this work the transformation of both object domains and values are accomplished
using non–regular triangulated conforming meshes. The use of conforming meshes sim-
plifies image re–sampling in situations, such as limb articulation, which would otherwise
give rise to large mesh element deformations requiring complex re–meshing schemes.
Objects are transformed by first defining a mesh covering the source domain. This mesh
then has a displacement, computed by evaluation of the radial basis function transform,
associated with each of it’s nodes. The mesh is first used to forward transform the source
object’s domain and then, if the source object has values associated with it, a new value
table is created for the transformed domain and the new values are set using a sweep–line
algorithm which scans through the transformed domain setting it’s values from the source
object via the current mesh element’s inverse transform.

5 Results
An initial 2D implementation of the CDT has been evaluated using both synthetic and
real biological images. In all cases a multiquadric RBF was used and the approximate
Euclidean distance transform scale factor was set to 10.0.

A pair of synthetic images was generated corresponding to a large deformation prob-
lem which is known to be problematic for unconstrained RBFs [5]. These images are
shown in figure 2. The ‘C’ image has a domain that is an incomplete annulus, with radii
of 100 and 200 pixels and a gap sector of 30◦. The ‘I’ image is an axis aligned rectangle
with dimensions 100 × 800 pixels. Eighteen landmark pairs were computed for the C
and I images during their generation and these were used to transform both the C to the
I and the I to the C images using a CDT. The resulting images clearly show that CDTs
are capable of registering objects requiring large deformations. that are problematic for
unconstrained RBFs.

An assay image was selected from the EMAGE database in which the head and tail are
close in Euclidean space. The image was segmented from its background using interactive
grey value thresholding combined with connected component labelling. Landmark points
were then evenly distributed around the segmented image, with all the landmarks having
zero displacements except for those in the tail which had a displacement set away from the
head. Figure 3 shows this image together with the landmark points and the displacements
set. This figure also shows the results of applying a CDT and an unconstrained RBF
transform to the image. When a CDT was applied, the head was not subjected to any
significant deformation despite the large deformation experienced by the tail. However
the unconstrained RBF transform resulted in large deformations to both the head and the
tail. In both cases the same landmarks and displacements were used.

Figure 4 shows a set of eight typical 2D assay images from a set of submissions to
the EMAGE database. This figure also shows a 2D projection of the corresponding 3D
atlas model. These images display the typical variation that is seen in both the pose of
the organisms and in their image values. Unconstrained RBF transforms are unable to
map the assay images onto the atlas image satisfactorily. Attempts to do so result in folds
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of the source image and a confused image in which multiple foreground regions may be
blended with background. All assay images were first segmented from their background
using interactive grey value thresholding combined with connected component labelling
and any extraneous parts (such as the allantois) were removed. The segmented images
were then mapped to the 2D atlas image interactively using CDTs, with the landmarks
being placed at plausible correspondences. Figure 5 shows the successfully mapped assay
images together with the target atlas image. For these images the number of landmark
pairs used varied between 31 and 45.

In it’s current implementation, the CDT computation time is dominated by the time
taken to compute the distance transforms, with this accounting for approximately 99% of
the total computation time. To compute the approximate distance transform, in which all
distances from a single landmark are computed within the domain of the C image (outer
diameter 400 pixels), takes 2.1s in the worst case on a 2.2GHz Opteron CPU using the
approximate Euclidean distance transform with a scale factor of 10.0. This is the time
delay between a user entering a landmark pair and seeing the displaced image computer.

6 Conclusions
RBF transforms defined using landmarks points are easily implemented and are frequently
used for interactive non–rigid registration, however it is well known that these functions
often fail to produce satisfactory warps for large deformations. A novel modification of
the method has been presented which makes use of constrained distances. The CDT has
been shown to produce meaningful results for a synthetic dataset that is known to be prob-
lematic for the unmodified method. It has also been shown to be capable of decoupling
the displacements of regions that are close in Euclidean space, provided that an adequate
segmentation can be achieved. Further, the CDT has been shown to produce satisfactory
mappings, requiring large deformations, between biological assay images and a standard
atlas model.

The computational cost of the approximate distance transforms currently restricts the
size of image that can be transformed interactively. With one distance transform being
computed for each landmark pair, the source is limited to 2D objects of a few hundred
pixels in each dimension, such as the C image. Although it is possible to use a lower scal-
ing factor in the approximate Euclidean distance transform, this results in a lower quality
mapping which may be unacceptable. One method of making the method interactive,
even for 3D data, is to map the atlas to the assay image, using landmarks fixed in the atlas
image and pre–computed distance transforms. The resulting transform can then easily be
inverted with mesh based implementations.

Future developments will include the addition of compact RBFs and the extension of
the work to 3D transformations.
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Figure 2: C and I dataset. Counter clockwise from the left: I object, C object showing the
positions of the landmark points, overlay of the C object warped to the I, overlay of the I
object warped to the C.

Proceedings of the Workshop on Image Registration in Deformable Environments, Edinburgh, UK, Sept. 2006

Page 58



Figure 3: From left to right: Source image (from EMAGE) showing fixed points and
displacements, source image transformed using a CDT and source image transformed
using an unconstrained RBF transformation.

Figure 4: EMAGE TS12 dataset: Outer images are assay images to be mapped to an atlas
image (centre).
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Figure 5: EMAGE TS12 dataset: Outer images are the registered assay images mapped
to an atlas image (centre).
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Abstract

We show that the sum of squared differences, commonly used as a dis-
similarity measure in variational methods is biased towards high gradients
and large intensity differences, and that it can affect drastically the quality of
motion estimation techniques such as deformable registration. We propose
a method which solves that problem by recalling that the Euler-Lagrange
equation of the dissimilarity measure yields a force term, and computing the
direction and the magnitude of these forces independently. This results in a
simple, efficient, and robust method, which is intensity-unbiased. We com-
pare our method with the SSD-based standard approach on both synthetic
and real medical 2D data, and show that our approach performs better.

1 Introduction and Motivation
The sum of squared differences (SSD) dissimilarity measure is often used in computer
vision applications because of its computational efficiency. Among other applications, it
is used for variational methods for motion estimation such as optical flow or deformable
registration. Since the optical flow and the deformable registration problem are basically
equivalent, we will from now on focus on deformable registration.

The variational deformable registration task is posed as a minimization of a certain
energy functional. The functional I = D +S consists of two components, the dissimi-
larity measure D to be minimized and the regularization component S which is used to
enforce the well-posedness of the problem.

The minimization problem is mostly solved by deriving and solving the correspond-
ing Euler-Lagrange partial differential equations. The Euler-Lagrange equation can be
expressed as A(ϕ)(x) = f (ϕ)(x) [6]. Here ϕ is the deformation function while the dif-
ferential operators A and f are resulting from the regularizer and from the dissimilarity
measure respectively [6].
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(a) Reference (b) Template (c) Initial Difference (d) Difference

(e) Initial Difference (f) Intensity-Biased (g) Intensity-Unbiased

Figure 1: Upper Row: Illustration of the biased behaviour of the unmodified SSD ap-
proach on a synthetic “coffee bean”. (a) and (b) are the input images for the regis-
tration. The initial difference is presented in (c) and (d) shows the result of the al-
gorithm. Due to the intensity values, the convergence is faster in the left-hand side of
the “bean”. This way, the regularizer is saturated by displacements which result mostly
from high gradient regions of the image. This behaviour we refer to as intensity-biased.
Lower Row: Comparison of the registration results on medical data. The images present
differences between reference image R and the template T . (a) Initial difference image.
Notice the large intensity differences at the border of the patient; (b) Difference after the
unmodified SSD-based approach. While the large displacement at the border of the patient
is registered well, the displacement inside the patient is not corrected with the SSD-based
approach due to low intensity differences and gradients; (c) Difference after registration
with our intensity-unbiased modification. The displacements inside the patient are also
corrected.

An interpretation of the Euler-Lagrange equation is helpful as a motivation for the
method we propose in this paper. The operator A can be seen as describing a reaction of a
body, in our case the image, to a set of forces f . It relates the forces f to the deformation
ϕ . The acting force f is computed by the derivation of the Euler-Lagrange equations from
the dissimilarity term D .

As shown in Figure 1, the force resulting from the SSD dissimilarity term is highly
biased depending on the intensity values of the two input images. At a certain point, the
force depends on the gradient of one of the images and the difference of the two images at
this point. Together this leads to large forces at high gradients and large image differences.

Hence, the unmodified use of the SSD implies the assumption that objects evolve dif-
ferently depending on their intensity and background. This would mean that for example
bright objects in front of a dark background move or deform more than darker objects. We
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refer to this behaviour as intensity-biased. A basic illustration of the problem is presented
in Figure 1 on synthetic images and an example from a medical domain.

For some applications like morphing where the only goal is to make the images look
similar, this is not a real drawback. Small intensity differences are not very noticeable,
hence they do not have to be corrected as much as the larger ones. However if physi-
cal quantities like real motion are estimated from the results, the intensity-bias problem
becomes crucial. In these applications, not the appearance is important but the correct-
ness of the underlying displacement field. In many settings there is no reason why an
intensity-biased assumption should be made. Besides not being justified for many appli-
cations, this assumption has several drawbacks. As shown in Figure 1 it can lead to slow
convergence in certain areas with low gradients and/or low intensity differences between
the reference and the template image. A consequence is that the regularizer is saturated by
displacements resulting from the image regions with faster convergence. Thus the min-
imum solution of Equation (1) tends to be biased towards the regions of the image with
high intensity differences.

In practice these drawbacks are present in many medical imaging modalities such as
the computed tomography (CT) shown in Figure 1, where high gradients and intensity
differences are present mostly on the boundary of the patient. The actually interesting
regions however, are inside the patient and most often have a rather similar intensity.

To the best of our knowledge, this drawback of the SSD for respective applications
has not yet been addressed in the literature.

We state that for the registration task the result should not be dependent on the partic-
ular intensity values of the input images at one point, that is the gradient and the intensity
difference. This way, although the method stays intensity-based, it becomes intensity-
unbiased.

Instead of computing the forces directly from the Euler-Lagrange equations corre-
sponding to the SSD, we suggest to perform the computation of the force directions and
the computation of the force magnitude independently. Using this approach, we mod-
ify the standard SSD method in order to establish a simple method which is intensity-
unbiased. The developped algorithm can be seen in the framework of ”‘demons”’ regis-
tration by Thirion [8].

With this modification, the direction of the forces is the same as with the standard un-
modified SSD-based approach. The magnitude of the force vectors however is computed
independently. The magnitude is not based on the intensity difference and the gradient at
one point but it is computed according to the structure of the neighbourhood of the point.
This way, the actual displacement of the image point, which can be estimated from the
local neighbourhood, influences the magnitude of the force at that point rather than only
the information at that point.

Some work that might be regarded as similar is the research on robust estimation
of optical flow. To this end, several different error measures for the difference of the
images have been proposed, see for example [2]. Among these measures is also the L1
norm, which results in the sum of absolute differences (SAD) dissimilarity measure when
applied to the difference of the images. While the SAD is less intensity-biased than the
SSD because the magnitude of the force is independent on the difference of the images,
there is still a bias present based on the magnitude of the gradient. Furthermore, the
motivation for the SAD in the context of robust estimation is not to remove the bias but
to weigh the outliers less heavily. One other difference is that the work on robustness
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is performed on the level of the energy functional while the approach presented here
modifies the forces on the level of the Euler-Lagrange equations.

2 Method
This section presents a simple and efficient method which can be used for the separate
computation of the direction and the magnitude of forces for variational algorithms. First
however, we briefly introduce the used methods and notation.

2.1 Definitions and Problem Setting
The standard methods for deformable registration used in the following are described in
detail in the literature, for example in [6, 1, 7, 4].

We define an image I to be a mapping I : Ω → B from a respective functional space
H from the d-dimensional image domain Ω = [0,1]d ⊂ Rd to a bounded interval of real
numbers B = [0,1]⊂ R. For our applications the dimension is restricted to d = 2,3.

In the following, we consider the registration task of deforming the template image
T such that it becomes similar to the reference image R. The deformation is described
by the deformation function ϕ , which is a combination of the identity mapping Id and a
displacement field u, such that ϕ = Id +u. Here, ϕ , Id and u are all functions from a space
F , with F = { f | f : Ω → Ω}.

For the computation of the deformation function we define an energy functional
I : H ×H ×F → R to be minimized as

I [R,T,ϕ] = D [R,T,ϕ]+αS [ϕ] . (1)

Here I consists of a dissimilarity term D and a regularizer, also known as smoothing
operator, S whose influence is governed by a scalar parameter α ∈ R, α ≥ 0.

As a dissimilarity measure we use the SSD measure

DSSD[R,T,ϕ] =
1
2

∫
Ω

(R(x)−T (ϕ(x)))2 dx . (2)

For the regularizer component S many different terms can be used. The actual reg-
ularizer component is not essential for the following since the problem is not restricted
to the choice of one special regularization term. The most simple term is the isotropic
homogeneous diffusion term and it is used in this paper. It is defined as

S [ϕ] =
∫

Ω

d

∑
i=1

|∇xϕi(x)|2 dx =
∫

Ω

d

∑
i=1

〈∇xϕi(x),∇xϕi(x)〉 dx , (3)

where ∇x is the spatial gradient operator ∂/∂x and 〈·, ·〉 denotes the scalar product.
With this choice of dissimilarity and regularizer component, this model represents the

well-known Horn and Schunck approach [5].
In order to minimize the functional I we first have to derive the Euler-Lagrange

equation. The deformation function which solves this equation is set to be the solution of
the registration problem. Because of the linearity of the functional, the Euler-Lagrange
equations can be derived independently for the dissimilarity and the regularization term.

The Euler-Lagrange equation derived from the dissimilarity component D is
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fSSD(ϕ)(x) =− [R(x)−T (ϕ(x))]∇xT (ϕ(x)) , (4)

and will also be referred to as force. This paper deals with the modification of this term.1

The Euler-Lagrange equation resulting from the regularizer S is

A(ϕ)(x) = ∆ϕ(x) , (5)

with ∆ being the Laplacian operator.2

The resulting Euler-Lagrange equation for the functional I can be expressed using
the differential operators A and f as

−αA(ϕ)(x) = f (ϕ)(x) . (6)

Here f stands for a force term corresponding to a chosen dissimilarity measure, such
as fSSD or fSAD defined in the following. Using a discretization technique such as the
standard finite difference scheme we obtain the discretized form of the upper equation.
This non-linear partial differential equation is usually solved by a gradient descent method
which is also the approach we take here [1]. Furthermore we can employ a Gaussian
resolution pyramid in order to allow for larger displacements [1].

Since we compare the method presented in this paper also to the SAD-based approach,
we present the definition of the SAD

DSAD[R,T,ϕ] =
∫

Ω

|R(x)−T (ϕ(x))| dx , (7)

as well as the corresponding Euler-Lagrange equation

fSAD(ϕ)(x) =− R(x)−T (ϕ(x))
|R(x)−T (ϕ(x))|

∇xT (ϕ(x)) . (8)

This SAD-based force can be used as an alternative to the SSD-based term.

2.2 Modification of the Force Term
If we take a closer look at the Equation (4) we can see that two factors influence the
magnitude of the forces. The main part of the SSD-based force term used in (4) is
[R(x)−T (ϕ(x))]∇xT (ϕ(x)). We see that the force at point x is proportional to the dif-
ference between the reference R(x) and the deformed template T (ϕ(x)) at this point.
Furthermore, it is proportional to the gradient magnitude of the deformed template image
‖∇xT (ϕ(x))‖ at the same point which also depends on the intensities at the point.

To sum up, the above properties of the SSD-based measure cause larger forces for
large image intensity differences and gradients than for others. Since the forces cause
the deformation, this implies the assumption that points with certain intensities are more
likely to move than others. The resulting behaviour is illustrated in Figure 1.

The same problem occurs for the SAD-based approach. In Equation (8), we can see
that although the difference of the intensities is normalized, such that only the sign of the

1The force term is dependent not only on the point x but also on the images R and T and the deformation
function ϕ . However, for the sake of simplicity we will drop these arguments in the following.

2For scalar-valued functions g : Rd → R, the Laplace operator is ∆g = ∑
d
i=1 ∂xi,xi g. For the vector-valued

case, G : Rd → Rm, the Laplace operator is defined component-wise as ∆G = (∆G1, . . . ,∆Gm)T .
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difference influences the force, the bias is still present through the unscaled magnitude of
the gradient.

Therefore we propose a modification of the standard SSD-based force term in order
to be able to perform intensity-unbiased registration. To this end we separate the compu-
tation of the direction and the magnitude of the force vectors.

In our approach we keep the direction of the vectors computed with the SSD-based
method, which is the direction of ∇xT (ϕ). We make this choice since forces at edges of
the body, orthogonal to the edges are meaningful and since the force directions do not
cause the intensity-biased behaviour. The direction of the forces is then the normalized
force

fn(x) =
fSSD(x)

‖ fSSD(x)‖
=− R(x)−T (ϕ(x))

|R(x)−T (ϕ(x))|
· ∇xT (ϕ(x))
‖∇xT (ϕ(x))‖

. (9)

Regarding the magnitude of the force vectors, several alternatives are possible. We can
model these alternatives by introducing a function m : Ω → R which assigns a magnitude
to a force at every point of the domain.3 The same general concept for computing the
forces with separate terms for direction and magnitiude is used in [8]. This way we get
the following modified formula for the computation of the forces

f (x) = m(x) fn(x) . (10)

The most simple alternative for m is to not further modify the force term from Equa-
tion (9), that is m(x) = 1, ∀x ∈ Ω. For images without noise this approach works sat-
isfyingly, compare Table 1. In presence of noise however, the forces caused by noise
might cause a wrong behaviour, since they have the same magnitude as all other force
vectors. One possible approach to this problem might be to assume that the forces caused
by random noise will have different directions and thus cancel each other out. This is ac-
tually also supported by the regularizer component S used in the method. For some tests,
performed with Gaussian and uniform noise of different magnitudes on synthetic images
this approach also produced good results. The question is however, how this approach
behaves for general images from real applications. In order to develop a more robust ap-
proach without having to rely on the quality of noise, a modified method for magnitude
computation is needed.

The basic idea behind the modification we introduce for the magnitude computation
is to make the magnitude dependent not on the values at a single point but on the structure
of the neighbourhood of the point.

The intuition behind the method is that if large displacements occur, there is a differ-
ence between the two input images not only at one point but also in the surrounding area.
In order to make this decision intensity-unbiased we are not interested in how large the
difference of the intensities is but only if it is present.

We implement the above intuition by performing the following steps. First, we com-
pute the difference between the reference and the template image D(x) = R(x)−T (ϕ(x)).
In order to make the method more robust in presence of noise, we filter the difference D(x)
by a median filter and take the absolute value of the result. In our experiments, this was
enough to remove the effects caused by noise. This yields a signal, which is very close to

3Again, m is dependent on more parameters than only the domain point (R,T ,ϕ) which we drop for simpler
notation.
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(a) Reference (b) Template (c) Initial Difference (d) Displacement Field

Figure 2: Input for the study on synthetic data. We display the input reference and tem-
plate images, the initial difference and the displacement field used to generate the template
from the reference. The results of the experiments are presented in Table 1 and Figure
3.1.

zero in the regions which have no real difference and larger in other regions, depending
on the intensities. Now we perform a thresholding step in order to remove the still present
bias and set all values below the threshold to 0 and the values above or equal the threshold
to 1. This way, the magnitude is no longer dependent on the magnitude of the intensity
differences of the two images but only on their existence.

3 Results and Evaluation
We test the proposed method on synthetic and medical 2D data. While the medical data
confirm the practicability of the proposed method for real applications, the synthetic test
allow us a quantitative evaluation.

We use a gradient descent approach in order to overcome the non-linearity of the de-
formable registration problem [1] and a homogeneous isotropic regularization term for all
experiments. For the solution of the arising algebraic linear systems we employ a multi-
grid solver [3]. The algorithm is implemented in Matlab with no performance tuning. The
runtime for one iteration step (computing forces, solving the linear system and applying
the deformation) of the gradient descent method is approximately 0.75 seconds for a 2562

image. The runtime overhead needed for the proposed method is approximately 10-15%.
For the comparison of the different methods we try to set the parameters as similar

as possible in order to achieve a fair evaluation. For all methods we use the same reg-
ularization parameter α = 1.0, the same number of iterations, which are sufficient for
convergence of all methods, and we scale the forces, such that the resulting mean force
magnitude is approximately the same for all methods.

3.1 Evaluation on Medical Data
The medical data used for this experiment are 2D slices from an abdominal CT scan.
Because in this case we deal with real data we have no ground truth displacement. So we
can only perform a qualitative comparison of the different methods.

We compare the SSD-based method and our approach by visual inspection of the
difference images between the reference R and the deformed template image T after the
registration process. We can see a clear improvement in small gradient and low intensity
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(a) SSD-based (b) SAD-based (c) modified

(d) SSD-based (e) SAD-based (f) modified

Figure 3: Comparison of the results on synthetic data with 10% uniform noise. The in-
put data is shown in Figure 2. The upper row presents the difference images after the
respective algorithms. Please notice that the maximal errors are lower for the modified
method (range:0-0.25) than for the SSD and SAD-based approaches (range: 0-0.45). The
lower row illustrates the improvement in the displacement field by displaying the norm
of the error fields, compare also Table 1. Here the black values mean that the error of
the computed displacement is low. Clearly, the modified intensity-unbiased approach per-
forms better than the SSD and the SAD-based method in the inner area with low intensity
differences and low gradients. Of course, the error stays large for all methods in regions
with no structure.

difference areas when using our method. The results are displayed in Figure 1. The
registration in this experiment is performed using a Gaussian resolution pyramid.

3.2 Evaluation on Synthetic Data
Comparison of difference images has a drawback that only the apparent similarity is com-
pared - small intensity differences are not visible. For our purposes however, it is more
important to examine the computed displacement fields. In order to be able to perform
this quantitative evaluation of the proposed method, we use synthetic data sets. We em-
ploy a ground truth displacement field in order to compute the template from the reference
image and we also use this synthetic setting to test the methods in presence of noise.

We compare the performance of the standard SSD-based method, the SAD-based
method, the simple modification where all force magnitudes are normalized to unity and
finally our approach.
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Results on Image SSD SAD Unit Force Our Method

no noise mean 1.3671 1.1311 0.9525 0.9793
std. dev. 1.5760 1.2636 1.1066 1.1371

10% uniform mean 1.3802 1.1605 1.5652 1.0047
std. dev. 1.5839 1.2666 1.2098 1.1634

20% uniform mean 1.3890 1.2010 1.5693 1.1471
std. dev. 1.5918 1.3232 1.2286 1.2216

Results on ROI SSD SAD Unit Force Our Method

no noise mean 3.2495 2.5384 2.0943 2.2077
std. dev. 1.4085 1.1965 1.1692 1.1288

10% uniform mean 3.2639 2.5792 2.4610 2.2448
std. dev. 1.1500 1.2015 1.3454 1.1833

20% uniform mean 3.2798 2.7180 2.6505 2.4385
std. dev. 1.4202 1.2494 1.3602 1.2561

Table 1: Quantitative results of the phantom study. The upper table shows the results for
the complete image, the lower for the region of interest inside the phantom where the low
intensity differences and gradients are dominating. We compute the norm of difference
between the ground truth uGT and the estimated displacement field u and give the mean
value and the standard deviation of ‖uGT −u‖. The mean of the uGT is 3.5459 with a
standard deviation of 1.5477. The methods tested are the SSD and SAD-based approach,
the simple modification with forces normalized to unity and our intensity-unbiased mod-
ification. Tests were performed with no noise and with 10% and 20% uniform noise. The
modified method presents a clear improvement over both the SSD and the SAD-based
approach. All values are in pixel units.

The used images are generated with the Matlab inbuilt phantom function and the dis-
placement field is a combination of Gaussians in each dimension, see Figure 2. For ex-
periments with noise with use a uniform noise in range of 10% and 20% of the maximal
image intensities, that is [0,0.1] and [0,0.2]. For the experiments we do not use a Gaussian
pyramid since we want to isolate the behaviour of the methods and the pyramid implicitly
influences the results in presence of noise by smoothing on the low-resolution levels.

We compare the methods by examining the norm of difference field e = ‖uGT −u‖
between the ground truth uGT and the displacement field u estimated by the respective
method. The error norm is inspected by computing the mean value and the standard
deviation of e.

The parameters for the proposed approach were determined experimentally. However,
they did not have to be changed during the tests. The size of the neighbourhood for the
median filter is 5×5 and the threshold is ε = 0.025.

The results of the experiments are summarized in Table 1 and Figure 3.1. We can see
a clear improvement of the error of the displacement field with our method in regions with
low intensity differences and small gradients. This leads to an overall better performance
of our approach. The simple force-normalizing approach performs well for the case with
no noise, however it is very sensitive to noise in the homogeneous areas.
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4 Summary and Further Work
We address the problem of the intensity-bias of the SSD measure for variational motion
estimation methods. The proposed solution separates the computation of the direction and
the magnitude of the forces, which are usually yielded from the Euler-Lagrange equations
corresponding to the SSD. While we keep the direction of the forces, we modify the mag-
nitude in such way that it is not biased to large intensity differences or high gradients.
The robustness is improved by setting the magnitude to zero in regions where the forces
are resulting only from the presence of noise and not from real deformations. The pro-
posed method is tested on 2D synthetic images and real medical data and shows a better
performance than the standard SSD and SAD-based techniques.

Our further work on this topic will include an integration of the methods presented
here into an existing framework for deformable registration of 3D medical images. Fur-
thermore, we plan to investigate the behaviour of other dissimilarity measures like the
Cross-Correlation, Correlation Ratio and Mutual Information with respect to the problem
of the intensity-bias.
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bert Krüger, and Christian Perwass, editors, DAGM-Symposium, Informatik Aktuell,
pages 476–488. Springer, 2000.

[8] J.P. Thirion. Image matching as a diffusion process: an analogy with maxwells
demons. Medical Image Analysis, 2(3):243–260, 1998.

Proceedings of the Workshop on Image Registration in Deformable Environments, Edinburgh, UK, Sept. 2006

Page 70



GPU implementation of deformable pattern
recognition using prototype-parallel

displacement computation

Yoshiki Mizukami, Katsumi Tadamura
Yamaguchi University

2-16-1 Tokiwadai, Ube, 754-8611 Japan
mizu@yamaguchi-u.ac.jp

Abstract

In this paper, for the reduction of the computation time of a deformable ap-
proach to pattern recognition, prototype-parallel displacement computation
on GPUs (PPDC-GPU) is proposed. The displacement computation used in
this study has the virtue of simplicity and consists of locally parallel process-
ing, therefore it is suitable for the implementation on graphical processing
units (GPUs). In the proposed method, large plates of image and displace-
ment function are generated from input images, prototypes, and displacement
functions on the main memory, and then these plates are transferred collec-
tively to the video memory. After computing the displacement between the
input image plate and the prototype image plate on the GPU, the displace-
ment function plates are transferred back to the main memory. The simula-
tion results show that PPDC-GPU reduces the computation time to less than
10% of the ordinary implementation on CPUs. This study especially focused
on handwritten character recognition, since it is one of the most fundamental
and important problems in the field of computer vision and pattern recog-
nition. However the proposed framework can be widely applied to other
problems, for instance, face recognition or object recognition.

1 Introduction

In these years, the performance of graphical processing units (GPUs) has been remark-
ably improved as hardware for computer graphics [1]. The main features are fast access
to video memory, high frequency clock, and multiple programmable pipelines. Many
researchers have applied GPUs to various numerical problems [2], and made it possible
to shorten the computation time without sacrificing the degree of accuracy. In the field
of computer vision, Yang et al. implemented a stereo matching method on GPUs [3].
Fung et al. utilized plural GPUs for speeding up the eigenspace approach [4]. Strzodka
et al. implemented on GPUs an image registration method proposed by Clarenz et al. in
2002 [5, 6]. In addition, signal processing problems were also studied such as fast Fourier
transformation and artificial neural networks [2, 7]. Recently linear algebra operators
were effectively implemented on GPUs [8, 9] and applied to physical simulations such as
fluid motion.
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Deformable approaches have been studied since 1970s. Widrow pointed out that rigid
templates cannot deal with the shape variation of the input image, and proposed a de-
formable template [10]. Burr proposed a dynamic cooperative method for computing the
deformation between images [11]. Kass et al. proposed active shape models for object
tracking [12]. Bajcsy et al. proposed a multiresolutional elastic matching method for ana-
lyzing brain images [13]. Yuille proposed a deformable template for face recognition [14].
Lades et al. proposed an object recognition method using dynamic link architecture [15],
where Gabor feature was employed for the image representation and a simulated anneal-
ing method was utilized for minimizing the evaluation function. Jain et al. proposed
a deformable template in the framework of Bayesian optimization algorithm for object
detection [16].

Handwritten character recognition is one of the fundamental and important problems
in the field of image processing and has greatly influenced other problems such as face
recognition and object recognition. Many researchers have investigated the processes
of feature extraction and classification in this area. Deformable or elastic approaches
in which the displacement between input and prototype patterns is computed have also
been studied (e.g. [17, 18, 19, 20, 21, 22]). After reviewing the previous works, it was
thought that the complexity of the procedure and the high computation cost were the main
drawbacks of most of these deformable approaches.

In 1994, a deformable approach to handwritten character recognition was proposed [23,
24], which was originally inspired by a regularization method for a stereo matching prob-
lem [25]. The deformable approach has the virtue of simplicity, and is also applicable
to handwritten Chinese character by using the processes of feature extraction and statis-
tical classification together [26]. Although the simple iterative equation could efficiently
compute the displacement, further reduction of computation time was desired. To miti-
gate this problem, gradual prototype elimination was proposed in 2000 [27], where the
computation time was reduced to 1/3 without degradation of recognition performance.
However, the required computational load still fails to match the ability of present com-
mon computers.

This study proposed an implementation of the displacement computation on GPU pro-
cessors and achieved the drastic reduction of computation time, making the deformable
recognition approach more practical in the field of computer vision and pattern recogni-
tion. The implementation was designed by considering the characteristics of GPUs and
the deformable recognition approach. The NIST handwritten database was used in the
simulations to assess the validity of the proposed method. The focus was on handwrit-
ten character recognition, however the proposed implementation can be widely applied to
other problems, for instance, face recognition or object recognition.

2 Proposed method

Candidate prototypes are selected for computing the displacement based on the result of
rough classification. The number of the candidate prototypes is referred to as L. In the
final classification, the distance between an input pattern and a prototype is determined
based on the Euclidean distance considering the computed displacement. The category of
the prototype with the smallest distance is employed as the classification result. The pro-
posed method is mainly composed of two concepts, namely, displacement computation
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Figure 1: displacement function (u, v)

with the coarse-to-fine strategy and a novel implementation on GPUs. These concepts are
described below.

2.1 Displacement computation

The displacement computation in the proposed method [23, 24] was originally based on a
regularization method for a stereo matching problem [25]. As shown in Fig. 1, input and
prototype images are referred to as f (x,y) and g(x,y), respectively. The horizontal and
vertical displacements at the coordinate (x,y) on g are represented by the set of displace-
ment functions, (u(x,y),v(x,y)). The optimum displacement between the two images can
be obtained by minimizing the following functional E,

E(u,v) = P(u,v)+λS(u,v), (1)

P(u,v) =

∫ ∫

( f (x+u,y+ v)−g(x,y))2dxdy, (2)

S(u,v) =
∫ ∫

(u2
x +u2

y + v2
x + v2

y)dxdy, (3)

where P is the Euclidean distance considering the computed displacement, S is a stabi-
lizing functional which imposes a smoothness constraint on (u,v), and λ is a so-called
regularization parameter controlling the effect of S. From the framework of calculus of
variations, the following iterative equations are derived from Eq. (1),

u[t+1](x,y) = ū[t] − 1
4λ

fx(x+u[t],y+ v[t])

( f (x+u[t],y+ v[t])−g(x,y)), (4)

v[t+1](x,y) = v̄[t] − 1
4λ

fy(x+u[t],y+ v̄[t])

( f (x+u[t],y+ v[t])−g(x,y)), (5)
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where (ū[t], v̄[t]) is the average of four neighborhoods. That is,

ū[t](x,y) = (u[t](x+1,y)+u[t](x,y−1)

+u[t](x−1,y)+u[t](x,y+1))/4, (6)

v̄[t](x,y) = (v[t](x+1,y)+ v[t](x,y−1)

+v[t](x−1,y)+ v[t](x,y+1))/4. (7)

It should be noted that the iterative equations of (4) and (5) require the subpixel value
of f , fx and fy in the second terms of the right side, which are calculated by using the
bilinear interpolation with the four surrounding pixel values.

In this study, for the improvement of computation stability, instead of Eqs. (4) and
(5), the modified iterative equation was adopted [23, 24],

u[t+1](x,y) = ū[t] − 1
4λ

fx(x+ ū[t],y+ v̄[t])

( f (x+ ū[t],y+ v̄[t])−g(x,y)), (8)

v[t+1](x,y) = v̄[t] − 1
4λ

fy(x+ ū[t],y+ v̄[t])

( f (x+ ū[t],y+ v̄[t])−g(x,y)), (9)

where the averaged displacement function (ū[t], v̄[t]) is also used in the second terms of
the right side instead of (u[t],v[t]).

To avoid the solution being trapped in the local minima and to compute the displace-
ment with a small number of iterations, the coarse-to-fine strategy should be very promis-
ing [28, 29]. The number of stages for the coarse-to-fine strategy is referred to as N. N−1
lower resolutional sets of images with 1/(2N−n)2 of the original size, fn and gn, are pro-
duced from the original set in preparation for computing the displacement (1 ≤ n ≤ N).
The displacement computation is started at the lowest stage, and the displacement com-
puted at the n-th stage is used as the initial value at the (n+1)-th stage. Finally, the dis-
placement functions the same size of the original images are obtained at the N-th stage.

2.2 Prototype-parallel displacement computation on GPUs;
PPDC-GPU

As mentioned in 1, we believe that one of the main drawbacks of most deformation ap-
proaches is its expensive computation cost. It is very important to drastically reduce
the computation time. Therefore, we discuss how to implement our deformable recogni-
tion approach on GPUs by considering both characteristics of GPUs and the deformable
recognition approach. The main features of GPUs are fast access to video memory, a
high frequency clock, and multiple programmable pipelines, and then it is easy to under-
stand that these features are suitable for locally parallel computation. Therefore the GPU
implementation of our iterative displacement computation seems to be very promising.

A GPU characteristic that should be more deeply considered is that the multiple
pipeline processing is not suitable for dealing with many small images but for a few large
images. In addition, the frequent transfer of small images between the main memory and
the video memory might be a bottleneck in the whole computation.
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Figure 2: Prototype-parallel displacement computation on GPUs; PPDC-GPU

To overcome the above-mentioned problem, this study proposes prototype-parallel
displacement computation on GPUs (PPDC-GPU), whose concept is illustrated in Fig.
2. A large prototype image plate, Gn(x,y), is generated by putting L prototype image
gn,l’s in lattice geometry on the main memory (1 ≤ l ≤ L). In a similar fashion, an input
image plate, Fn(x,y), is generated from fn. We can also generate displacement function

plates, (U [0]
n (x,y),V [0]

n (x,y)), from L initial displacement functions ({u[0]
n,l},{v[0]

n,l}). These
generated plates are transferred to the video memory only once at the n-th stage. The
displacement computation is applied to the set of image plates instead of individual sets
of images. After computing the displacement on the GPU, the plates of the computed

displacement function, ({u[T ]
n,l },{v[T ]

n,l }), are transferred back from the video memory to
the main memory. As a result, PPDC-GPU is expected to reduce the number of the
interruptions in the multiple pipeline processing and the data transfers between the main
memory and video memory.

Please note that, in Eqs. (8) and (9), the computation of ({u[t+1]
n,l },{v[t+1]

n,l }) is based
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on the pre-computed displacement ({u[t]
n,l},{v[t]

n,l}). To enable such iterative computa-
tion on GPUs, this study employs the Framebuffer Object extension [2]. Since the 32-
bit floating-point arithmetic on GPUs is provided through a set of OpenGL extensions,
GL ARB texture float, the degree of accuracy on GPUs compares favorably with CPUs.

The details about the GPU implementation of the iterative computation are described
below. The averaging procedure of displacement function in Eqs. (6) and (7) should
not be applied beyond the borders between different prototype regions, therefore border
information about the presence or location of neighborhoods is stored as an image for-
mat on the video memory and referred in the averaging procedure. In addition, to avoid
the memory access to the coordinate of (x + u,y + v) from wandering off into different
prototype regions, a clamp procedure is employed.

3 Simulations

The NIST special database (HSF7) contains over 60,000 digit samples. Eight thousand
input patterns (800 per category) and 8,000 prototype patterns (800 per category) are
independently chosen at random. The number of stages for the coarse-to-fine strategy, N,
was set to 3. Prior to processing, all character images were reduced to 32× 32 pixels,
and the characters on the images were normalized to 28× 28 pixels and placed at the
center. The values of λn(n = 1,2,3) were set to {0.10,0.10,0.50} and the number of
iteration, T , at each stage was set to 50. Euclid distance between the coarsest input and
prototype images was adopted as a measure for the rough classification. These parameters
were empirically decided based on the result of small-scale preliminary simulations. The
main specifications of the computer used in the simulations were Intel Pentium4 CPU
(3.2GHz), DDR2 main memory (1GB), NVIDIA GeForce 7800 GT with PCI-Express
16x (video memory 128MB). Microsoft Visual C++ .NET 2003 and NVIDIA Cg Toolkit
1.4 were utilized for the programming environment [1].

Figure 3 (a) and (b) show a part of image plates at the latest stage, FN and GN , respec-
tively. We can see that the same input image fN is put on the input image plate FN in lattice
geometry, and that candidate prototypes gN,l having a shape similar to the input image fN
are put on the prototype image plate GN . Figure 3 (c) illustrates the computed displace-
ment with deformed grid and prototype patterns. It should be noted that the shapes of the
deformed prototypes became more similar to the input fN and that there were discontinu-
ities of the displacement on the borders between different prototype regions.

Figure 4(a) shows the computation time of the proposed PPDC-GPU for recognizing
a single input handwritten character as a function of the number of prototypes L. For
comparison, the figure also shows the computation time of the ordinary implementation
using only the CPU and that of prototype-sequential displacement computation on GPUs
(PSDC-GPU), where L prototype images and L displacement functions were transferred
separately between the main memory and the video memory without generating the image
plates. The proportionality relations between L and the computation time can be seen in
all three implementations. Compared with CPU implementation, the PSDC-GPU reduced
the computation time to about 20%. It should be noticed that PPDC-GPU provided a
drastic reduction to less than 10%, especially to less than 7% using greater or equal to
200 as L. Figure 4(b) shows the recognition rate of our implementations as a function of
L. Through the simulations, it was confirmed that these three implementations gave the
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(a) input image plate FN (b) prototype image plate GN

(c) displacement function with deformed gN’s

Figure 3: image and function plates in prototype-parallel displacement computation on
GPUs
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(msec) CPU PSDC-GPU PPDC-GPU
displacement computation 7400 1220 245

data transfer - 109 83
plate image generation - - 90

others 98 98 90
total processing time 7498 1427 508

Table 1: necessary time for respective processes in three implementations at L = 400.

same rates. The best recognition rate, 99.21%, was obtained with L=400, 500 and 600,
which was superior to the result of simple matching without computing the displacement,
96.5%, obtained in the rough classification.

Table 1 shows the necessary time for respective processes in three implementations.
Compared with PSDC-GPU, it was clarified that PPDC-GPU could reduce the necessary
time for the displacement computation drastically. This result seems to confirm that the
generation of image plates is useful for the efficient pipeline processing. However, the
adoption of image plates could not considerably reduce the time for data transfer. It
should be also noticed that the necessary time for generating the image plates resulted in
90 msec and the sum of them, 173 msec, corresponded to 34% of the total processing
time.

4 Conclusion

In this study, we investigated speeding up a deformable approach to pattern recogni-
tion. By considering the characteristics of GPUs and the deformable recognition ap-
proach, prototype-parallel displacement computation on GPUs (PPDC-GPU) was pro-
posed. Simulations were conducted based on the NIST handwritten database, and it was
clarified that the proposed implementation reduced the computation time to less than 10%
compared with the ordinary implementation on CPUs.

In future tasks, we will investigate the generation of image plates on the video mem-
ory instead of the main memory, since it is expected to eliminate the heavy data transfer
between the main memory and the video memory, and to generate the image plates more
quickly with the fragment processor on GPUs. The video memories of the recent con-
sumer graphic cards are getting larger and it seems to be possible to store the set of pro-
totypes in the video memory. Another future task is the extension for three dimensional
object recognition.

We intentionally kept the recognition method as simple as possible, since the main
proposes of this study were to show how to implement the deformable recognition ap-
proach on GPUs efficiently and to clarify how much the GPU implementation could re-
duce the computation time without degrading the accuracy, However, in order to obtain
higher recognition performance, it is essential to employ other procedures such as statis-
tical classification and feature extraction [26]. Obviously, the dimensional reduction by
feature extraction is also helpful for saving the computation time.

Since handwritten character recognition is one of the most fundamental and important
topics in the field of computer vision and pattern recognition, this study discussed the
validity of the proposed method from its viewpoint. However the proposed framework can

Proceedings of the Workshop on Image Registration in Deformable Environments, Edinburgh, UK, Sept. 2006

Page 78



be widely applied to other problems, for instance, face recognition or object recognition.
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Matrix factorization underpins several recent approaches to deformable object track-
ing and modelling. In long sequences with occlusion, this factorization must be performed
despite missing data, a problem which has seen significant attention in recent computer
vision research.

Two classes of approach dominate the literature: EM-like alternation of closed-form
solutions for the two factors of the matrix; and non-linear optimization of both factors si-
multaneously. As has been argued previously, nonlinear optimization based on a second-
order approximation of the error function should be the faster approach. However alter-
nation schemes remain enduringly popular.

I will show through theoretical and experimental arguments why this dicohotomy re-
mains: it’s not just that lazy programmers don’t bother to implement second order meth-
ods, but that alternation schemes often do well on “easy” problems, and that many prob-
lems are “easy”. Secondly, one must take care that the second-order methods do not throw
away the nice properties of the alternation schemes. We introduce a class of hybrid algo-
rithms which combine elements of both strategies, and show that these algorithms reach
the correct minimum more frequently and at reasonable speed.

Finally, I show that for some well-known structure-from-motion data, the global op-
timum of the factorization problem does not, in fact, yield a realistic reconstruction. To
achieve a realistic result, Bayesian priors and robust error kernels must be introduced.
This is pretty obvious; what is less obvious is that this further cements the advantage of
the direct optimization approaches.
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