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Abstract

We consider a stochastic gradient process, which is a special case of stochastic ap-
proximation process, where the positive real step size a, is replaced by a random
matrix A,: X1 = X, — 4, Vg(X,) — A,V,,. We give two theorems of almost sure

convergence in the case where the equation Vg = 0 has a set of solutions.
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1 Introduction

Let g be a function from R? into R. Note Vg the gradient of g. Suppose that the
equation Vg = 0 has a set of solutions. Suppose further that for any real x, one
cannot observe Vg(zx) but only Vg(z) + V., V, being a random error. In order to
estimate a solution, one can use a stochastic gradient process (X,,), defined recursively
by

Xni1 = Xn — a,Vg(X,) — a, V. (1)

The sequence of positive gains (a,) verifies Y oo a, = 00,> - a2 < oo. (1)
is a particular case of stochastic approximation process, whose convergence has been
studied by different methods; see inter alia Ljung, Pflug, Walk (1992) for an overview.

Several applications can be found particularly in the field of statistics. In some
of them, the gain a,, is replaced by a random matrix A,, for instance to obtain an

asymptotically efficient estimation of a parameter or to accelerate the convergence;

the process is then defined by

Xpi1 = X — AV (X)) — AnVi. (2)

It was supposed in most cases for this type of process that the equation Vg = 0
has a unique solution (see inter alia Nevel’son and Has'minskii, 1973, Spall, 2003).
We consider here the case where it has a set of solutions and we give two theorems

of almost sure convergence. The first one can be directly applied for instance to the



proof of the convergence of an extension of the k-means process of MacQueen (1967),
which was the first motivation for this study.

All random variables are defined on a probability space (€2,.4, P). Let (T,,) be
a nondecreasing sequence of sub-o-algebras of A such that X;,V;,7 < n — 1 and
A;,j < n, are T,-measurable; then X,, is T,,-measurable.

In the following, (.,.) and ||.|| are respectively the usual inner product and norm
in R?; for a squared matrix A, ||A| is the spectral norm, Ap.c(A) and A\yin(A) are
respectively the greatest and the lowest eigenvalue of A; I is the identity matrix; the

abbreviation a.s. means almost surely.

2 First almost sure convergence theorem

2.1 Assumptions and theorem

Denote F,(X,) = Méﬁ# and suppose:

(Hla) g is a non negative function.

(H1b) There exists L > 0 such that, for all A, B € R?,

g(B) — g(A) < (B— A, Vg(A)+L| B— A,

H1b is verified if Vg is Lipschitz continuous. H1b is used for B = X,,;; and
A = X,,; if the sequence (X,,) is bounded and g has second order partial derivatives

which are continuous in the compact set containing it, then Hlb can be omitted.

(Hlc) There exists a set A such that P(A) = 1 and for all fixed w € A, Ve > 0,



30 > 0,IN e NJIK > 0:Vp >n > N,(]| X, — X, ||< §) = (F,(X,) <
KF,(X,) +€).

This assumption is verified if Vg is uniformly continuous, particularly if the se-
quence (X,,) is bounded and Vg is continuous in the compact set containing it, and
if the following assumption H4d holds. The sequence (X,,) is bounded if ¢g(X,,) con-
verges, which is proved without Hle, and if lim,)—o g(x) = oo (if g is C*, then g is
a Liapunov function).

(H2) There exist four sequences of random variables (B,,), (C,), (D,) and (E,) in
R* adapted to the sequence of o-algebras (7)) such that a.s.

(H2a) || ARE[V; | Tu] 7S Bag(Xn) + Coy S (Bu+ C) < 003

(H2b) E[l| AnVa [P T) < Dag(Xn) + En, 327 (Do + En) < o0.

H2a and H2b are extensions of classical assumptions in the field of stochastic
approximation. They are satisfied particularly in the case where V,, = V! 4+ V2
E[VI| T, =0a.s., V? T,-measurable and, if the following assumptions H4a, b hold,
| AZV2 |P< Bug(X,) + C.

(H4a) For n > 1, A, is a.s. a positive definite symmetrical matrix.

(H4b) sup,, Amax(An) < min(3, ;7) a.s.

(H4c) >°7° Amax(A4,) = 00 a.s.

(H4d) sup,, ’/\\"‘f"‘((ﬁ:)) < 00 a.s.

In the case where A,, = a,I,a, € R, H4 gives 0 < a,, < min(%, ﬁ), YD a, = 0.



H4 holds in the case where A, is a diagonal matrix with diagonal elements al, ..., a?

such that ¢ < ai < min(3,;7), ¢ =1,..,p, a > 0 and sup, Ei’fz; < o0 a.s.; this

N =

can be applied to the study of the convergence of the k-means process of Mac Queen
(1967). H4 holds too for A, = L1A(X,) with suitable conditions on the matrices

A(X,).

Theorem 1 (a) Assume Hla, b, H2a, b and Hja, b hold; then g(X,,) and
SO AéVg(Xn) |? converge a.s.

(b) Under the assumptions of (a), if moreover Hic, Hjc, d hold, then F,(X,)
and Vg(X,) converge a.s. to 0; if the sequence (X,,) is contained in a compact set
C and Vg is continuous in C', the distance of X,, to the set of stationary points of g

converges a.s. to 0.

In the case where A,, = a,,[, this theorem can be compared to theorem 1 of Dippon

(1998), who supposes yet that Vg is Lipschitz continuous and E [V, | T,,] = 0.

2.2 Lemma

We use the following lemma in the proof of the theorem. Define the recursive process

(W,) in R? and make assumption H3a:
Wit = (I — AW, + AV, Wi = 0. (3)

If A, = %[, then W, = %Z?V;



(H3a) W,, — 0 a.s.

Lemma 2 Assume Hlc, H3a and Hja, b, ¢ hold; then, if >.0° || AiVg(X,) |?
converges a.s., F,,(X,,) converges a.s.to 0; if furthermore Hjd holds, V g(X,,) converges
a.s. to 0; if moreover the sequence (X,,) is contained in a compact set C and Vg is

continuous in C, the distance of X,, to the set of stationary points of g converges a.s.

to 0.

Proof. w € () is fixed throughout the proof, belonging to the intersection of the
defined a.s. convergence sets. Let € > 0,¢ = min(5%, 5). By Hlc, 36 > 0,3N; €
N,3K >0:Vp>n> Ny, (| X, — X, [|[< ) = (F,(X,) < KE,(X,) +5).

S A || Fu(Xa) = 3°°° || A2Vg(X,) |2< co. Then, by Hda, c, there exists a
sequence (n;) such that F,,(X,,) — 0. Let Ny > N such that Fi,(Xp,) < €. Let
Ny < n < psuch that for k € [Ny, n], Fp(Xy) < € and for k € [n+ 1, p|, Fi(Xg) > €;
let us prove that F,(X,) < e.

We define Iy (¢') = 1 if Fj.(X%) > €, 0 if not.

Let Y, = X,, + W,; we have Y,,.1 =Y, — A, Vg(X,) — A, W,.

Y, = Y = ~AVg(Xa) — AW, — YL AF(AFVg(X0) + AFWI) ().

27

<L) 1A + 5 [ AFVg () + AR

2

1
2
g

HAEVQ(XIJ + AngH Ii(¢')

2[k(e’)

1 oo , AéVg(Xk) o
<520 W) Fmg +20

H3a.

1 2 o ,
AV S AW Fe(€) < oo by




Furthermore by H4b and H3a, A,Vg¢(X,) + A, W,, — 0,W,, — 0. Then for n

sufficiently large ||Y, — Y, || < £, || X, — X,,|| < 0; therefore F,(X,) < KF,(X,)+ £ <

2
Ke+ 5 <e

If Fyi1(Xpi1) > €, then for k € [n+1,p+ 1], Fi(Xj;) > €; thus by the preceding
argument £, 1(X,+1) < € if F,11(Xp11) < €, replace Ny by p + 1 and use again the
preceding argument; it follows that whatever ¢ > No, Fi,(X,) < €; thus F,(X,) — 0
as ¢ — 00.

Let a = sup,, —)‘m"(j")

)\min( n) ’

| AZVg(Xa) [I*

AminA
V90617 < 0 Vg < ol AT —ap )

max (A7)

By H4d, Vg(X,) — 0 as n — o0.

Let d(X,, S) be the distance of X, to the set S of stationary points of g. Suppose
that d(X,,S) - 0. If the sequence (X,) is contained in C, there exist ¢ > 0, a
subsequence (X,/) and 6 € RP such that X,, — 6 and d(6,S) > ¢ now if Vg is

continuous in C, Vg(X,,) — Vg(0) = 0, a contradiction; thus d(X,,S) — 0. =

2.3 Proof of the theorem

2

Proof. By Hlb and H4a, as HAéVg(Xn) = (A, Vg(X,),Vg(X,)), we have:

1 2
9(Xas1)=9(X0) < = | ATV ~(AuVa, Tg(X))42L | A4V g (X [PH2L [ AuVall

2 1
T2

2

By Hoa, b, as (A.E[V; | T,], Vg(X,) < 3 [ARE W, | 1| + 1]|aivg(x,)
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2
, we have a.s.:

a.s. and ||Aan(Xn)||2 < [ A4l

‘Aé Vg(X,)

1 2
Blg(Xne1) | Tul £ 9(X0) (143 By 2LD,)+5Cu 2L By = (320 | Au]) | A7 Vg(X,)

Applying the Robbins-Siegmund lemma (1971) gives the conclusion of (a).

1 2
By H2a, b, since g(X,,) converges a.s., we have » [° HAEE Vo | T]|| < oo and

STE [HAnVnH2 | T,] < oo a.s. Apply part (a) of the theorem to the process (W,,),

with g(W,) = L ||W,|?, Vg(W,) = W, and L = L; it follows that |W,| and

-2
2

s abw, 2 () I,

converge a.s. By H4c, d and given that HA?L W,

it follows that W), converges a.s. to 0. We apply then lemma 2 to obtain (b). =

3 Second almost sure convergence theorem

Let Y, = X,, + W,,; we have Y,,,; =Y, — A, Vg(X,) — A, W,. Suppose:

2
< 0 a.s.

(H3b) 3 HA% W,

We give another theorem where assumptions H2 on (V},) are replaced by assump-
tions H3a, b on (W7,,), but where assumption H1b on g is replaced by
(H1b’) Vg is L-Lipschitz continuous (Vz1, xs, [|[Vg(x1) — Vg(x2)|| < L||z1 — x2|).

2

Theorem 3 (a) Assume Hla, b’, H3b and Hj a, b, d hold; then g(Y,,), > 7"

‘Aévg(yn)

2
CONverge a.s.

and % HAévg(Xn)

(b) Under the assumptions of (a), if moreover H3a, Hjc hold, then we have the

same conclusions as in part (b) of theorem 1.



We give in section 4 sufficient conditions to ensure H3a such as V,, — 0 a.s.
or Y 1° A,V, converges a.s. The preceding theorem can be used particularly in cases
where the random errors V,, are correlated. See among others the remarks 1.3 and
1.13b of Walk (Ljung, Pflug, Walk, 1992) for A, = a,I.

Proof. By H1b’ and H4a, we have

Q(Yn+1) - Q(Yn) < L ||Anv9<Xn) + AanH2

2

_ <Aé(vg<xn) —Vg(Y.)) + AZW,, Aévg(yn)> _ HAévgm)

The first term on the right-hand of the inequality is bounded up by
L([An(Vg(Xn) = VgV )l + [[AaWall + [[An Vg (Ya)])?

1 2
< 2L(L+ 12 [ A [Wall” + 2L | 4u] || 4294 (Y2)

1 2
The second term is bounded up by (L + 1)2 || A, || [|[W,]|* + : HAEVQ(Yn)

It follows that a.s.:

1 1 2
Elg(Yar) | T] < gV +HLA1)? [ Al 2L 14 4+1) IWal = (5 =2L 1| Aall) [ 47 Vg(32)

1 2
By H3b and Hda, d, as [AZWa||" = Auia(A,) [Wall’, we have 33 | Au| [ Wall* <

00 a.S.
By Hla and H4b, we may then apply the Robbins-Siegmund lemma: ¢(Y;,) and
>

By H1b’ and H4d, Hlc holds. We may then apply lemma 2 and obtain part (b)

2

1 2
’Aﬁ Vg(Y,)|| converge a.s. We deduce that > ° converges a.s.

}An%Vg(Xn)

of the theorem. =



4 Convergence lemma of W,

Suppose:

(H2a') 37

(H2b") S E [|AVL]? | T < o0 a.s.

2
< 0 a.s.

‘A,%E Vi, | T

(H2¢) V,, — 0 a.s.
(H2d) >°7° A, Vi, converges a.s.
(H4b’) There exists [ > 0 such that sup, Amax(An) <1 a.s.

Lemma 4 (a) Assume H2a’, b’ and Hja, b’ with | = %, ¢, d hold; then W,, converges

2
CONVErges a.s.

a.s. to0 and Y7° HA%WR

(b) Assume H2c, or H2d, and Hja, b’ with | = 1, ¢, d hold; then W, converges

a.s. to 0.

Proof. The part (a) has been already proved in the proof of theorem 1.

For the part (b), w € Q is fixed throughout the proof, belonging to the intersection
of the defined a.s. convergence sets. Denote C; = I — A;. We have:

Wi =C W, + AV, = Z?Zl H;L:jﬂ CA;V;, with TT,L, ., Cr=1.

Denote an; = T2,y [ A5 = Lo = Lo = Al

By Hda, b, ¢, d, an; < [[};,1(1 = Amin(A1)) and

Ina,; < —Z?:jﬂ Amin(4;) — —00,a,; — 0 as n — o0.

10



Furthermore, there exists a > 0 such that

tnj < a T[40 (1= Amin(A) Amin (A7) = (T[540 (1= Amin(Ar) =TT (1= Amin (A1)

Then Y77, ay; < a.

1) (Wl < 2251 ang V51 - By H2e, Wy — 0.

2) Denote S, = Y7 A;V;, S0 =0, B; = ( G

War = By X0 BjAV; = B 370, By(S; — Sj-1)

= Sp+ B, 3 5(Bjo1r = Bj)Sj1 = Sp = 2o [T C1A;Sj-1

By H2d, let S = lim,,__,o S,. As Z;LZQ H?:j-l,-l ClA; =1—-T1,-, Ci, we have:
Wi =50 =5 = 3055 [0 CAi(Sj-1 = 8) + [T, GiS.

Waiall < W1Sn = Sl + 225—p @ng 1551 = SII+ TL, IGHIST

By H4a, b, ¢, d, [[, |Ci]] — 0 as n — oo; by H2d, W,, — 0. =

5 Corollary

Suppose V,, = V,l + V2 + V2 + V1. Define for i=1, 2, 3, 4, W' such that W}, , =

(I — AW+ A, Viand W, = S0 W

Corollary 5 Assume that H2a’, b” hold for V., H2c for V2, H2d for V3 and H3a for
V4, assume furthermore Hla, b’, H3b, Hja, b, ¢, d hold; then Vg(X,) converges a.s.
to 0.

11



In the case where A, = a,I, this corollary can be compared to theorem 1.2a of
Walk (Ljung, Pflug, Walk, 1992) who makes a more restrictive assumption, Y 1° a,, | V;! 12

< 00, than H2a’, b’.
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