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EUCLIDEAN BUILDINGS

By Guy Rousseau

Buildings were introduced by Jacques Tits in the 1950s to give a systematic procedure for the geometric

interpretation of the semi-simple Lie groups (in particular the exceptional groups) and for the construction

and study of semi-simple groups over general fields. They were simplicial complexes and their apartments

were euclidean spheres with a finite (Weyl) group of isometries. So these buildings were called of spherical

type [Tits-74].

Later François Bruhat and Jacques Tits constructed buildings associated to semi-simple groups over

fields endowed with a non archimedean valuation. When the valuation is discrete these Bruhat-Tits buildings

are still simplicial (or polysimplicial) complexes, and their apartments are affine euclidean spaces tessellated

by simplices (or polysimplices) with a group of affine isometries as Weyl group. So these buildings were

called affine. But when the valuation is no longer discrete, the simplicial structure disappears ; so Bruhat

and Tits construct (the geometric realization of) the building as a metric space, union of subspaces isometric

to euclidean spaces, and they introduce facets as filters of subsets [Bruhat-Tits-72].

This is the point of view I wish to develop in these lectures, by giving a definition of euclidean buildings

valid even in the non discrete case and independent of their construction. Actually such a definition has

been already given by Tits [86a], but his definition emphasizes the role of sectors against that of facets.

On the contrary I define here an euclidean building as a metric space with a collection of subspaces (called

apartments) and a collection of filters of subsets (called facets) submitted to axioms which, in the discrete

case where these filters are subsets, are the classical ones of [Tits-74]. The equivalence with Tits’ definition

(under some additional hypothesis) is a simple corollary of previous results of Anne Parreau [00].

So an euclidean building is defined here as a geometric object (a geometric realization of a simplicial

complex in the discrete case). It is endowed with a metric with non positive curvature which makes it look

like a Riemannian symmetric space. The fundamental examples are the Bruhat-Tits buildings, but the Tits

buildings associated to semi-simple groups over any field [Tits-74] have also geometric realizations (called

vectorial buildings) as euclidean buildings.

The building stones of a building are the apartments. They are defined as affine euclidean spaces

endowed with a structure (some facets in them) deduced from a group W generated by reflections. This

theory is explained in part 1, with some references to the literature for the proofs. The general theory

of euclidean buildings developed in part 2 is self contained except for references to part 1 and for some

final developments. Part 3 is devoted to the fundamental examples : the vectorial building associated to a

reductive group and the Bruhat-Tits building of a reductive group over a local field. More details are given

when the group is GLn.

For further developments or details, the interested reader may look at [Brown-89 and 91], [Bruhat-

Tits-72, 84a and 84b], [Garrett-97], [Parreau-00], [Rémy-02], [Ronan-89 and 92], [Scharlau-95] and [Tits-74,

86a, 86b, ...].

Part I : APARTMENTS (= thin buildings)

The general references for this first part are to Bourbaki, Brown [89], Garrett [97 ; chap 12, 13] and

Humphreys. Many proofs are omitted, specially in § 2 and § 4.

Non positively curved geometries, discrete groups and rigidity. Summer school, Grenoble, June 14 to July 2 2004
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Ã1 • ∞ •

Ã1 × Ã1 • ∞ • • ∞ • Ã2

C̃2 G̃2
• • •

Figure 1 : Affine, discrete, essential apartments of dimension 1 or 2.
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§ 1 Groups generated by reflections and apartments :

Let V be an euclidean space of finite dimension n and A an associated affine space.

A reflection r is an isometry of V or A (linear or affine) whose fixed point set is an hyperplane Hr. To

any hyperplane H is associated the reflection rH with respect to H .

A reflection group in A is a group W of affine isometries of A which is generated by reflections and

such that the subgroup W v of GL(V ) consisting of the vectorial (= linear) parts of elements of W is finite.

The group W is called irreducible if W v acts irreducibly on V .

A reflection group W in V is called linear if it fixes 0 ; it is then finite and equal to W v.

The walls of W are the hyperplanes of fixed points of reflections in W . The set H of walls is stable

under the action of W ; it completely determines W . The directions of the walls are the vectorial walls ;

their set Hv is finite. We denote by H̃ the set of hyperplanes of direction in Hv .

A reflection group W in A is called affine if the set of walls of any given direction (in Hv) is infinite.

We denote by W̃ the subgroup of Isom(A) generated by all reflections whose vectorial parts are in

W v ; it is an affine reflection group with set of walls H̃ and isomorphic to W v n V ′ , where V ′ ⊂ V is

generated by all vectors orthogonal to walls in H̃ .

An apartment is a pair (A, W ) (often summarized as A) where W is a reflection group in A (see also

5.4) ; it may be seen and drawn as (A,H). Some examples of dimension 1 or 2 are in figure 1.

A wall H divides the space in 3 disjoint convex subsets : 2 open half spaces called open-half-apartments

and the wall itself. The closure of an open-half-apartment is called an half-apartment.

For Q ⊂ A , the enclosure of Q is the intersection cl(Q) of all half-apartments containing Q ; it’s a

closed convex set. A subset Q is called enclosed if Q = cl(Q).

§ 2 Linear reflection groups :

2.1 If W v is a linear reflection group, its walls are vectorial hyperplanes. One defines an equivalence relation

on V by : v1 ∼ v2 ⇔ v1 and v2 are in exactly the same open-half-apartments or walls.

The equivalence classes are the vectorial facets associated to W v ; they are convex cones. The set Fv

of these facets is finite and ordered by the following relation :

”F is a face of F ′ ” ⇔ ”F ′ covers F ” ⇔ F ≤ F ′ ⇔ F ⊂ F ′ (topological closure of F ′)

The maximal facets, called chambers are the (open) connected components of V \ ∪H∈Hv H . A

maximal element among non-chamber facets is a panel ; it is an open subset of a wall (called its support).

More generally the support supp(F v) of a facet F v is the intersection of the walls containing F v (or

its closure F
v
) ; its dimension is the dimension of F v and F v is the interior of F

v
with respect to the

topological space supp(F v).

Example 2.2 :

The only non trivial example in dimension 2 is the dihedral

group W of order 2m in R
2 (m ≥ 1). The set Hv consists of m

vectorial walls, with angles kπ
m

for k ∈ Z. Its name is I2(m).

Figure 2

Proposition 2.3 : Let Cv be a chamber and F v
1 , ..., F v

p its (faces which are) panels. Denote by ri the

reflection with respect to the wall Hi supporting F v
i . Then :

a) For i 6= j, the angle between Hi and Hj is π
mi,j

where mi,j ≥ 2 is an integer.

b) If fi ∈ V ∗ is such that Hi = Ker(fi), then f1, ... ,fp are independent in V ∗.

c) The group W v is generated by r1, ... ,rp . It’s a Coxeter group with relations (rirj)
mi,j = 1 = (ri)

2.

The integer p is the rank of W v or of the apartment.
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d) The group W v acts simply transitively on the set of chambers.

e) The fixator (pointwise) or stabilizer in W v of a facet F v is the group generated by the reflections

with respect to walls containing F v. It is simply transitive on the chambers covering F v .

See [Bourbaki ; V§ 3], [Brown-89 ; chap. I], [Garrett ; 12.2, 12.3] or [Humphreys ; V§ 3].

2.4 Coxeter diagrams :

It’s clear from the preceding proposition that (V, W v) is determined up to isomorphism by the numbers

mi,j , 1 ≤ i 6= j ≤ p ≤ n . Except for n this is summarized in the Coxeter diagram :

- its vertices are indexed by N ∩ [1, p] = I (so their number is the rank p),

- two different vertices indexed by i and j are joined by an edge if and only if mi,j ≥ 3 , and this edge

is labeled with the number mi,j if and only if mi,j ≥ 4 .

(actually one uses a double edge instead of a label 4 and a triple edge instead of a label 6).

As a graph, a Coxeter diagram has connected components. If i and j are in different components, ri

and rj commute. So W v is the direct product of subgroups corresponding to connected components ; more

precisely :

Proposition 2.5 : There is a unique decomposition of (V, W v) in orthogonal direct product : V =

V0 ⊕ V1 ⊕ ... ⊕ Vs and W v = W v
0 × W v

1 × ... × W v
s , such that each W v

i acts only on Vi , the group

W v
o is trivial and, for i ≥ 1 the action of W v

i on Vi is irreducible non trivial.

Then one has dim(Vi) = rank(W v
i ) for i ≥ 1 and the Coxeter diagrams of the groups W v

i for i ≥ 1 are

the connected components of the Coxeter diagram of W v .

See e.g. [Bourbaki ; V 3.7] or [Humphreys ; 2.2].

N.B. : The Coxeter diagram determines everything except V0 (which is the smallest facet of V ).

2.6 Classification : [Bourbaki ; VI 4.1] or [Humphreys ; chap. 2].

The connected Coxeter diagrams corresponding to (irreducible) linear reflection groups are drawn in

the following table :

(the index p in a name Xp is the rank of the group i.e. the number of vertices of the diagram).

Ap, p ≥ 1 • • • .... • • • Bp, p ≥ 2 • • • ...... • • •

Dp, p ≥ 4 • • • .... •
•

• E6 • • •
•

• •

E7 • • • •
•

• • E8 • • • • •
•

• •

F4 • • • • G2 • • I2(m) • m • (m = 5 or m ≥ 7)

H3 •
5
• • H4 •

5
• • •

Actually I2(3) = A2, I2(4) = B2, I2(6) = G2 and I2(5) could be named H2.

2.7 Link with root systems : [Bourbaki ; VI], [Garrett ; 12.3] or [Humphreys ; 2.9].

For α ∈ V ∗ \ {0}, let rα be the reflection with respect to the hyperplane Ker(α) and αˇbe the vector

in V orthogonal to Ker(α) verifying α(α )̌ = 2 . For v ∈ V , one has rα(v) = v − α(v)αˇ.

A root system in V ∗ is a finite set Φ ⊂ V ∗ \ {0} such that :

- ∀α ∈ Φ one has rα(Φ) = Φ ,

- ∀α, β ∈ Φ one has α(β )̌ ∈ Z .

This root system is called reduced if and only if ∀α ∈ Φ one has Rα ∩ Φ = {±α} .

To a root system is associated its Weyl group W v generated by the rα for α ∈ Φ . It is a finite reflection

group, its walls are the hyperplanes Ker(α) for α ∈ Φ .

Actually a finite reflection group is the Weyl group of a root system if and only if it is crystallographic

and this means that no irreducible component is of type H3 , H4 or I2(m) for m = 5 or m ≥ 7 . Non
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isomorphic root systems may give rise to isomorphic Weyl groups ; the only reduced irreducible example is

the following : there are reduced irreducible root systems of type Bp and Cp for p ≥ 2 , non isomorphic if

p ≥ 3 and their Weyl groups are isomorphic (of type Bp).

§ 3 General reflection groups :

3.1 Let W be a reflection group in A. Then W v is generated by reflections with respect to hyperplanes

Ker(fi) (cf. 2.3). But each Ker(fi) is the direction of a wall Hi in A, and the fi are independent ; so the

intersection of the Hi is non empty. If a is in this intersection the fixator Wa of a in W is isomorphic to

W v, for each vectorial wall Hv there exists a wall H of direction Hv and containing a (one says that a is

special). Hence W is a semi-direct product W = Wa n T where Wa ' W v and T is a group of translations

generated by some vectors in V (each orthogonal to a wall).

Proposition 3.2 : The decomposition of (V, W v) in 2.5 gives a decomposition of (A, W ) as an orthogonal

direct product : A = A0 ×A1 × ...×As (where Ai is affine under Vi) and W = W0 ×W1 × ...× Ws . Each

Wi acts only on Ai ; the group W0 is trivial and, for i ≥ 1, (Wi)
v = W v

i hence Wi is irreducible non trivial.

Actually each Ai is the quotient of A by the product of the Vj for j 6= i ; in particular the decomposition

is unique.

One says that W is essential if and only if V0 = {0} , i.e. if and only if W v has no non trivial fixed

point.

Example : The apartment I2(m) of 2.2 is inessential for m = 1 and reducible (of type A1 × A1) for m = 2.

3.3 Classification :

Let W be an essential irreducible reflection group in A. The real vector space generated by T and the

greatest real vector space contained in the closure of T are stable under W v, hence they must be {0} or V .

So there are exactly 3 cases :

- spherical type : if W ' W v is finite,

- discrete affine type : if W ' W v n T with T a lattice in V ,

- dense affine type : if W ' W v n T with T a dense subgroup of V .

3.4 A sector in A is a subset of A defined as S = x + Cv where x ∈ A is the base point of S and Cv is a

vectorial chamber in V (the direction of S) ; one also uses for S the word ”Weyl-chamber” or (in french)

”quartier”. Note that Ronan [89] asks moreover that the base point is special i.e. that S is enclosed.

One defines also a sector-panel or sector-facet as x + F v where F v is a vectorial panel or a vectorial

facet.

§ 4 Discrete reflection groups :

4.1 A reflection group W is called discrete if it has no irreducible factor of dense affine type or equivalently

if T is a discrete subgroup of V . These groups are those studied in [Bourbaki ; V], [Garrett ; chap. 12],

[Brown-89] or [Humphreys] where details and proofs may be found.

As in § 2, one can then define the facets (as equivalence classes), chambers, panels, ... They are no

longer convex cones if W is infinite. When W is discrete affine, chambers are often called alcoves.

The results of proposition 2.3 are still true, except for b) and except that now mi,j may be infinite.

The Coxeter diagram is defined the same way. If W is essential irreducible, then the Coxeter diagram

is connected and its rank is dim(A) + 1 if moreover it is affine.

Examples are given in figures 1 or 2 and the classification of the essential irreducible ones is given in

table 2.6 for spherical type and in the following table for discrete affine type.

(For a name X̃p the rank of the group i.e. the number of vertices of the diagram is p + 1).
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Ãp, p ≥ 2 • • • • .... • •

• • • .... • •

B̃p, p ≥ 3 • •

•

• ...... • • •

C̃p, p ≥ 2 • • • .... • • • D̃p, p ≥ 4 •
•
• • ....

•
• •

Ẽ6 • • •

•

•

• • Ẽ7 • • • •
•

• • •

Ẽ8 • • • • • •
•

• • F̃4 • • • • •

G̃2 • • • Ã1 • ∞ •

4.2 Type : Let C be a chamber and F1, ... ,Fp its panels.

The type of a face F of C is τ(F ) = {i / F ⊂ F i} ⊂ {1, ..., p} = I and F =
⋂

i∈τ(F ) F i .

So faces of C correspond bijectively to some subsets of I ; actually when W is irreducible of spherical type

(resp. of discrete affine type), any subset of I (resp. except I itself) is the type of a face.

But W is simply transitive on chambers of A and the fixator WF of a facet F is transitive on chambers

covering F . So the type of a facet F is well determined by the rule : τ(F ) = τ(wF ) ⊂ I , ∀w ∈ W .

4.3 Link with root systems :

A reduced root system Φ in V ∗ gives rise to a discrete affine reflection group W = W a(Φ) in V . It is

defined by its walls which are all affine hyperplanes of equation α(v) = m , for α ∈ Φ and m ∈ Z .

W a(Φ) is the affine Weyl group of Φ . Its associated vectorial group is the Weyl group W v of Φ . Its

translation group T is the Z−module Qˇgenerated by the coroots αˇfor α ∈ Φ .

If Φ is irreducible of type Xp , then W a(Φ) is irreducible of type X̃p (see the above classification). As

a consequence every discrete affine reflection group is the affine Weyl group of a reduced root system.

4.4 Galleries :

Two chambers C and C ′ are called adjacent if they share a common panel.

A gallery is a sequence of chambers Γ = (C0, ..., Cd) such that 2 consecutive chambers Ci−1 and Ci are

adjacent. We say that Γ is a gallery from C0 to Cd , its length is d .

It’s allowed that, for some i , Ci−1 = Ci , we say then that the gallery stutters.

The type of the gallery Γ is (i1, ..., id) ⊂ Id , if Cj−1 and Cj share a panel of type {ij} . The type is

well determined only if the gallery doesn’t stutter.

If C and D are chambers the (combinatorial) distance d(C, D) between C and D is the minimal length

of a gallery from C to D . A gallery from C to D achieving this minimum is called minimal.

Actually d(C, D) is the number of walls separating C and D (i.e. C and D are in opposite half-

apartments defined by such a wall). And any minimal gallery from C to D is contained in the enclosure

cl(C, D).

Proposition 4.5 : Let C be a chamber and F1, ... ,Fp its panels. Denote by ri the reflection with

respect to the wall Hi support of Fi .

a) Any non stuttering gallery Γ from C to a chamber D is defined by its type (i1, ..., id) by the following

rule : C0 = C , C1 = ri1C , C2 = ri1ri2C , D = Cd = ri1ri2 ...rid
C .

b) The gallery Γ is minimal if and only if ri1ri2 ...rid
is a reduced decomposition in the Coxeter group

W with set of generators {r1, ..., rp} .

N.B. : Actually the results c, d and e in proposition 2.3 (or their equivalents in 4.1) may be proved

using these definitions (a correspondence between words in W , galleries starting from C, paths, . . .) and
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some topological algebra : the union of facets of codimension ≥ 1 (resp. ≥ 2) is connected (resp. simply

connected).

Lemma 4.6 : Let x ∈ A , then there is ε > 0 (depending only on x or Wx) such that : d(y, z) > ε ,

∀y 6= z ∈ Wx .

Proof : Actually W is W v n T with W v finite and T a discrete translation group. So any ball of center x

contains only a finite number of elements of Wx.

§ 5 Facets for general reflection groups :

When W is dense affine it’s still possible to define facets, but they no longer are subsets of A ; they

are filters. For the references see [Bruhat-Tits-72], [Parreau-00] or [Rousseau-77].

5.1 Filters :

A filter in a set X is a set F of subsets of X such that :

- if a subset P ′ of X contains a P ∈ F , then P ′ ∈ F ,

- if P, P ′ ∈ F then P ∩ P ′ ∈ F .

Example : If Z ⊂ X , the set F (Z) of subsets of X containing Z is a filter (usually identified with Z).

If X ⊂ Y , to any filter F in X is associated the filter FY in Y consisting of all subsets of Y containing

a P ∈ F . One usually makes no difference between F and FY .

A filter F is said contained in another filter F ′ (resp. in a Z ⊂ X) if and only if any set in F ′ (resp. if

Z) is in F .

If X is a topological space, the closure of a filter F in X is the filter F consisting of all subsets of

X containing the closure of an element of F . If X is an apartment, the enclosure of F is the filter cl(F )

consisting of all subsets of X containing the enclosure of an element of F .

A bijection of the set X fixes (pointwise) a filter F in X if and only if it fixes pointwise a Q in F .

5.2 Facets :

A facet F in an apartment A is associated to a point x ∈ A and a vectorial facet F v in V . More

precisely a subset Q of A is an element of the facet F (x, F v) if and only if it contains a finite intersection

of open-half-apartments or walls containing Ω ∩ (x + F v) where Ω is an open neighborhood of x in A .

If we erase the words ”a finite intersection of open-half-apartments or walls containing” in the definition

of F (x, F v) above, we get the filter F̃ (x, F v) which is a facet associated to the group W̃ .

Actually when W is discrete, this definition is still valid : F (x, F v) is a subset Z of A (more precisely :

is F (Z) where Z is a subset of A) ; and this subset Z is a facet in the sense of 2.1 or 4.1 .

When W is dense, the point x is well defined by the facet F (x, F v) , it is called its center : {x} is the

intersection of the sets in the closure F (x, F v) . When x is special (i.e. Wx isomorphic to W v), the facet

F (x, F v) determines F v , but it’s no longer true in general.

5.3 Chambers, panels, .. :

There is an order on facets : ”F is a face of F ′ ” ⇔ ”F ′ covers F ” ⇔ F ≤ F ′ ⇔ F ⊂ F ′

Any point x ∈ A is contained in a unique facet F (x, V0) which is minimal ; x is a vertex if and only

if F (x, V0) = {x}. When W is essential, a special point is a vertex, but the converse is not true : in the

(discrete, essential) examples C̃2 or G̃2 of figure 1, some vertices are not special.

The dimension of a facet F is the smallest dimension of an affine space generated by a Q ∈ F . The

(unique) such affine space of minimal dimension is the support of F .

A chamber is a maximal facet or equivalently a facet such that all its elements contain a non empty

open subset of A or a facet of dimension n = dim(A) .
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A panel is a facet maximal among facets which are not chambers or equivalently a facet of dimension

n − 1 . Its support H is a wall and all its elements contain a non empty open subset of H .

So the set F of facets of A, completely determines the set H of walls. And as the affine structure of A

is determined by the distance, all the structure of the apartment A may be deduced from the distance and

F .

Definition 5.4 : A metric space A endowed with a set F of filters in A is called an euclidean apartment

when there is an isometry from A to an euclidean space A′, exchanging the set F and the set F ′ of facets

in A′ associated to a reflection group W ′ . One gets then a set HA of walls in A and a group W (A) acting

on A.

Any automorphism of (A,F) (e.g. an element of W ) fixing a chamber is the identity. But the action

on chambers may be non transitive when W is non discrete, as we can see on the following example :

Example 5.5 : We take A = R , W = W v nTQ where W v is {Id,−Id} and TQ is the group of translations

by rational numbers. The walls are the points in Q , so there are 3 kinds of facets :

- panel = wall = point in Q ,

- chamber with center x in R \ Q ; such a chamber is the filter of neighborhoods of x ,

- chamber with center x in Q ; such a chamber is determined by x and a sign :

Q ∈ F (x, +) (resp. F (x,−) ) ⇔ ∃η > 0 such that Q ⊃ (x, x + η) (resp. (x − η, x) )

Part II : EUCLIDEAN BUILDINGS

I try to give a self contained exposition, at least till 9.3.

§ 6 Definitions and general properties :

Definition 6.1

An euclidean building is a triple (I,F ,A) where I is a set, F a set of filters in I called facets and

A a set of subsets A of I, each endowed with a distance dA and called apartment. These data verify the

following axioms :

(I0) Each apartment (A, dA) endowed with the set FA of facets included in A is an euclidean apartment.

(I1) For any two facets F and F ′ there is an apartment A containing F and F
′
.

(I2) If A and A′ are apartments, their intersection is an union of facets and, for any facets F , F ′ in

A ∩ A′ there is an isomorphism from A to A′ fixing (pointwise) F and F
′
.

N.B. : a) An isomorphism from A to A′ is an isometry exchanging FA and FA′ .

b) A subset Q of A is an union of facets if and only if ∀x ∈ Q , ∃F (a facet) such that {x} ⊂ F ⊂ Q

or equivalently if and only if ∀x ∈ Q , F (x, V0) ⊂ Q .

Examples 6.2 :

a) An apartment is a thin building : any panel is a face of exactly 2

chambers.

b) If I is a set let I = (R+ × I) with all (0, i) identified (to 0) ,

F = { {0} , R
+
∗ ×{i} for i ∈ I} , A = { {0}∪R

+
∗ ×{i}∪R

+
∗ ×{j} for i 6= j ∈ I}.

c) A tree (with no endpoint) is an euclidean building ; the facets are :

the vertices (= panels =walls) and the (open) edges (= chambers) ; the

apartments are the doubly infinite geodesics (with group W = {±Id} n Z).

See e.g. figure 4.

j

i
0

Figure 3

d) A real tree is still a building. The apartments are still the doubly infinite geodesics (with group

W = {±Id} n R). As the tree branches at each point, each point is a panel or wall.
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Figure 4 : Bruhat-Tits building of GL2(K), when |κ| = 2.

Remarks 6.3 :

a) By (I1) and (I2) an apartment contains all faces of its facets ; a facet is a panel or a chamber in an

apartment if and only if it is so in any apartment containing it, so it is called a panel or a chamber in I.

The building I is called thick if any panel in I is covered by at least 3 chambers.

b) By (I2) the distance dA(x, y) doesn’t depend of the apartment A containing x and y ; we write

d(x, y) = dA(x, y) .

c) Two apartments of I are isomorphic (choose a third apartment containing a chamber in each of

them). One often choose an apartment A with group W and tell that I is of type A or W . All qualifications

given to A are also given to I , e.g. of spherical type, of dense affine type, irreducible, essential ...

d) If I is a building of type W , there is a new set F̃ of new facets (defined under the name F̃ in 5.2)

such that (I, F̃,A) is a building of type W̃ . This new building (not very different from the preceding one)

is not thick if W 6= W̃ . The set A of apartments cannot determine F or W when I is not thick.

6.4 Retractions : Let C be a chamber in an apartment A of I .

For x ∈ I, choose an apartment A′ containing C and x . Then there is an isomorphism ϕ : A′ → A

fixing (pointwise) C. If ϕ and ϕ′ are 2 such isomorphisms ϕ−1ϕ′ is an automorphism of A′ fixing pointwise

the chamber C, hence it’s the identity : ϕ is unique. Moreover by (I2) ϕ(x) doesn’t depend of the choice of

A′ . So one may define : ρA,C(x) = ϕ(x) .

The map ρ = ρA,C : I → A is a retraction of I onto A. It depends only on A and C and is called the

retraction of I onto A of center C. Any point x in I such that {ρ(x)} ⊂ C is equal to ρ(x) .

Proposition 6.5 : a) The function d : I × I → R is a distance.

b) The retraction ρ = ρA,C is distance decreasing, i.e. d(ρ(x), ρ(y)) ≤ d(x, y) , ∀x, y ∈ I ; equality

holds when x , y and C are in a same apartment (e.g. when x is in C).
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c) If x and y are in the apartment A, then the segment between x and y in A is :

[x, y] = {z ∈ I / d(x, y) = d(x, z) + d(z, y) } .

d) For any apartments A and A′ , the intersection A ∩ A′ is closed convex in A or A′ and there is an

isomorphism from A to A′ fixing pointwise A ∩ A′ .

e) Given x, y ∈ I and t ∈ [0, 1], let mt = (1 − t)x + ty denote the point in [x, y] such that

d(x, mt) = td(x, y) . Then the function I × I × [0, 1] → I , (x, y, t) 7→ mt is a continuous map. In

particular the metric space I is contractible.

f) Moreover, ∀z ∈ I , d2(z, mt) ≤ (1 − t)d2(z, x) + td2(z, y)− t(1 − t)d2(x, y).

g) When I is discrete, it is a complete metric space.

Proof :

b) When x, y and C are in the same apartment, one can choose the same ϕ to define ρ(x) and ρ(y),

and ϕ is an isometry ; so d(ρ(x), ρ(y)) = d(x, y). In general, consider the segment [x, y] in an apartment

A′ ; for all z ∈ [x, y] such that z 6= y (resp. z 6= x), let F v be the vectorial facet containing the vector

y − x (resp. x − y). There is an apartment A
′′

z (resp. A
′′′

z ) containing C and F (z, F v), so it contains

C and [z, z′] for some z′ ∈ (z, y] (resp. [z′′, z] for some z′′ ∈ [x, z) ). But (z′′, z] ∪ [z, z′) is an open

neighborhood of z in [x, y] which is compact ; so there is a subdivision x0 = x, . . . , xn = y of [x, y] such

that, for all i, C and [xi−1, xi] are in a same apartment, hence ρ is an isometry on each [xi−1, xi]. Then :

d(x, y) =
∑n

i=1 d(xi−1, xi) =
∑n

i=1 d(ρxi−1, ρxi) ≥ d(ρx, ρy) .

a) It remains to prove the triangle inequality : d(x, y) ≤ d(x, z) + d(z, y) . Choose an apartment A

containing x, y and any chamber C in A ; if ρ = ρA,C one has ρx = x, ρy = y and d(x, y) = d(ρx, ρy) ≤

d(ρx, ρz) + d(ρz, ρy) ≤ d(x, z) + d(z, y) .

c) Suppose d(x, y) = d(x, z) + d(z, y) then d(ρx, ρy) = d(ρx, ρz) + d(ρz, ρy) in A. So ρz ∈ [x, y] is

the point at distance d(x, z) from x. Suppose the chamber C chosen containing ρz, then (last line of 6.4)

z = ρz ∈ [x, y].

d) By c) A ∩ A′ is convex. As an apartment is a complete metric space, it is closed in I, so A ∩ A′ is

closed in I, A or A′. Let F be a facet of A contained in A ∩ A′ and of maximal dimension ; as A ∩ A′ is

convex in A it is clear that A ∩A′ is in the support of F , so F contains an open subset of A ∩A′. Now for

all facet F ′ in A ∩ A′, consider the isometry ϕF ′ from A to A′ which is the identity on F and F
′
(axiom

I2). So ϕF ′ restricted to A∩A′ is determined by its restriction to F (= identity), hence independent of F ′ ;

this proves that ϕF ′ restricted to A ∩ A′ is the identity.

f) Choose an apartment A 3 x, y and a chamber C in A containing mt, then by b) and an easy calculus

in the euclidean space A one has : d(z, mt)
2 = d(ρz, mt)

2 = (1−t)d(ρz, x)2+td(ρz, y)2−t(1−t)d(x, y)2 ≤

(1 − t)d(z, x)2 + td(z, y)2 − t(1 − t)d(x, y)2 .

e) Apply f) to z = (1− t′)x′ + t′y′ for (x′, y′, t′) close to (x, y, t). Then (1− t)d2(z, x) ≈ (1− t′)d2(z, x′),

td2(z, y) ≈ t′d2(z, y′) and t(1 − t)d2(x, y) ≈ t′(1 − t′)d2(x′, y′). So one has d(z, mt)
2 ≤ (1 − t)d(z, x)2 +

td(z, y)2 − t(1 − t)d(x, y)2 ≈ (1 − t′)d(z, x′)2 + t′d(z, y′)2 − t′(1 − t′)d(x′, y′)2 = 0 .

g) Suppose I discrete and fix a chamber C. There is a retraction λ of I onto C : for x ∈ I and

{x}∪C ⊂ A, there is a w ∈ WA such that wx ∈ C ; the point λx = wx is independent of the choices (2.3e).

For all chamber C ′ this retraction λ is an isometry from C
′
onto C, so λ is distance decreasing (same proof

as in a) above).

Let xm be a Cauchy sequence in I, then λ(xm) is a Cauchy sequence in C ⊂ A. So there is a point

y ∈ C such that λ(xm) → y. For each m choose a chamber Cm with xm ∈ Cm and let ym be the point in

Cm such that λ(ym) = y. Then d(xm, ym) = d(λxm, λym) → 0. Hence ym is a Cauchy sequence and if ym

has a limit, xm has the same limit. But by lemma 4.6 ym has to be stationary, so the result follows.

Remarks 6.6 : a) 6.5.c means that [x, y] is the only geodesic between x and y and is independent from

the apartment. A subset of I is called convex if it contains [x, y] whenever it contains x and y.

b) The inequality in 6.5.f tells that a triangle in an euclidean building is more pinched than in an
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euclidean space (as we have seen that equality holds in an euclidean space). This is a typical property of

negative curvature (called property CAT(0) ), cf. [Maubon ; 4.4].

One often uses only the special case t = 1
2 called property (CN) in [Bruhat-Tits-72 ; 3.2.1] :

(CN) If m is the middle of [x, y] and z ∈ I then d(z, x)2 + d(z, y)2 ≥ 2d(m, z)2 + 1
2d(x, y)2 .

6.7 Decomposition of buildings :

Let I be a building of type A = (A, W ), we have explained in 3.2 the decomposition A =

(A0, {Id}) × (A1, W1) × ... × (As, Ws) of A in a trivial factor and irreducible essential factors. A. Parreau

[00] proved that there is a corresponding orthogonal decomposition of the building (as a metric space with

set of facets) : I = I0 × I1 × ... × Is . Here I0 is trivial (a trivial apartment) and each Ij is an irreducible

essential building of type either spherical or discrete affine or dense affine. One should pay attention to the

fact that this decomposition may induce no good correspondence between the sets of apartments (except

when condition (CO) of 9.3 below is verified [Parreau ; lemme 2.2]). The essential quotient Ie of I is always

well defined (including the set of apartments) as Ie = I/V0 and one has : Ie = I1 × ... × Is.

When I is of spherical type (i.e. essential and W finite), there is a canonical facet, the unique minimal

one, {0} where 0 is in each apartment the unique point (= vertex) fixed under W ; I is then called a

vectorial building. In this case one prefers to consider the space Is = {x ∈ I / d(x, 0) = 1 } , with its facets

(intersections with Is of facets of I) and its apartments (= unit spheres of centre 0 of apartments of I).

One obtains this way a metrical simplicial complex which satisfy axioms analogous to axioms (I0) , (I1)

and (I2) ; it is called a spherical building. Actually I is a ”cone over Is ” , so these 2 buildings give the

same information ; but Is has more interesting topological properties.

I 2

VI

7

IV

4

III

6V

5

II

3

VII

1

Figure 5 : Spherical Tits building of GL3(K), when |K| = 2.
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When I is thick, irreducible, of spherical type and verify the technical condition ”Moufang” (always

true in rank ≥ 3), the Weyl group W = W v has to be crystallographic (cf. [Tits-74] or [Ronan-89 ; 6.2,

App. 1, 2]). When I is of irreducible discrete affine type W v is crystallographic (4.1) and this is actually

still true for thick irreducible buildings of dense affine type in rank ≥ 4, as a consequence of 9.2 to 9.6

below.

In figure 5 is drawn an irreducible spherical building of rank 2 with circles cut in 6 edges (= chambers)

as apartments.

6.8 Automorphisms of a building :

An automorphism of the building (I,F ,A) is an isometry ϕ of I which transforms a facet or apartment

in a facet or apartment. This automorphism is said type-preserving (resp. strongly type-preserving) if and

only if for each facet F contained in an apartment A and each w ∈ W (A) such that ϕ(F ) ⊂ A and

wϕ(F ) = F , then wϕ stabilizes each face of F (resp. fixes pointwise F ) (see § 8 for a justification of the

terminology).

A group G of automorphisms of I is said strongly transitive if it acts transitively on A, and if, ∀A ∈ A,

the following 3 conditions on a pair (C, C ′) of chambers in A are equivalent :

(i) C and C ′ are conjugated by W (A),

(ii) C and C ′ are conjugated by the stabilizer NG(A) of A in G,

(iii) C and C ′ are conjugated by G (as chambers in I).

When G is a strongly transitive, strongly type-preserving group of automorphisms of I , one has

W (A) ' NG(A)/CG(A), where CG(A) is the (pointwise) fixator of an apartment A in G ; the fixators

(=stabilizers) GF = NG(F ) = CG(F ) of the facets are called parabolic subgroups of G .

Proposition 6.9 : In the above situation, let F and F ′ be 2 facets of the apartment A, then :

a) The parabolic group GF is transitive on the apartments containing F .

b) G = GF .NG(A).GF ′ .

c) If F and F ′ are chambers, G is the disjoint union of the sets GF .w.GF ′ for w ∈ W .

N.B. : The equality in b) is known as the Bruhat decomposition and c) means uniqueness in it.

Proof : a) If the apartments A and A′ contain F , choose chambers C ⊂ A and C ′ ⊂ A′ covering F . If

A′′ is an apartment containing C and C ′ , then there exists n ∈ GF ∩ NG(A′′) such that C ′ = nC (prop.

2.3e). So one may suppose C ′ = C. There exists g ∈ G such that A′ = gA. Now C and gC are in A′, hence

there exists n′ ∈ NG(A′) with n′gC = C. Therefore n′g ∈ GC (as the group is strongly type preserving)

and A′ = n′gA.

b) Let g ∈ G. There exists an apartment A′ containing g−1F and F ′. By a), there exists g1 ∈ GF ′

such that A = g1A
′. As G is strongly transitive and type preserving, the facets F and g1g

−1F of A

are conjugated by an n ∈ NG(A). But the group is strongly type preserving, so ng1g
−1 ∈ GF and

g ∈ (GF )ng1 ⊂ GF NG(A)GF ′ .

c) Let n, n′ ∈ NG(A) such that gnGF ′ = n′GF ′ with g ∈ GF . Then n′F ′ and nF ′ are chambers in A

conjugated by g ∈ GF . Using ρA,F one gets n′F ′ = nF ′, so n′ and n have the same class in W (A).

§ 7 Metrical properties of buildings :

Most of the following properties of a building I are true only when I is complete as a metric space,

e.g. when I is discrete. Actually some dense Bruhat-Tits buildings are complete.

Proposition 7.1 : Let G be a group of isometries of a complete metric space X with the property (CN)

of 6.6. If G stabilizes a non empty bounded subset of X , then G has a fixed point.

Remark : The group G stabilizes a non empty bounded subset of X if and only if for some (any) x ∈ X ,

Gx is bounded ; then G is called bounded.
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Proof : There is a proof by Bruhat and Tits [72], but we follow here Serre’s proof [Brown-89 ; VI 4].

For any bounded non empty subset Y ⊂ X and any x ∈ X, let r(x, Y ) = Supy∈Y d(x, y) and

r(Y ) = Infx∈X r(x, Y ). It’s sufficient to prove the following Serre’s result :

there exists a unique z0 ∈ X such that r(Y ) = r(z0, Y ) (this z0 will be a fixed point).

For x, y ∈ X and m the middle of [x, y], by taking suprema one gets :

2r2(m, Y ) ≤ r2(x, Y ) + r2(y, Y ) − 1
2d2(x, y) hence d2(x, y) ≤ 2(r2(x, Y ) + r2(y, Y ) − 2r2(m, Y ))

and d2(x, y) ≤ 2(r2(x, Y ) + r2(y, Y ) − 2r2(Y )) ; from this last formula one deduces the uniqueness of

z0 if it exists. Moreover if a sequence xn is such that r(xn, Y ) → r(Y ) then it’s a Cauchy sequence and its

limit is the wanted point z0.

Corollary 7.2 :Let I be a complete euclidean building and G a strongly transitive strongly type-preserving

group of isometries of I. The following conditions on a subgroup H of G are equivalent :

(i) H is bounded ,

(ii) H fixes a point in I ,

(iii) H is contained in a parabolic subgroup.

Remark : This gives a classification of maximal bounded subgroups of G .

Proof : By proposition 7.1 (i) ⇒ (ii). For (ii) ⇒ (iii) take the minimal facet containing the fixed point and

remember that G is strongly type preserving. As the parabolic group GF fixes at least one point x ∈ F ,

(iii) ⇒ (i).

Proposition 7.3 : Let X be a non empty closed convex subset of the complete euclidean building I and

z ∈ I , then there is a unique point x ∈ X such that d(z, x) ≤ d(z, y) , ∀y ∈ X .

Remark : Actually we use only that I verify (CN) and X is convex complete, see [Maubon ; prop. 4.8].

Proof : If x and y are 2 solutions and m is the middle of [x, y] ⊂ X, property (CN) gives :

2d2(z, x) = d2(z, x) + d2(z, y) ≥ 2d2(z, m) + 1
2d2(x, y) ≥ 2d2(z, x) + 1

2d2(x, y)

hence d(x, y) = 0 and x = y.

For the existence, let δ = Inf{ d(z, x) / x ∈ X}. For ε > 0, if x and y verify d(z, x), d(z, y) ≤ δ + ε, one

has : 2(δ + ε)2 ≥ d2(z, x) + d2(z, y) ≥ 2d2(z, m) + 1
2d2(x, y) ≥ 2δ2 + 1

2d2(x, y), hence d2(x, y) ≤ 4ε2 + 8εδ.

Now if xn ∈ X verify d(z, xn) ≤ x + 1
n
, it’s a Cauchy sequence and its limit x ⊂ X is the wanted point.

7.4 Comparison with symmetric spaces : If S is a riemannian symmetric space, one can consider its

metric and its collection A of maximal flats (= maximal totally geodesic flat subvarieties, which actually

are isometric to euclidean spaces). These data verify the following weakenings of building’s axioms :

(I1’) For any two points x and y there is an apartment (=maximal flat) A containing x and y .

(I2’) If A and A′ are apartments, their intersection is closed convex and there is an isomorphism from

A to A′ fixing A ∩ A′ .

One can even define Weyl chambers (= sectors) in S [Maubon ; 5.3, 5.4].

The Riemannian symmetric space S verify also condition (CN) or CAT(0) [Maubon ; 4.4], and

proposition 7.1 may be used to give a proof of the conjugacy of maximal compact subgroups of a semi-

simple Lie group. Conversely some results on symmetric spaces (e.g. [Maubon ; lemma 4.3]) are also true

in euclidean buildings, cf. [Rousseau-01].

§ 8 Discrete Euclidean buildings :

Discrete buildings are the better known buildings ; actually they were the only ones until [Bruhat-Tits-

72]. Often one is essentially interested in the combinatorial structure of the ordered set F of facets. There

are more general combinatorial discrete buildings than the euclidean ones (e.g. hyperbolic buildings), see

e.g. [Rémy].

8.1 Type :
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Let C be a chamber and F1, ...,Fp be its panels. If F is a facet and A an apartment containing F and

C, then the type τ(F ) ⊂ {1, ..., p} is defined in A (4.2), it doesn’t depend on the choice of A by axiom (I2).

This type is the type ”viewed from C”, to see that it doesn’t really depend on C we have to prove

that for each apartment A′, τ is invariant by W (A′). As 2 chambers in A′ are connected by a gallery, we

have to prove that, if D 6= D′ are adjacent chambers in A′ with common panel P and rP is the reflection

in A′ with respect to the wall supporting P , then τ(F ) = τ(rP F ) for all face F of D. But rp restricted to

D is the only isometry from D to D
′
fixing pointwise P . So if D , D′ and C are in a same apartment A,

then the restriction of rP to D is the same in A′ and in A and the relation is clear. Otherwise, if A is an

apartment containing C and D′, then rP and ρC,A coincide on D and the relation is still clear.

So we have constructed a map τ : F → P({1, ..., p}), which, in any apartment A, is invariant by W (A).

It is clear that an automorphism of I leaves τ invariant if and only if it is type-preserving in the sense of

6.8 ; if moreover I is essential, it is even strongly type-preserving (as then any isometry of a closed facet F

which stabilizes any face of F is the identity).

8.2 Galleries : They are defined in a discrete building as in a discrete apartment (cf. 4.4). It is clear that

the image of a gallery by any retraction ρA,C is a gallery of the same type.

Proposition : Let C and D be 2 chambers in I and Γ = (C0 = C, ..., Cd = D) a minimal gallery from

C to D in I. Then, for any apartment A containing C and D, Γ is contained in A and is a minimal gallery

in A from C to D ; in particular Γ ⊂ cl(C, D).

Proof : By 4.4 we only have to prove that Γ ⊂ A. If not let m = Inf{ p / Cp 6⊂ A} ≥ 1. Then Cp−1 and

the panel F ⊂ Cp ∩ Cp−1 are in A ; let C ′ 6= C be the chamber in A covering F and ρ = ρA,C′ . Then

ρ(Cp) = Cp−1 and ρ(Γ) is a stuttering gallery from C to D in A and of length n. So there is in A a gallery

from C to D of length n − 1, contrary to the hypotheses.

8.3 Strongly transitive strongly type-preserving automorphism groups :

Let G be a strongly type-preserving automorphism group of I. The group G is strongly transitive if

and only if it acts transitively on the pairs (C, A) where C is a chamber in the apartment A ; as W (A) is

transitive on the chambers of A, this is the same definition as in 6.8.

If (C, A) is such a pair we define B = NG(C) = CG(C) the stabilizer or fixator of C and N = NG(A)

the stabilizer of A. As C is a non empty open set in A , B ∩ N is the fixator CG(A) of A , B ∩ N / N and

N/B ∩ N ' W (A) . By 6.9 one has the Bruhat decomposition G = BNB =
∐

w∈W BwB .

Remarks 8.4 : a) The set C of chambers in I is G/B. The Bruhat decomposition allows us to define a

function δ : C×C → W : δ(gB, hB) is the w ∈ W such that g−1h ∈ BwB. This function is a ”W−distance”,

its properties are explained in [Ronan-89] or [Rémy-02]. Actually this is the starting point of the new

definition of (discrete) combinatorial buildings given by Tits [86b] and chosen by Ronan.

b) The Bruhat decomposition in G is better understood using the following definition :

Definition 8.5 : A Tits system is a triple (G, B, N) where B and N are subgroups of a group G satisfying

the following axioms :

(T1) B ∪ N generates G and B ∩ N is normal in N ,

(T2) the Weyl group W = N/B ∩ N is generated by a system S of elements of order 2 ,

(T3) ∀s ∈ S and ∀w ∈ W , wBs ⊂ BwB ∪ BwsB ,

(T4) ∀s ∈ S , sBs 6⊂ B .

This system is said saturated if and only if
⋂

w∈W wBw−1 = B ∩ N .

Proposition 8.6 : In the situation of 8.3 suppose moreover I thick, then (G, B, N) is a saturated Tits

system of Weyl group W .
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Proof : (T1) is a consequence of Bruhat decomposition (6.9). The group W is a discrete reflection group,

so (T2) is clear with S = {r1, . . . , rp} (2.3b and 4.1). Let g ∈ BsB, then gC is a chamber in I adjacent to

C along the panel P corresponding to s ; so wgC is a chamber adjacent to wC along a panel of type τ(P ).

If ρ = ρA,C then ρ(wgC) is a chamber of A adjacent to wC along a panel of type τ(P ) ; this means that

ρ(wgC) = wC or wsC, hence wg ∈ BwB ∪ BwsB and (T3) is proved. The group sBs is the fixator of the

chamber sC. But, as I is thick, there is a third chamber C ′ in I covering C ∩ sC ⊃ P and b′ ∈ sBs = GsC

such that b′C = C ′ (6.9a) ; so b′ /∈ B and sBs 6⊂ B, now (T4) is proved. We saw in 8.3 that B ∩ N (resp.

B) is the fixator of A (resp. C), so B ∩ N =
⋂

w∈W wBw−1 and the system is saturated.

8.7 Conversely let (G, B, N) be a Tits system such that its Weyl group W is a discrete reflection group

(in an affine space A) ; more precisely one asks that the set S of generators of W is the set of reflections

with respect to panels of a chamber C in A.

The type of a facet in A may be seen as a subset of S. If F is a face of C let WF be the subgroup of

W generated by the s ∈ τ(F ) ; this is the fixator of F in W (cf. 2.3.e generalized in 4.1). One then defines

the parabolic group P (F ) = BWF B ; more generally for any facet in A : P (wF ) = wP (F )w−1 .

Proposition : a) One has an equivalence relation on G × A defined by :

(g, x) ∼ (g′, x′) ⇔ ∃n ∈ N with x′ = nx and g−1g′n ∈ P (F (x)) where F (x) is the facet containing x .

Let π : G × A → I be the quotient map.

b) The action of G on G × A (by left action on G) gives an action of G on I

c) The map ϕ : A → I , ϕ(x) = π(1, x) is an injection.

d) The stabilizer or fixator in G of ϕ(F ), F a facet in A is P (F ). The fixator of ϕ(A) in G is

T =
⋂

w∈W wBw−1 ⊃ B ∩ N and the stabilizer of ϕ(A) is TN .

e) Define an apartment in I as a subset g.ϕ(A) (with its structure of euclidean space) and a facet

as a subset g.ϕ(F ) where F is a facet in A. Let A (resp. F) be the set of apartments (resp. facets), then

(I,F ,A) is a thick euclidean building of type W .

f) The action of G on I induces a strongly transitive strongly type-preserving automorphism group.

Remarks : 1) If the Tits system (G, B, N) is saturated, then it coincides with the Tits system associated

to (I, G) in 8.5.

2) As a consequence of d) and e), the set of facets of type τ(F ) may be identified with G/P (F ).

3) In the following proof I use freely that Bruhat decomposition G = BNB =
∐

w∈W BwB is valid in

any Tits system and some other classical results for Tits systems proved e.g. in [Bourbaki ; IV n◦ 2.3] or

[Brown-89 ;V 2].

Proof : It’s proved in the above references that P (F ) is really a group. As P (F (nx)) = nP (F )n−1 when

n ∈ N and x ∈ A, it’s easy to prove that the relation in a) is an equivalence relation. So a) and also b) are

clear. If (1, x) ∼ (1, x′) there exists n ∈ N such that x′ = nx and n ∈ P (F (x)) ; but if F is a face of C it’s

a classical result that N ∩ P (F ) = WF .(B ∩ N). So for any x, N ∩ P (F (x)) fixes x, hence x′ = x and c) is

proved.

By definition it’s clear that P (F ) is the fixator of (any point in) ϕ(F ) ; but, classically, P (F ) is equal

to its normalizer in G, so P (F ) is also the stabilizer of ϕ(F ). Clearly T is the fixator of ϕ(A), so TN

stabilizes ϕ(A). Conversely if g is in the stabilizer of ϕ(A), gϕ(C) is a chamber in A, so ∃n ∈ N such

that ng ∈ P (C) = B and ng stabilizes ϕ(A). Hence ∀w ∈ W , ∃w′ ∈ W such that ngwϕ(C) = w′ϕ(C),

so w′−1ngw ∈ B and w ∈ Bw′B therefore w = w′ (uniqueness in Bruhat decomposition). Now, ∀w ∈ W ,

ngwϕ(C) = wϕ(C), so ng ∈ wBw−1, ng ∈ T and d) is proved.

By construction G is strongly transitive, it is also strongly type preserving as we saw that the stabilizer

of a facet is also its fixator, hence f) is proved. We note GF = P (F ) the fixator of any facet F in I.

Now for e), axiom (I0) is clear. If gϕ(F ) and g′ϕ(F ′) are facets in I, one may suppose that F and F ′

are faces of C ; so the Bruhat decomposition gives G = P (F )NP (F ′). Write g−1g′ = pnp′ with p ∈ P (F )
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n ∈ N and p′ ∈ P (F ′), then g′ϕ(F ′) = gpnϕ(F ′) and gϕ(F ) = gpϕ(F ′) are in the apartment gpϕ(A) ; so

(I1) is verified.

For (I2) one may suppose the apartments are A′ = ϕ(A) and A′′ = gϕ(A). By definition, if ϕ(x) ∈ ϕ(A)

is in A′′ = gϕ(A), then gn ∈ P (F (x)) for an n ∈ N , so A′∩A′′ ⊃ ϕ(F (x)) and A′∩A′′ is an union of closed

facets. Let F ′ and F ′′ be facets in A′ ∩ A′′, choose chambers C ′ in A′ covering F ′ and C ′′ in A′′ covering

F ′′ ; one may suppose C ′ = ϕ(C). Let A1 be an apartment containing C
′
and C

′′
; by strong transitivity

∃g′ ∈ GC′ = B and g′′ ∈ GC′′ such that A1 = g′A′ = g′′A′′. We are reduced to prove that g′ is the

identity on F
′′

(and the corresponding assertion for g′′). One has g′−1F ′′ ⊂ ϕ(A) and F ′′ or g′−1F ′′ have

the same type ; so ∃n1, n2 ∈ N such that ϕ(F1) = n1F
′′ = n2g

′−1F ′′ ⊂ ϕ(C), hence n2g
′−1n−1

1 ∈ P (F1)

and g′−1n−1
1 ∈ n−1

2 BWF1
B. But this last group is included in Bn−1

2 WF1
B [Bourbaki ; IV 2.5 prop.2], hence

Bn−1
1 B ⊂ Bn−1

2 WF1
B. By uniqueness in Bruhat decomposition, the class of n2n

−1
1 in W is in WF1

; so

F ′′ = n−1
1 ϕ(F1) = n−1

2 ϕ(F1) = g′−1F ′′, hence g′ ∈ P (F ′′) is the identity on F
′′
.

Any panel in I is conjugated to the panel P separating ϕ(C) and ϕ(sC) (with s ∈ S). If g ∈ sBs \B,

then gϕ(C) 6= ϕ(C) and gϕ(C) 6= ϕ(sC) 6= ϕ(C) ; but these 3 chambers share the same panel P , so I is

thick.

8.8 Cocompact actions and exotic buildings :

A discrete building is clearly locally compact if an only if it is locally finite, i.e. iff each facet is covered

by a finite number of chambers.

A group Γ of automorphisms of a discrete building I acts cocompactly if the quotient I/Γ is compact.

A strongly transitive action is transitive on chambers, so it is cocompact.

The classical euclidean buildings (those associated with reductive groups, see § 10 and § 11) are endowed

with a natural strongly transitive action. But there are other euclidean buildings, called exotic. Among them

those admitting a cocompact action are particularly interesting as they are sufficiently homogeneous.

An irreducible essential euclidean building of rank ≥ 4 is classical, cf. [Ronan-89 ; 10.25] and 9.6. But

there are many exotic triangle buildings (= buildings of type Ã2), see e.g. [Ronan-86] or [Van Maldeghem-

87]. Some of them admit a vertex-transitive automorphism group ([Van Maldeghem-90] or [Cartwright-

Mantero-Steger-Zappa-93]) or an action with 2 orbits on vertices but no action transitive on vertices or on

apartments [Barré-00].

§ 9 Apartments and points at infinity : I is an euclidean building (discrete or not).

Proposition 9.1 : Let A and A′ be apartments, then A ∩ A′ is enclosed in A (or A′), more precisely it is

the intersection of a finite number of half-apartments.

Proof : If A ∩ A′ = {x}, then by axiom (I2) {x} is a facet and a finite intersection of walls.

1) Suppose now A ∩ A′ ⊃ [x, y] with x 6= y (6.5d). Let F v be the vectorial facet containing y − x and

F = F (x, F v), then A ∩ A′ ⊃ F 3 x :

Let F ′ be the facet defined as F but in A′. There is an apartment A′′ containing F and F
′
, so it

contains [x, z] for some z ∈ (x, y] and there is an isomorphism from A′′ to A (or A′) fixing [x, z]. This

isomorphism exchanges the facets ; so the definition of F (or F ′) in A′′ is the same as in A (or A′), as it

involves only [x, z] we have F = F ′ and F = F
′
, so F ⊂ A ∩ A′.

2) Let x ∈ A ∩ A′. As A ∩ A′ is convex the union of the facets F
v

defined as in 1) is a convex cone ;

so A ∩ A′ contains the intersection of a neighborhood of x with a finite number of half-apartments, each

containing A ∩ A′ and with boundary a wall containing x. In particular any point in A ∩ A′ is interior to

A ∩ A′ or in a wall boundary of an half-apartment containing A ∩A′. As A ∩ A′ is closed (6.5d) and there

is only a finite number of directions of walls, this proves the result.
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9.2 The complete system of apartments :

Any bounded subset Q of an apartment is contained in the enclosure of 2 points x and y : If z ∈ Q ,

choose x and y such that y − z = z − x is in no vectorial wall and sufficiently far from these walls.

So if A′ ⊃ A is another system of apartments for I (i.e. axioms I0 , I1 and I2 are verified for (I,F ,A′))

and A′ ∈ A′, then every bounded subset Q′ of A′ is contained in the enclosure of x, y ∈ A′ and there is an

apartment A ∈ A containing x and y. Hence Q′ ⊂ cl(x, y) ⊂ A ∩ A′ ⊂ A . Therefore A′ is an increasing

union of bounded subsets of apartments in A.

Conversely let A′ be a subset of I which is isometric to A (6.3c) and a union of bounded subsets of

apartments in A ; more precisely one requires an isometry ϕ : A′ → A such that ∀Q bounded in A , ϕ−1(Q)

is in an apartment of A. Then it is clear that A ∪ {A′} is a system of apartments (as axiom (I2) involves

only bounded subsets of apartments).

Hence there is a maximal system of apartments Am consisting of all A′ verifying the above condition.

N.B. : This system Am is also called the complete system of apartments.

Actually, at least when I is discrete, any subset A′ of I isometric to an euclidean space is in an

apartment of Am [Brown-89 ; VI 7]. Moreover, if I is of spherical type, A is already complete : there is a

unique system of apartments [Brown-89 ; IV 5].

Proposition 9.3 : Suppose the apartment system complete, then it verifies the following condition :

(CO) Two sectors of I sharing the same base point and ”opposite” are in the same apartment.

N.B. : Suppose that sectors S1 and S2 share the same base point x. The intersection of Si with the

filter of neighborhoods of x is contained in a chamber Ci ; hence there is an apartment A′′ containing a

neighborhood U i of x in Si , ∀i = 1, 2. One says that S1 and S2 are opposite if and only if ∃yi ∈ U i different

from x such that x is the middle of [y1, y2] .

Proof : Using the above notations, let Ai be an apartment containing the sector Si. Define yi
n ∈ Si ⊂ Ai by

yi ∈ [x, yi
n] and d(x, yi

n) = nd(x, yi). It’s clear that Si is in the increasing union of the enclosures cl(x, yi
n).

Consider now the retraction ρ = ρA1,C1 . There is an apartment A′′
n containing C

1
and y2

n, but C
1
3 x

so A′′
n contains [x, y2

n] and y1
ε = (1 − ε)x + εy1 for some ε > 0. Moreover x is the middle of y1

ε and

y2
ε = (1−ε)x+εy2 (calculus in A′′), so [y1

ε , y2
n] = [y1

ε , x]∪[x, y2
n] and ρ([x, y2

n]) is, in A1, the segment opposite

to [y1
n, x]. In particular d(ρy1

n, ρy2
n) = d(y1

n, x) + d(x, y2
n) = 2nd(x, y1). But d(y1

n, y2
n) ≤ d(y1

n, x) + d(x, y2
n),

and, as ρ is distance decreasing, we have d(y1
n, y2

n) = d(y1
n, x) + d(x, y2

n) and x ∈ [y1
n, y2

n].

If A′
n is an apartment containing y1

n and y2
n, then A′

n contains x and the enclosure (in A′
n) cl(y1

n, y2
n)

contains cl(y1
n, x) ⊃ C1 and cl(y2

n, x). So S1 and S2 are contained in A′ =
⋃

n∈N cl(y1
n, y2

n) which is clearly

in Am (the isomorphism of A′ with A1 (or A) is given by ρ).

Proposition 9.4 : a) Condition (CO) is equivalent to the following condition :

(A4) Given 2 sectors S1 and S2, there exists sectors S′
1 ⊂ S1 and S′

2 ⊂ S2 and an apartment containing

S′
1 and S′

2 .

b) If I verify (CO), then, given a facet F and a sector S, there exists a sector S′ ⊂ S and an apartment

containing F and S′ .

Consequence : Under condition (CO), for S a sector in an apartment A, there exists a retraction ρA,S

associated to A and (the subsectors of) S. It is defined as in 6.4 using property b) above and is distance-

decreasing.

N.B. : 1) For Bruhat-Tits buildings (which always verify (CO) ) the results of this proposition are still

true for sector-facets instead of sectors : see [Rousseau-77 or 01] where the notion of ”cheminée” (chimney)

is introduced. Till now I saw no proof of this under the more general hypothesis (CO).

2) The system of apartments A ∪ {A′} constructed in 9.2 may not verify (CO) even if A verify it.

Remark 9.5 : The results of 9.4 are proved by Anne Parreau [00]. Actually she proves the equivalence of

several definitions of euclidean buildings, in particular the 2 following ones :
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1) euclidean building (for the definition given here) verifying (CO) but with no emphasis on F and a

particular W (i.e. replacing (F , W ) by (F̃ , W̃ ) defined in 6.3 d).

2) a pair (I,A) verifying (to be short) (I0) , (I1’) , (I2’) (as in 7.4) , condition (A4) above and a

condition (A5’) asking the existence of a retraction of I on an apartment A with center a point x ∈ A.

This last definition is that given by Tits [86a] with later corrections, see [Ronan-89]. It is particularly

suited for the classification purposes of [Tits-86a] and was the basis of almost all abstract definitions of

(eventually non discrete) euclidean buildings.

The only exception (as far as I know) was a definition by Kleiner and Leeb [97], which Parreau proved to

be equivalent to ”euclidean building with the complete apartment system”. In their definition an euclidean

building is a metric space I with a collection of sub-metric-spaces (which are apartments in the sense of

§ 1) and the axioms are entirely geometric, e.g. : I is CAT(0), there exists geodesics in I and any geodesic

or geodesic ray is contained in an apartment, ...

With almost the same point of view, there are some results characterizing affine buildings of dimension

2 with cocompact actions among some simply connected, triangulated metric spaces verifying CAT(O) and

with cocompact actions, cf. [Ballmann-Brin-95], [Barré-95].

9.6 The spherical building at infinity : cf. [Parreau-00 ; 2.1.9 and 1.5.1]

Suppose that the building I verifies the condition (CO) (or equivalently A4 ).

If Q and Q′ are subsets of I, one says that Q′ is asymptotically greater than Q (resp. asymptotic to

Q) if and only if supx∈Q d(x, Q′) < ∞ (resp. and supx∈Q′ d(x, Q) < ∞). Asymptoticity is an equivalence

relation.

The spherical building I∞ is the set of asymptotic classes of rays in apartments of I. Its facets are

the asymptotic classes of sector-facets, they are ordered by the relation ”asymptotatically greater”. Its

apartments are in bijection with apartments of I ; the apartment A∞ corresponding to A ∈ A is the set of

asymptotic classes of rays contained in A, it is thus in bijection with the unit sphere of the vector space V

of A and this gives him its distance.

This building I∞ is spherical in the sense of 6.7 ; it depends strongly on the set A of apartments. It

was introduced by Tits [86a] (see also [Ronan-89]) in a more combinatorial manner and used to classify

the affine buildings (irreducible of rank ≥ 4) as one already knew the classification of spherical buildings

(irreducible of rank ≥ 3) [Tits-74].

When I is discrete, locally finite and the apartment system is complete, the disjoint union I
∐

I∞ may

be endowed with a compact topology. The subset I is open and with its usual topology, but the topology

on I∞ is new. This is the Borel-Serre compactification, see [Brown-89 ; VII 2.A].

A similar construction can be made for symmetric spaces, cf. [Maubon ; th. 5.10].

9.7 Satake compactification : Suppose still that I verifies condition (CO).

We used in 9.6 the compactification of an affine space by adding its unit sphere at infinity. There is

another compactification of an apartment A involving the group W , at least when W v is crystallographic.

In this case W v is associated to a root system Φ as in 2.7.

The set A∞ is the quotient of the set of rays in A by the following equivalence relation :

δ ∼ δ′ ⇔ ∀α ∈ Φ either α(δ) = α(δ′) is reduced to a point or α(δ) and α(δ′) are asymptotic rays in R .

The compactification A = A
∐

A∞ is constructed inside the compact set [−∞, +∞]Φ and it is the

closure of the image of the map : A → [−∞, +∞]Φ , x 7→ (α(x))α∈Φ ,

(actually, as above, one has to choose an origin in A, but it doesn’t depend on it).

This compactification is the starting point of the construction of the Satake compactification of an

affine building (discrete and locally finite). For the details see [Landvogt-96] or the forthcoming article by

Y. Guivarc’h and B. Rémy.

Part III : BRUHAT-TITS BUILDINGS
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§ 10 Reductive groups : The references for many results are to [Borel-Tits] and [Bruhat-Tits-72].

10.1 Relative roots : Let G be a connected reductive algebraic group over a field K. We consider a maximal

split torus S in G (i.e. S is isomorphic to (K∗)n as an algebraic group and is maximal for this property).

We note X(S) (resp. Y (S) ) the group of characters (resp. cocharacters) of S : X(S) = Hom(S, K∗) and

Y (S) = Hom(K∗,S) ; they are dual free Z−modules of rank n = dim(S), the relative rank of G over K.

The adjoint action of S on g = Lie(G) is diagonalizable : g = g0 ⊕ (⊕α∈Φ gα) , where g0 is the

fixed point set of S and Φ ⊂ X(S) \ {0} is the set on non-zero weights of S in g .

Let V = V (S) = Y (S)⊗R ; it’s a real space of dimension n . It may be endowed with a scalar product

and then Φ is a root system in V ∗ in the sense of 2.6 : it’s the relative root system.

10.2 Associated subgroups over K : Let G = G(K) .

If N (S) (resp. Z(S)) is the normalizer (resp. centralizer) of S in G and if N = N (S)(K) and

Z = Z(S)(K) are the corresponding groups of rational points, then N/Z is an automorphism group of

S, i.e. of Y (S) i.e. of V . Actually it’s the Weyl group W v of the root system Φ. Let νv : N → W v be the

quotient map.

If α ∈ Φ, then gα⊕g2α (or gα if 2α /∈ Φ) is a Lie subalgebra of g. There is a unique connected algebraic

subgroup Uα of G associated to this Lie subalgebra ; it is normalized by S. We define Uα = Uα(K).

A great part of Borel-Tits theory may be summarized (in the Bruhat-Tits manner) by telling that

(G, (Uα)α∈Φ, Z) is a generating root datum, as defined below :

Definition 10.3 : Let Φ be a root system in the dual V ∗ of a vector space. A root datum of type Φ is a

triple (G, (Uα)α∈Φ, Z) satisfying the following axioms :

(RD1) The group Z is a subgroup of G and, for all α ∈ Φ , Uα is a non trivial subgroup of G, normalized

by Z .

(RD2) For each pair of roots {α, β} , the commutator group [Uα, Uβ] is contained in the group generated

by the Uγ for γ = pα + qβ ∈ Φ with p and q strictly positive integers.

(RD3) If α and 2α are in Φ , then : U2α ⊂ Uα and U2α 6= Uα .

(RD4) For all α ∈ Φ and all u ∈ Uα , u 6= 1, there exists u′ and u” ∈ U−α such that m(u) := u′uu”

conjugates Uβ into Urα(β) for all β ∈ Φ .

Moreover, for all u, v ∈ Uα \ {1} one asks that m(u)Z = m(v)Z .

(RD5) If Φ+ is some (any) positive root system in Φ and if U+ (resp. U−) is the subgroup of G

generated by the Uα for α ∈ Φ+ (resp. α ∈ Φ−), then : ZU+ ∩ U− = {1} .

This root datum is called generating when :

(GRD) The group G is generated by the subgroups Z and Uα for α ∈ Φ .

N.B. : a) ZU+ is a minimal parabolic subgroup in G (not necessarily a Borel subgroup).

b) ∀α ∈ Φ and ∀u ∈ Uα \ {1} , m(u) ∈ N and νv(m(u)) is the reflection rα.

Examples 10.4 : a) When G is split over K, then S is a maximal torus and Z = S. The root system

Φ is reduced, and for each α ∈ Φ , Uα is isomorphic to the additive group. More precisely a choice of a

”Chevalley basis” in g gives isomorphisms xα : K → Uα and there is a more precise result than (RD2) :

[xα(u), xβ(v)] =
∏

γ xγ(cγ
α,β .up.vq) , where the product on the right is on the γ = pα + qβ as in (RD2) in

a chosen order and the constants cγ
α,β are integers. For s ∈ S , sxα(u)s−1 = xα(α(s).u) . Axiom (RD4) is

nothing else than a classical calculus in SL2 .

b) If G = GLn , one chooses for S the group of diagonal matrices. Then Z = S (G is split) and N (S)

is the group of monomial matrices (exactly one coefficient 6= 0 in each column or line), so W v = N /Z is

the symmetric group on n letters and its canonical system of generators is Σ = { ri = (i, i + 1) / i ∈ I =

{1, . . . , n − 1} }.
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If εi(M) is the coefficient mi,i of a matrix M , then ε1, ..., εn is a Z−basis of X(S). The root system is

Φ = {αi,j = εi − εj / 1 ≤ i 6= j ≤ n} ; the reflection corresponding to αi,j is the transposition (i, j). The

group Uαi,j
consists of the matrices xi,j(u) (for u ∈ K) with 1’s on the diagonal, u as coefficient (i, j) and

0 elsewhere. For axiom (RD4) xi,j(u)′ = xi,j(u)′′ = xj,i(−u−1) and m(xi,j(u)) is the matrix with 1’s on

the diagonal except for coefficients (i, i) and (j, j) , u as coefficient (i, j), −u−1 as coefficient (j, i) and 0

elsewhere.

The system of positive roots associated to Σ is Φ+ = {αi,j / i ≤ j} and ZU+ (resp. U+ or U−) is the

group of matrices which are upper triangular (resp. upper or lower triangular with 1’s on the diagonal).

Proposition 10.5 : Let (G, (Uα)α∈Φ, Z) be a generating root datum, Φ+ a positive root system in Φ,

B = ZU+ and N the subgroup of G generated by Z and the m(u) for α ∈ Φ , u ∈ Uα , then (G, B, N) is a

saturated Tits system.

Proof : The first assertion of (T1) is clear, by (RD4) and (GRD), as rα(α) = −α. There is an action

νv of N on Φ given by (RD4) with image νv(N) = W v and with kernel containing Z. Actually

Ker(νv) = Z = B ∩ N ; see [Bruhat-Tits-72 ; 6.1.11], I don’t prove it as it’s clear in the above case of

a reductive group. Now (T2) and the second assertion of (T1) are clear.

If s = rα, α > 0, then sBs ⊃ sUαs = U−α ⊂ U− and (T4) is a consequence of (RD5). The saturation

is also a consequence of (RD5).

Suppose α is a simple root, then by (RD2), U+ = UαUα , where Uα is generated by the Uβ for β > 0

such that β
2 /∈ Φ and β 6= α. This group Uα is normalized by Z, Uα and rα , hence :

BwBrαB = BwUαUαrαB = BwrαU−αUαB = BwrαU−αB

If (wrα)(α) < 0, then wrαU−α ⊂ Bwrα hence BwBrαB ⊂ BwrαB.

If (wrα)(α) > 0, then w(α) < 0 and (by (RD4))

Bwrα(U−α \ {1})B ⊂ BwrαUαrαUαB = BwrαUαrαB = BwU−αB = BU−wαwB = BwB.

(T3) is now proved in both cases.

Corollary 10.6 : There is a (vectorial) building of type (V, W v) associated to the reductive group G over

K ; it is called Iv(G, K). Its apartments are in bijection with maximal split tori of G over K. The apartment

Av(S) associated to S is (V, W v) with the action of N via νv. The chamber associated to (S, Φ+) is the set

{v ∈ V / α(v) > 0, ∀α ∈ Φ+} ⊂ Av(S).

This is a simple consequence of 8.6 and 10.5 as it is proved in 8.6 that the stabilizer in G of A(S) is

N = NG(S) and as one knows that all maximal split tori are conjugated under G. Actually ∀α ∈ Φ the

fixator of {v ∈ V / α(v) ≥ 0} ⊂ Av(S) is ZUα.

The spherical building Is(G, K) associated to the essential quotient of Iv(G, K) is called the Tits

building of G over K.

10.7 Example of GLn :

With the notations of 10.4b, if τ ⊂ I and I \ τ = {i1, . . . , ik} with i1 < . . . < ik, then Pτ = BWτB is

the group of matrices triangular by blocks of successive sizes i1, i2 − i1, . . . , ik − ik−1, n − ik i.e. Pτ is the

stabilizer of the flag {
⊕ij

i=1 Kei }1≤j≤k (where (e1, . . . , en) is the canonical basis of Kn). Moreover we saw

in 8.7.2 that the set of facets of type τ is G/Pτ . So the facets of Iv(GLn, K) are the flags of Kn (i.e. the

sets F of non trivial subspaces of Kn totally ordered by inclusion) ; the type of a flag F is the set τ(F ) ⊂ I

of the dimensions of the subspaces in F . Actually the 2 maps facet F 7→ group P (F ) 7→ flag reverse the

natural orders, so the order on facets correspond to the inclusion of flags (seen as sets of subspaces of Kn).

The apartments correspond to maximal split tori i.e. to sets {L1, . . . , Ln} of n lines in Kn generating

Kn. The facets in the apartment corresponding to such a set are the flags made of vector spaces which are

generated by the Li they contain.

For n = 3 and |K| = 2, there are 7 lines (numbered 1 to 7) (resp. 7 planes (numbered I to VII)) in K3 ;

they correspond to the vertices of type 1 (resp. 2) in the spherical building Is(GL3, K) = Is(PGL3, K).
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The chambers correspond to pairs (line ⊂ plane) their number is 21. There are 28 apartments each made

of 6 vertices and 6 chambers. This building is drawn in figure 5.

§ 11 Reductive groups over local fields : The references are to [Bruhat-Tits-72 or 84a] or [Tits-79].

11.1 We suppose the existence of a real valuation ω on K i.e. a map ω : K → R ∪ {+∞} such that :

ω(0) = +∞ , Λ = ω(K∗) ⊂ R is not reduced to a point,

ω(xy) = ω(x) + ω(y) and ω(x + y) ≥ inf(ω(x), ω(y)) (∀x, y ∈ K).

Then O = ω−1(R+ ∪ {+∞}) is the valuation ring, it’s a local ring with unique maximal ideal

m = ω−1(R∗
+ ∪ {+∞}) . The residue field is κ = O/m .

With the hypotheses of § 10, the group G is now endowed with a topology (induced by that of Km2

for any embedding of G in GLm).

Proposition 11.2 : There is an homomorphism ν : Z → V (S) such that : ∀z ∈ S , χ(ν(z)) = −ω(χ(z)) ,

∀χ ∈ X(Z) ⊂ V ∗ .

N.B. : We define T̂ = ν(Z) and Z0 = Ker(ν) then Z0 ⊃ S(O) ' (O∗)r with equality when G is split (i.e.

S = Z). This group Z0 is open in Z and actually it is compact when K is locally compact.

Proof : The group Z is reductive with center containing S, hence the restriction map X(Z) → X(S) has

an image of finite index. So there exists m > 0 such that ∀χ ∈ X(S), mχ ∈ X(Z) and ν is defined by

χ(ν(z)) = − 1
m

ω(mχ(z)), ∀χ ∈ X(S) and ∀z ∈ Z.

Proposition 11.3 : There is an homomorphism ν from N to the group of affine automorphisms of V (S)

such that, ∀z ∈ Z , ν(z) is the translation by the vector ν(z) defined in 11.2 and ∀n ∈ N the linear part of

ν(n) is νv(n) ∈ W v defined in 10.2.

This action is unique up to an affine automorphism (which may be non unique).

N.B. : We write A(S) for the affine space underlying V (S), then Ŵ = ν(N) is a subgroup of Autaf (A(S))

and there exists points x in A(S) such that : Ŵ = Ŵx n T̂ , with Ŵx ' W v (see the proof below).

Proof : a) For all z in Z, n in N and χ in X(Z), ν(nzn−1)χ = −ω(χ(nzn−1)) = −ω((νv(n−1).χ)(z)) =

ν(z)(νv(n−1).χ) = (νv(n).ν(z)).χ, hence ν(nzn−1) = νv(n).ν(z).

b) It remains only to find a subgroup of N/Z0 isomorphic to W v by νv. As Z/Z0 = T̂ ⊂ V (S) has no

torsion, it is sufficient to find a finite subgroup N1 of N such that νv(N1) = W v. This group is well known

when G is split : one chooses a Chevalley basis as in 10.4a, to each simple root α is associated an element

sα = m(xα(1)) such that νv(sα) = rα and sα is of order 2 or 4 ; then N1 is generated by these sα. In the

general case Borel and Tits have shown that there is a split reductive subgroup of G sharing the same S

and the same W v, hence we are done.

11.4 The affine Weyl group and the apartment :

For all root α and all u ∈ Uα \{1} , νv(m(u)) = rα is the linear part of ν(m(u)). And actually ν(m(u))

is the orthogonal reflection with respect to an hyperplane H(u) (it’s easy to prove in the split case as one

verifies that m(u)4 = 1). This hyperplane has Ker(α) for direction and it’s the wall of u or m(u). The

half-apartment defined by u is D(u) = {x ∈ A(S) / α(x) ≥ α(M(u)) } .

The affine Weyl group is the subgroup W of Ŵ generated by these ν(m(u)) ; it is a reflection group

with set of walls H = {H(u) / α ∈ Φ, u ∈ Uα \ {1} }. Thus (A(S), W ) is an apartment.

For a special point x ∈ A(S) , W ' Wx n T with Wx = Ŵx ' W v and T ⊂ T̂ . But N normalizes

all the situation, hence W / Ŵ and N stabilizes H. By construction Y (S) ⊗Λ ⊂ T̂ ⊂ (1/m)Y (S) ⊗Λ (cf.

proof of 11.2). So W is discrete if and only if H is discrete i.e. if and only if Λ = ω(K∗) is discrete in R .

Examples 11.5 : a) When G is split, ∀α ∈ Φ , ∀u ∈ K∗ , m(xα(u)) = α (̌u)m(xα(1)) , where αˇ∈ Y (S) is

the coroot. The special point may be chosen fixed by all m(xα(1)) (∀α ∈ Φ) hence the translation group T
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is generated by the ν(α (̌u)). By definition of ν in 11.2, it is clear that T = Qˇ⊗ Λ where Qˇ⊂ Y (S) is the

”coroot-lattice” generated by the αˇfor α ∈ Φ . But T̂ = Y (S) ⊗ Λ , hence W = Ŵ if Qˇ= Y (S) i.e. if G

is semi-simple and simply connected.

b) Suppose now G = GLn. The Z−basis ε1, ..., εn of X(S) gives a dual Z−basis µ1, ..., µn of Y (S) and

hence an R−basis of V (S) = Y (S)⊗R . The element m(xi,j(1)) acts linearly on V (S) by the reflection with

respect to the hyperplane ” αi,j(x) = 0 ” i.e. by permutation of µi and µj . The coroot αǐ,j is µi − µj and

ν(αǐ,j(u)) is the translation by −ω(u)αǐ,j. So m(xi,j(u)) is the reflection with respect to the wall H(xi,j(u))

of equation αi,j(x =
∑

xkµk) = xi − xj = −ω(u) (∈ Λ = ω(K∗)).

This gives the definition of all walls. In particular a special point is a point x =
∑

xkµk such that

xi − xj ∈ Λ , ∀i 6= j.

The group T̂ of translations in Ŵ is Λn ⊂ R
n , whereas T is the subgroup of elements (λ1, ..., λn) ∈ Λn

such that
∑

λk = 0 (as Qˇis defined by the same equation in Y (S).

11.6 Valuation of the root datum :

Let’s choose an origin in the apartment A(S). Then, ∀α ∈ Φ , ∀u ∈ Uα \ {1}, the wall H(u) has for

equation : α(x) + k = 0 for some k ∈ R. We define ϕα(u) = k , (and ϕα(1) = +∞).

One would like that these ϕα verify the following definition of [Bruhat-Tits-72] :

Definition 11.7 : A real valuation of the root datum (G, (Uα)α∈Φ, Z) is a family (ϕα)α∈Φ satisfying the

following axioms :

(V0) For all α ∈ Φ , ϕα is a map from Uα to R ∪ {+∞} and the image of ϕα contains at least 3

elements.

(V1) For all α ∈ Φ and all λ ∈ R ∪ {+∞} , the set Uα,λ = ϕ−1
α ([λ, +∞]) is a subgroup of Uα and

Uα,+∞ = {1} .

(V2) a) For all α ∈ Φ and all u ∈ Uα \{1} , the function v 7→ ϕ−α(v)−ϕα(m(u)vm(u)−1) is a constant

on U−α \ {1} .

b) For all α ∈ Φ and all t ∈ Z , the function v 7→ ϕα(v) − ϕα(tvt−1) is a constant on Uα \ {1} .

(V3) For any pair {α, β} of roots verifying −α /∈ R
+β , and all λ, µ ∈ R the commutator group

[Uα,λ, Uβ,µ] is contained in the subgroup generated by the Upα+qβ,pλ+qµ for p, q ∈ N
∗ and pα + qβ ∈ Φ .

(V4) If α and 2α are in Φ, then ϕ2α is the restriction of 2ϕα to U2α .

(V5) For all α ∈ Φ , if u, u′ and u′′ are as in the axiom (RD4) , then ϕ−α(u′) = ϕ−α(u′′) = −ϕα(u) .

11.8 Results about these axioms : a) If G is split, one chooses as origin the special point of 11.5.a ; then

ϕα(xα(u)) = ω(u) and the verification of the axioms in 11.7 is easy (particularly for GLn).

b) Axioms V0 , V2 , V4 and V5 are always verified in our situation. J. Tits conjectures that V1 and

V3 are always true when K is complete. This was proven when ω is discrete with a perfect residue field

[Bruhat-Tits-84a], more generally when G quasi-splits over a tamely ramified extension [Rousseau-77] but

also when the residual characteristic is not 2 (unpublished results of Tits, cf. [Rousseau-77]).

In the following we assume these axioms verified.

11.9 Parahoric subgroups : If x ∈ A(S) , P̂x is defined as the group generated by the fixator Nx of x in

N (for the action ν) and the groups Uα,−α(x) ; one has P̂x ∩ N = Nx.

If F is a facet in A(S), the parahoric subgroup P (F ) is the group generated by Z0 and the groups Uα,k

where α ∈ Φ and α(F ) + k ⊂ [0, +∞). If NF is the (pointwise) fixator of F in N , it normalizes P (F ) and

one defines P̂ (F ) = NF P (F ) . If F is a chamber, P (F ) is an Iwahori subgroup.

11.10 The Bruhat-Tits building : We want an euclidean building with a strongly transitive action of

G, with an apartment isomorphic to A(S) stabilized by N (acting through ν) and such that ∀s ∈ A(S)
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the fixator of x in G is P̂x . Note that this implies that, ∀α ∈ Φ , an u ∈ Uα \ {1} fixes (pointwise) the

half-apartment D(u).

The Bruhat-Tits definition of this building is as the quotient Ia(G, K) of G×A(S) by the equivalence

relation : (g, x) ∼ (h, y) ⇔ ∃n ∈ N such that y = ν(n)x and g−1hn ∈ P̂x .

As in 8.7, Bruhat and Tits prove that Ia(G, K) is a solution to our problem. Actually proposition 8.7 is

still true except for assertions d) and f). The fixator of a facet F in G is P̂ (F ). The stabilizer (resp. fixator)

of A(S) is N (resp. Z0) ; so one sees as in 10.6 that the apartments are in bijection with maximal split tori

of G over K. The action of G is strongly transitive but non type-preserving in general. The subgroup G′ of

G consisting of the strongly type preserving automorphisms is generated by N ′ = ν−1(W ) and the groups

Uα, it is also strongly transitive on Ia(G, K).

N.B. : a) This Bruhat-Tits building verify the conditions A4 or CO of § 9 [Bruhat-Tits-72 ; 7.4.18]. Actually,

when K is complete, the system of apartments is the complete one (9.2) [Rousseau-77 ; 2.3.7]. The spherical

building at infinity is the spherical building Is(G, K) defined in 10.6.

b) When G is reductive and its center contains a split torus, the building Ia(G, K) is not essential.

In the literature it is often called the extended Bruhat-Tits building and the Bruhat-Tits building is then

its essential quotient Iae(G, K) (quotient by V0 = Y (S1) ⊗ R where S1 is the maximal split torus of the

center). This building is drawn in figure 4 when G = GL2 and the residue field κ has 2 elements.

11.11 Discrete case :

When the valuation ω is discrete, we saw that the reflection group W and hence the building are

discrete. If moreover the relative rank of G over K is 1, then it’s easy to see that Ia(G, K) is a tree with no

endpoint [Tits-79 ; 2.7].

If C is a chamber in A(S), B = P (C) and G′, N ′ are as in 11.10, then (G′, B, N ′) is a saturated Tits

system and Ia(G, K) is its building (defined as in 8.6).

When K is locally compact (i.e. ω discrete and the residue field finite) then the building Ia(G, K) and

the group G are locally compact and each group P̂x or P̂ (F ) is compact open. So the orbits of a compact

subgroup of G are all finite : a compact subgroup of G is bounded and hence is contained in a group P̂x (cf.

7.1). This gives a classification of maximal compact subgroups : each conjugacy class (under G) contains a

group P̂x where x is the barycenter of a face of a given chamber. In particular there is only a finite number

of conjugacy classes of maximal compact subgroups.

§ 12 The Bruhat-Tits building of GLn :

I shall give a more concrete description of this building following [Goldman-Iwahori-63] (where no

building language is used) , [Bruhat-Tits-84b] and [Parreau-00].

Definition 12.1 : An additive norm on the K−vector space E of dimension n is a map γ : E → R∪{+∞}

such that : 1) γ−1(+∞) = {0} ; γ(λy) = ω(λ) + γ(y) ; γ(x + y) ≥ inf(γ(x), γ(y)) ; ∀λ ∈ K , ∀x, y ∈ E ,

2) there exists a basis (ei) of E and reals (ci) such that γ(
∑

λiei) = inf{ω(λi) + ci / i = 1, n}.

One tells then that this basis and γ are adapted and note γ = γ
(ci)
(ei)

.

Let N (resp. N ((ei)) ) be the set of these norms (resp. adapted to (ei) ). The group GL(E) acts on

N by (gγ)(x) = γ(g−1x) .

Remarks : a) Actually when K is locally compact the second condition is a consequence of the first

[Goldman-Iwahori-63]. One can even prove that the flag Ke1 ⊂ Ke1⊕Ke2 ⊂ ... may be chosen in advance ;

this is more or less a proof of 9.4.b for GLn.

Proof : A map γ verifying 1) is adapted to (e1, . . . , en) if and only if γ(
∑

λiei) = inf{γ(λiei)}. By

induction it’s sufficient to prove that, if F is an hyperplane in E, ∃e1 ∈ E \ E1 such that γ(λe1 + f) =

inf{γ(λe1), γ(f)}, ∀λ ∈ K, ∀f ∈ F . By hypothesis one knows that γ(λe1 + f) ≥ inf{γ(λe1), γ(f)} with

equality when γ(λe1) 6= γ(f) ; so it’s sufficient to prove that γ(λe1 + f) ≤ γ(λe1).
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Let ϕ ∈ E∗ be such that F = Ker(ϕ) and choose e1 minimizing ω(ϕ(e))−γ(e) (this function is defined

and continuous on the compact projective space P(E) with values in R∪{∞}). One may suppose ϕ(e1) = 1.

Then γ(e = λe1 + f) ≤ ω(ϕ(e)) − ω(ϕ(e1)) + γ(e1) = ω(λ) + γ(e1) = γ(λe1).

b) When ω is discrete, one can also easily prove that 2 norms are adapted to a same basis [Bruhat-

Tits-84b ; 1.2.6], this is axiom (I1’) (see 12.2). Many other properties of buildings can be proven directly.

Proof : If γ ∈ N , then γ(E \ {0}) is finite modulo ω(K∗) (which is discrete). Hence if γ, δ ∈ N the

function γ − δ on E \ {0} is bounded and contained in a finite number of classes modulo ω(K∗). So there

is e1 ∈ E \ {0} achieving the minimum of γ − δ : γ(e) − δ(e) ≥ γ(e1) − δ(e1), ∀e ∈ E \ {0}.

One may define a norm γ∗ on the dual E∗ of E by γ∗(ϕ) = Inf06=e∈E (ω(ϕ(e))− γ(e)), ∀ϕ ∈ E∗. It is

adapted to the basis of E∗ dual to a basis adapted to γ, and a simple calculus in these bases proves that

γ∗∗ = γ. Hence γ(e1) = Inf06=ϕ∈E∗ (ω(ϕ(e1)) − γ∗(ϕ)) = ω(ϕ1(e1)) − γ∗(ϕ1) for some ϕ1 ∈ E∗ (as this

function is bounded and finite modulo ω(K∗)). One may suppose ϕ1(e1) = 1 and then (∀e ∈ E) :

(*) ω(ϕ1(e1)) − γ(e1) = γ∗(ϕ1) ≤ ω(ϕ1(e)) − γ(e)

and δ(e) − δ(e1) ≤ γ(e)− γ(e1) ≤ ω(ϕ1(e))− ω(ϕ1(e1)),

hence (**) ω(ϕ1(e1)) − δ(e1) ≤ ω(ϕ1(e)) − δ(e)

Using (*) and (**) one proves as in a) above that e1 is the first vector of a basis adapted to γ and δ

(and Ker(ϕ1) is the vector space generated by the other vectors of this basis, by induction on n).

12.2 Apartments : 1) A basis (ei) of E enables us to identify GL(E) with GLn(K) and so to use 10.4.b,

10.7 and 11.5.b. So Z = S is the diagonal torus and N the group of monomial matrices.

There is a bijection of V (S) onto N ((ei)) given by :
∑

ciei 7→ γ
(ci)
(ei)

. The normalizer Z of S stabilizes

N ((ei)) , hence N ((ei)) depends only on S and is denoted by N S . More precisely the induced action of N

on V (S) is given by :

- the finite group N1 consisting of matrices in N with all coefficients equal 0 or ±1 verifies νv(N1) = W v

and acts linearly on V (S) by permutation of the basis (µi) i.e. through νv,

- the group Z = S acts via translations : if s ∈ S has for diagonal coefficients s1, ..., sn , then

(s.γ
(ci)
(ei)

)(
∑

λiei) = γ
(ci)
(ei)

(
∑

s−1
i λiei) = infi{ω(s−1

i λi) + ci} = γ
(ci−ω(si))
(ei)

(
∑

λiei) . Hence s acts through

the translation ν(s) of vector ν(s) = −
∑

i ω(si)µi ∈ V (S) which verify χ(ν(s)) = −ω(χ(s)), ∀χ ∈ X(S).

2) So N S is isomorphic to V (S) = A(S) with its affine action of N as defined in 11.3. This is the

apartment of S inside N . More generally the apartments of N correspond (bijectively) to the bases of E

(up to permutation of the vectors and multiplication of vectors by constants) i.e. to sets {L1, . . . , Ln} as

in 10.7.

The walls in N S are defined by H(xi,j(u)) = {γ ∈ N S / γ(ei)− γ(ej) + ω(u) = 0} = {γ
(ci)
(ei)

/ ci − cj +

ω(u) = 0} for i 6= j and u ∈ K∗. The group Ŵ = ν(N) is W v n (Y (S) ⊗ ω(K∗)) ; its reflection subgroup

is W = W v n (Qˇ⊗ ω(K∗)). The subgroup N ′ = ν−1(W ) of N is defined by the condition ” determinant

∈ O∗ ” (the same condition defines the subgroup G′ of strongly type-preserving automorphisms, cf. 11.11).

Proposition 12.3 : The fixator Gγ of γ = γ
(ci)
(ei)

in G identified with GLn(K) via the basis (ei) is defined

by the following conditions on the coefficients of a matrix g :

det(g) ∈ O∗ and, ∀i, j , ω(gi,j) ≥ cj − ci (= −αi,j(γ) for the identification N S ' V (S) ).

It is the subgroup of G = GLn(K) generated by Nγ and the groups Uαi,j,−αi,j(γ) for i 6= j .

Proof : Let L be an O−submodule of E of the form L =
⊕n

i=1 ω−1([−c′i, +∞])ei. It is more or less

clear that an element g ∈ GLn(K) stabilizes L if ω(gi,j) ≥ c′j − c′i, ∀i, j and this condition is necessary if

c′i ∈ ω(K∗). So, using the considerations in 12.5c, it’s easy to prove that g fixes the norm γ if and only if

the coefficients of g and g−1 verify ω(gi,j) ≥ cj − ci, ∀i, j. The formulas for the coefficients of g−1 enable

us to prove that this is also equivalent to the conditions of the proposition. Details for this sketch of proof

may be found in [Parreau ; cor. 3.4].

The group P generated by Nγ and the groups Uαi,j,−αi,j(γ) is clearly in Gγ and one knows (Bruhat

decomposition) that G = PNP , hence Gγ = PNγP = P .



Euclidean buildings 25

12.4 Consequences : The fixator Gγ is the group P̂γ defined in 11.9. The action of N on N S ' A(S) is

that of 11.3. The space N is the union of all N S′ which are of the form N S′ = gN S for some g ∈ G, as any

two maximal split tori are conjugated by G.

So the obvious (G−equivariant) map G×A(S) → N is onto and factors through the quotient Ia(G, K)

defined in 11.10. But any two points in Ia(G, K) are, up to conjugacy, both in A(S) and the map A(S) → N

is injective ; so we get a G−equivariant bijection from Ia(G, K) to N .

Hence N (with its apartments) is the (extended) Bruhat-Tits building of GL(E).

12.5 Lattices and vertices : a) Let L be a lattice in E, i.e. an O−submodule which is free and generates

E as a vector space. If e1, ..., en is an O−basis of L, the norm γL = γ
(0)
(ei)

is entirely defined by L :

γL(x) = sup{ω(λ) / λ ∈ K , x ∈ λL} and L is defined by γL : L = γ−1
L ([0, +∞]).

Such a norm is a special point and conversely any special point in N ((ei)) is γ
(ci)
(ei)

with ci−cj ∈ ω(K∗),

∀i 6= j and this special point may be written γ = γL + c1 for the lattice L = γ−1([c1, +∞]).

b) The essential quotient Iae(GLn, K) is the quotient by V0 = Y (S1) ⊗ R where S1 is the group of

scalar matrices. On N this means that : γ ∼ γ′ ⇔ γ − γ′ is a constant . Hence the vertices (=

special points) of Iae(GLn, K) are the classes (up to constants) of the norms γL and they may be identified

to the classes (up to homotheties) of lattices in E (see [Serre-77] for the case n=2).

c) More generally any norm γ determines a filtration of E by the O−submodules Lc = γ−1([c, +∞])

and L+
c = γ−1((c, +∞]) for c ∈ R. These O−submodules generate E but are not always lattices (i.e. free)

when ω is not discrete. This filtration is stable by homothety.

Conversely the norm γ is entirely determined by the family of these O−submodules Lc (verifying

Lc ⊂ Lc′ if c > c′ , λLc = Lc+ω(λ) , KLc = E and ∩c Lc = {0}). But the set of these submodules

determines γ up to a constant only when ω is dense.

12.6 Facets in the discrete case :As ω is now discrete, we normalize it such that Λ = ω(K∗) = Z and

we choose a generator π of the maximal ideal m (ω(π) = 1).

a) As γ
(ci)
(λiei)

= γ
(ci+ω(λi))
(ei)

, a change of basis enables us to write any norm as γ = γ
(ci)
(ei)

with

0 ≤ c1 ≤ c2 ≤ ... ≤ cn < 1 . Then, for 0 ≤ c < 1 and m ∈ N , Lc+m = πm((⊕ci≥c Oei) ⊕ (⊕ci<c πOei)) is

a lattice. The closure of the facet F (γ) containing γ is the enclosure of {γ}, it is the set of γ = γ
(c′i)

(ei)
such

that ∃a ∈ R with a ≤ c′1 ≤ c′2 ≤ ... ≤ c′n ≤ a + 1 and c′i = c′j when ci = cj . In particular this enclosure

contains the norms γLc
for any c ∈ R.

b) Let’s look now to the essential quotient Iae(GLn, K) = N /constants. There is a finite number of

classes (up to constants) of norms γLc
: γLc1

, ..., γLcn
. The closed facet F (γ) is a simplex whose vertices

are these classes. We get so the classical definition of the (essential) Bruhat-Tits building Iae(GLn, K) : its

vertices are the classes (up to homotheties) of lattices in E and a facet is the simplex built on p vertices

associated to lattices L1, ..., Lp verifying L1 ⊃6= L2 ⊃6= ... ⊃6= Ln ⊃6= πL1 (up to modification of the Li by

homotheties and permutation) ; see [Serre-77] for the tree case (n = 2), it is drawn in figure 4 when |κ| = 2.

The subgroup G′′ of G acting by type preserving automorphisms on Iae(GLn, K) or Ia(GLn, K) is

defined by the equation ” ω(det(g)) ∈ nZ ”. The group G induces a cyclic group of permutations of types.
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