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Abstract

We consider a stochastic gradient process, which is a special case of stochastic ap-

proximation process, where the positive real step size an is replaced by a random

matrix An: Xn+1 = Xn � Anrg(Xn) � AnVn: We give two theorems of almost sure

convergence in the case where the equation rg = 0 has a set of solutions.
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1 Introduction

Let g be a function from Rp into R. Note rg the gradient of g. Suppose that the

equation rg = 0 has a set of solutions. Suppose further that for any real x, one

cannot observe rg(x) but only rg(x) + Vx, Vx being a random error. In order to

estimate a solution, one can use a stochastic gradient process (Xn), de�ned recursively

by

Xn+1 = Xn � anrg(Xn)� anVn: (1)

The sequence of positive gains (an) veri�es
P1

n=1 an = 1;
P1

n=1 a
2
n < 1: (1)

is a particular case of stochastic approximation process, whose convergence has been

studied by di¤erent methods; see inter alia Ljung, P�ug, Walk (1992) for an overview.

Several applications can be found particularly in the �eld of statistics. In some

of them, the gain an is replaced by a random matrix An, for instance to obtain an

asymptotically e¢ cient estimation of a parameter or to accelerate the convergence;

the process is then de�ned by

Xn+1 = Xn � Anrg(Xn)� AnVn: (2)

It was supposed in most cases for this type of process that the equation rg = 0

has a unique solution (see inter alia Nevel�son and Has�minskii, 1973, Spall, 2003).

We consider here the case where it has a set of solutions and we give two theorems

of almost sure convergence. The �rst one can be directly applied for instance to the
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proof of the convergence of an extension of the k-means process of MacQueen (1967),

which was the �rst motivation for this study.

All random variables are de�ned on a probability space (
;A; P ). Let (Tn) be

a nondecreasing sequence of sub-�-algebras of A such that X1; Vj; j � n � 1 and

Aj; j � n, are Tn-measurable; then Xn is Tn-measurable.

In the following, h:; :i and k:k are respectively the usual inner product and norm

in Rp; for a squared matrix A, kAk is the spectral norm, �max(A) and �min(A) are

respectively the greatest and the lowest eigenvalue of A; I is the identity matrix; the

abbreviation a:s: means almost surely.

2 First almost sure convergence theorem

2.1 Assumptions and theorem

Denote Fn(Xn) =
kA

1
2
nrg(Xn)k2
kAnk and suppose:

(H1a) g is a non negative function.

(H1b) There exists L > 0 such that, for all A;B 2 Rp;

g(B)� g(A) � hB � A;rg(A)i+ L k B � A k2 :

H1b is veri�ed if rg is Lipschitz continuous. H1b is used for B = Xn+1 and

A = Xn; if the sequence (Xn) is bounded and g has second order partial derivatives

which are continuous in the compact set containing it, then H1b can be omitted.

(H1c) There exists a set A such that P (A) = 1 and for all �xed ! 2 A;8� > 0;
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9� > 0;9N 2 N;9K > 0 : 8p > n > N; (k Xp � Xn k< �) =) (Fp(Xp) �

KFn(Xn) + �):

This assumption is veri�ed if rg is uniformly continuous, particularly if the se-

quence (Xn) is bounded and rg is continuous in the compact set containing it, and

if the following assumption H4d holds. The sequence (Xn) is bounded if g(Xn) con-

verges, which is proved without H1c, and if limkxk!1 g(x) =1 (if g is C1, then g is

a Liapunov function).

(H2) There exist four sequences of random variables (Bn); (Cn); (Dn) and (En) in

R+ adapted to the sequence of �-algebras (Tn) such that a:s:

(H2a) k A
1
2
nE[Vn j Tn] k2� Bng(Xn) + Cn;

P1
1 (Bn + Cn) <1;

(H2b) E[k AnVn k2j Tn] � Dng(Xn) + En;
P1

1 (Dn + En) <1:

H2a and H2b are extensions of classical assumptions in the �eld of stochastic

approximation. They are satis�ed particularly in the case where Vn = V 1n + V
2
n ,

E[V 1n j Tn] = 0 a:s:, V 2n Tn-measurable and, if the following assumptions H4a, b hold,

k A
1
2
nV 2n k2� Bng(Xn) + Cn:

(H4a) For n � 1; An is a:s: a positive de�nite symmetrical matrix.

(H4b) supn �max(An) < min(
1
2
; 1
4L
) a:s:

(H4c)
P1

1 �max(An) =1 a:s:

(H4d) supn
�max(An)
�min(An)

<1 a:s:

In the case where An = anI; an 2 R; H4 gives 0 < an < min(12 ;
1
4L
);
P1

1 an = 1.
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H4 holds in the case where An is a diagonal matrix with diagonal elements a1n; :::; a
p
n

such that a
n
� ain < min(1

2
; 1
4L
); i = 1; :::; p; a > 0 and supn

max ain
min ain

< 1 a:s:; this

can be applied to the study of the convergence of the k-means process of Mac Queen

(1967). H4 holds too for An = 1
n
A(Xn) with suitable conditions on the matrices

A(Xn).

Theorem 1 (a) Assume H1a, b, H2a, b and H4a, b hold; then g(Xn) andP1
1 k A

1
2
nrg(Xn) k2 converge a:s:

(b) Under the assumptions of (a), if moreover H1c, H4c, d hold, then Fn(Xn)

and rg(Xn) converge a:s: to 0; if the sequence (Xn) is contained in a compact set

C and rg is continuous in C, the distance of Xn to the set of stationary points of g

converges a:s: to 0.

In the case where An = anI, this theorem can be compared to theorem 1 of Dippon

(1998), who supposes yet that rg is Lipschitz continuous and E [Vn j Tn] = 0:

2.2 Lemma

We use the following lemma in the proof of the theorem. De�ne the recursive process

(Wn) in Rp and make assumption H3a:

Wn+1 = (I � An)Wn + AnVn;W1 = 0: (3)

If An = 1
n
I, then Wn+1 =

1
n

Pn
1 Vi.
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(H3a) Wn �! 0 a:s:

Lemma 2 Assume H1c, H3a and H4a, b, c hold; then, if
P1

1 k A
1
2
nrg(Xn) k2

converges a:s:, Fn(Xn) converges a:s:to 0; if furthermore H4d holds, rg(Xn) converges

a:s: to 0; if moreover the sequence (Xn) is contained in a compact set C and rg is

continuous in C, the distance of Xn to the set of stationary points of g converges a:s:

to 0.

Proof. ! 2 
 is �xed throughout the proof, belonging to the intersection of the

de�ned a:s: convergence sets. Let � > 0; �
0
= min( �

2K
; �
2
): By H1c, 9� > 0;9N1 2

N;9K > 0 : 8p > n > N1; (k Xp �Xn k< �) =) (Fp(Xp) � KFn(Xn) +
�
2
):P1

1 k An k Fn(Xn) =
P1

1 k A
1
2
nrg(Xn) k2< 1: Then, by H4a, c, there exists a

sequence (nl) such that Fnl(Xnl) �! 0: Let N2 � N1 such that FN2(XN2) < �
0: Let

N2 � n < p such that for k 2 [N2; n] ; Fk(Xk) < �
0 and for k 2 [n+ 1; p] ; Fk(Xk) � �0;

let us prove that Fp(Xp) < �:

We de�ne Ik(�0) = 1 if Fk(Xk) � �0; 0 if not.

Let Yn = Xn +Wn; we have Yn+1 = Yn � Anrg(Xn)� AnWn:

Yp � Yn = �Anrg(Xn)� AnWn �
Pp�1

n+1A
1
2
k (A

1
2
krg(Xk) + A

1
2
kWk)Ik(�

0):P1
1




A 1
2
k







A 1
2
krg(Xk) + A

1
2
kWk




 Ik(�0)
� 1

2

P1
1 Ik(�

0) kAkk+ 1
2

P1
1




A 1
2
krg(Xk) + A

1
2
kWk




2 Ik(�0)
� 1

2

P1
1 Ik(�

0)





A 1
2
k rg(Xk)






Fk(Xk)

2

+
P1

1




A 1
2
krg(Xk)




2 +P1
1 kAkk kWkk2 Ik(�0) <1 by

H3a.
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Furthermore by H4b and H3a, Anrg(Xn) + AnWn �! 0;Wn �! 0: Then for n

su¢ ciently large kYp � Ynk < �
2
; kXp �Xnk < �; therefore Fp(Xp) � KFn(Xn) +

�
2
<

K�0 + �
2
� �:

If Fp+1(Xp+1) � �0, then for k 2 [n+ 1; p+ 1] ; Fk(Xk) � �0; thus by the preceding

argument Fp+1(Xp+1) < �; if Fp+1(Xp+1) < �
0, replace N2 by p+ 1 and use again the

preceding argument; it follows that whatever q � N2; Fq(Xq) < �; thus Fq(Xq) �! 0

as q �!1:

Let a = supn
�max(An)
�min(An)

:

krg(Xn)k2 � a
�min(An)

�max(An)
krg(Xn)k2 � a

k A
1
2
nrg(Xn) k2
k An k

= aFn(Xn):

By H4d, rg(Xn) �! 0 as n �!1.

Let d(Xn; S) be the distance of Xn to the set S of stationary points of g. Suppose

that d(Xn; S) 9 0. If the sequence (Xn) is contained in C, there exist � > 0, a

subsequence (Xn0) and � 2 Rp such that Xn0 �! � and d(�; S) > �; now if rg is

continuous in C, rg(Xn0) �! rg(�) = 0, a contradiction; thus d(Xn; S) �! 0.

2.3 Proof of the theorem

Proof. By H1b and H4a, as



A 1

2
nrg(Xn)




2 = hAnrg(Xn);rg(Xn)i ; we have:

g(Xn+1)�g(Xn) � �



A 1

2
nrg(Xn)




2�hAnVn;rg(Xn)i+2L kAnrg(Xn)k2+2L kAnVnk2 :

By H2a, b, as hAnE [Vn j Tn] ;rg(Xn)i � 1
2




A 1
2
nE [Vn j Tn]




2 + 1
2




A 1
2
nrg(Xn)




2
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a:s: and kAnrg(Xn)k2 � kAnk



A 1

2
nrg(Xn)




2, we have a:s::
E[g(Xn+1) j Tn] � g(Xn)(1+

1
2
Bn+2LDn)+

1
2
Cn+2LEn�(12�2L kAnk)




A 1
2
nrg(Xn)




2
Applying the Robbins-Siegmund lemma (1971) gives the conclusion of (a).

By H2a, b, since g(Xn) converges a:s:, we have
P1

1




A 1
2
nE [Vn j Tn]




2 < 1 andP1
1 E

�
kAnVnk2 j Tn

�
< 1 a:s: Apply part (a) of the theorem to the process (Wn),

with g(Wn) =
1
2
kWnk2 ;rg(Wn) = Wn and L = 1

2
; it follows that kWnk andP1

1




A 1
2
nWn




2 converge a:s: By H4c, d and given that 


A 1
2
nWn




2 � �min(An) kWnk2,

it follows that Wn converges a:s: to 0. We apply then lemma 2 to obtain (b).

3 Second almost sure convergence theorem

Let Yn = Xn +Wn; we have Yn+1 = Yn � Anrg(Xn)� AnWn: Suppose:

(H3b)
P1

1




A 1
2
nWn




2 <1 a:s:

We give another theorem where assumptions H2 on (Vn) are replaced by assump-

tions H3a, b on (Wn), but where assumption H1b on g is replaced by

(H1b�) rg is L-Lipschitz continuous (8x1; x2; krg(x1)�rg(x2)k � L kx1 � x2k).

Theorem 3 (a) Assume H1a, b�, H3b and H4 a, b, d hold; then g(Yn);
P1

1




A 1
2
nrg(Yn)




2
and

P1
1




A 1
2
nrg(Xn)




2 converge a:s:
(b) Under the assumptions of (a), if moreover H3a, H4c hold, then we have the

same conclusions as in part (b) of theorem 1.
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We give in section 4 su¢ cient conditions to ensure H3a such as Vn �! 0 a:s:

or
P1

1 AnVn converges a:s: The preceding theorem can be used particularly in cases

where the random errors Vn are correlated. See among others the remarks 1.3 and

1.13b of Walk (Ljung, P�ug, Walk, 1992) for An = anI.

Proof. By H1b�and H4a, we have

g(Yn+1)� g(Yn) � L kAnrg(Xn) + AnWnk2

�
D
A

1
2
n (rg(Xn)�rg(Yn)) + A

1
2
nWn; A

1
2
nrg(Yn)

E
�



A 1

2
nrg(Yn)




2
The �rst term on the right-hand of the inequality is bounded up by

L(kAn(rg(Xn)�rg(Yn))k+ kAnWnk+ kAnrg(Yn)k)2

� 2L(L+ 1)2 kAnk2 kWnk2 + 2L kAnk



A 1

2
nrg(Yn)




2 :
The second term is bounded up by (L+ 1)2 kAnk kWnk2 + 1

2




A 1
2
nrg(Yn)




2 :
It follows that a:s::

E [g(Yn+1) j Tn] � g(Yn)+(L+1)2 kAnk (2L kAnk+1) kWnk2�(
1

2
�2L kAnk)




A 1
2
nrg(Yn)




2
By H3b and H4a, d, as




A 1
2
nWn




2 � �min(An) kWnk2, we have
P1

1 kAnk kWnk2 <

1 a:s:

By H1a and H4b, we may then apply the Robbins-Siegmund lemma: g(Yn) andP1
1




A 1
2
nrg(Yn)




2 converge a:s: We deduce that P1
1




A 1
2
nrg(Xn)




2 converges a:s:
By H1b�and H4d, H1c holds. We may then apply lemma 2 and obtain part (b)

of the theorem.
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4 Convergence lemma of Wn

Suppose:

(H2a�)
P1

1




A 1
2
nE [Vn j Tn]




2 <1 a:s:

(H2b�)
P1

1 E
�
kAnVnk2 j Tn

�
<1 a:s:

(H2c) Vn �! 0 a:s:

(H2d)
P1

1 AnVn converges a:s:

(H4b�) There exists l > 0 such that supn �max(An) < l a:s:

Lemma 4 (a) Assume H2a�, b�and H4a, b�with l = 1
2
, c, d hold; then Wn converges

a:s: to 0 and
P1

1




A 1
2
nWn




2 converges a:s:
(b) Assume H2c, or H2d, and H4a, b�with l = 1, c, d hold; then Wn converges

a:s: to 0.

Proof. The part (a) has been already proved in the proof of theorem 1.

For the part (b), ! 2 
 is �xed throughout the proof, belonging to the intersection

of the de�ned a:s: convergence sets. Denote Cl = I � Al. We have:

Wn+1 = CnWn + AnVn =
Pn

j=1

Qn
l=j+1ClAjVj, with

Qn
l=n+1Cl = I.

Denote anj =
Qn
l=j+1 kClk kAjk ; j = 1; :::; n� 1; ann = kAnk :

By H4a, b�, c, d, anj <
Qn
l=j+1(1� �min(Al)) and

ln anj < �
Pn

l=j+1 �min(Al) �! �1; anj �! 0 as n �!1:
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Furthermore, there exists a > 0 such that

anj � a
Qn
l=j+1(1��min(Al))�min (Aj) = a(

Qn
l=j+1(1��min(Al))�

Qn
l=j(1��min(Al))):

Then
Pn

j=1 anj � a.

1) kWn+1k �
Pn

j=1 anj kVjk : By H2c, Wn �! 0.

2) Denote Sn =
Pn

j=1AjVj; S0 = 0; Bj = (
Qj
l=1Cl)

�1.

Wn+1 = B�1n
Pn

j=1BjAjVj = B
�1
n

Pn
j=1Bj(Sj � Sj�1)

= Sn +B
�1
n

Pn
j=2(Bj�1 �Bj)Sj�1 = Sn �

Pn
j=2

Qn
l=j+1ClAjSj�1:

By H2d, let S = limn�!1 Sn. As
Pn

j=2

Qn
l=j+1ClAj = I �

Qn
l=2Cl; we have:

Wn+1 = Sn � S �
Pn

j=2

Qn
l=j+1ClAj(Sj�1 � S) +

Qn
l=2ClS:

kWn+1k � kSn � Sk+
Pn

j=2 anj kSj�1 � Sk+
Qn
l=2 kClk kSk :

By H4a, b�, c, d,
Qn
l=2 kClk �! 0 as n �!1; by H2d, Wn �! 0.

5 Corollary

Suppose Vn = V 1n + V
2
n + V

3
n + V

4
n : De�ne for i=1, 2, 3, 4, W

i
n such that W

i
n+1 =

(I � An)W i
n + AnV

i
n and Wn =

P4
i=1W

i
n:

Corollary 5 Assume that H2a�, b�hold for V 1n , H2c for V
2
n , H2d for V

3
n and H3a for

V 4n ; assume furthermore H1a, b�, H3b, H4a, b, c, d hold; then rg(Xn) converges a:s:

to 0.
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In the case where An = anI, this corollary can be compared to theorem 1.2a of

Walk (Ljung, P�ug, Walk, 1992) who makes a more restrictive assumption,
P1

1 an kV 1n k
2

<1, than H2a�, b�.
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