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We analyse a reduced 1D Vlasov–Maxwell system introduced recently in the physical
literature for studying laser-plasma interaction. This system can be seen as a standard
Vlasov equation in which the field is split in two terms: an electrostatic field obtained
from Poisson’s equation and a vector potential term satisfying a nonlinear wave equation.
Both nonlinearities in the Poisson and wave equations are due to the coupling with the
Vlasov equation through the charge density. We show global existence of weak solutions
in the non-relativistic case, and global existence of characteristic solutions in the quasi-
relativistic case. Moreover, these solutions are uniquely characterised as fixed points of
a certain operator. We also find a global energy functional for the system allowing us to
obtain Lp-nonlinear stability of some particular equilibria in the periodic setting.
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1. Introduction

Given a population of electrons, with mass m and charge −e, assumed to be rela-

tivistic, we denote

v(p) :=
p

m

√
1 +

|p|2

m2 c2

:=
p

mγ
,

1
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the velocity corresponding to a given momentum p. The electrons move under the

effect of an electric field E and a magnetic field B. Then, their distribution function

f(t,q,p), where q denotes the position variable, is solution to the Vlasov equation:

∂f

∂t
+ v(p) ·

∂f

∂q
− e (E + v(p) × B) ·

∂f

∂p
= 0. (1.1)

The fields E and B are the sum of three parts:

(1) the self-consistent fields created by the electrons;

(2) the electromagnetic field of a laser wave which is sent into the medium (called

the pump wave);

(3) the electrostatic field Eext(q) generated by a background of ions which are

considered immobile during the time scale of the wave, and/or by an external,

static confinement potential.

In all cases, we denote by next := ε0 div Eext/e. Without this term, the population

of electrons could not be dynamically stable. Then, the Maxwell system is written:

∂E

∂t
= c2 curlB +

e

ε0
j, (1.2)

∂B

∂t
= −curlE, (1.3)

div E =
e

ε0
(next − n) , (1.4)

div B = 0, (1.5)

where c and ε0 are the speed of light and the dielectric permittivity of vacuum, and

the electron density and flux n and j are the first two moments of the distribution

function f:

{n, j}(t,q) :=

∫
{1,v(p)} f(t,q,p) dp.

It is well known that Eqs. (1.5, 1.3) amount to the existence of vector and scalar

potentials such that

B = curlA, E = −∂tA − gradΦ. (1.6)

The assumptions below the 1D model are the following: all variables depend on

only one space variable, denoted x, and the electrons are monokinetic in the direc-

tions transversal to x. This is physically justifed by the fact that all the phenomena,

especially heating, are much more rapid along the direction of propagation of the

laser wave than in the transversal directions. So, the distribution function becomes:

f(t,q,p) = f(t, x, px) δ (p⊥ − p0(t, x)) . (1.7)

The function p0(t, x) can be determined by Hamiltonian-mechanical considera-

tions16. The Hamiltonian for one particle is H := γ m c2 − eΦ, and (1.1) reads:

∂f

∂t
+ [H, f] = 0,
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where [·, ·] is the Poisson bracket. Then, by Hamilton’s equation, the transversal

component of the canonical conjugate momentum Pc := p− eA is conserved:

dPc

dt
= −

∂H

∂q
=⇒

dPc⊥

dt
= −

∂H

∂q⊥
= 0.

By a suitable change of referential, we can suppose that Pc⊥ = 0; and by imposing

the Coulomb gauge div A = 0, that Ax = 0. Hence, p0(t, x) = eA(t, x).

For the sake of simplicity, we shall assume in this work that the pump wave is

linearly polarised in a direction which we call y; however, the forthcoming compu-

tations can be easily generalised to an arbitrary polarisation. Under these circum-

stances, Eq. (1.6) becomes:

Bz = ∂xAy, Ey = −∂tAy, Ex = −∂xΦ, Ez = By = 0,

which allows to recast the Vlasov equation (1.1) and the two remaining Maxwell

equations (1.2, 1.4) as the following system:

∂f

∂t
+

px

mγ

∂f

∂x
− e

(
Ex +

eAy

mγ

∂Ay

∂x

)
∂f

∂px
= 0, (1.8)

∂2Ay

∂t2
− c2

∂2Ay

∂x2
= −

e

mε0
nγ Ay (1.9)

∂Ex

∂t
=

e

ε0
jx (1.10)

∂Ex

∂x
=

e

ε0
(next − n) . (1.11)

The Lorentz factor γ and the density, quasi-density and flux are now given by:

γ =

√
1 +

p2
x

m2 c2
+
e2A2

y

m2 c2
; (1.12)

{n, nγ , jx} =

∫ {
1,

1

γ
,
px

mγ

}
f dpx. (1.13)

The equations (1.10) and (1.11), which are relative to the same variable Ex, are

redundant under regularity conditions. Eq. (1.10) is a (simple) evolution equation,

while (1.11) is interpreted as a constraint. As usual, the satisfaction of this constraint

at t = 0 implies its satisfaction at any time, thanks to (1.10) and to the continuity

equation ∂tn+ ∂xjx = 0.

For a general polarisation, (1.9) would be duplicated, with a similar equation

for Az. Quadratic terms in Ay and Az would be added in (1.12) as well as in the

third term in (1.8). The reader will convince himself that the study of this slightly

more complicated system is completely similar to that of (1.8–1.13). From now on,

we shall omit the subscripts in px, Ex, jx, Ay .

Let us notice that the model (1.8–1.13), as well as its extended version for a

general polarisation, are classes of exact solutions to the relativistic Vlasov–Maxwell

model, without any approximation. They are, as far as we know, the simplest exact

solutions beyond 1D Vlasov–Poisson models.
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1.1. Discussion of the relativistic character

The model (1.8–1.13) features a strongly non-linear coupling between the kinetic

and electromagnetic variables, through the Lorentz factor (1.12). This phenomenon

makes this system difficult to study on the theoretical level, but also to solve nu-

merically: no splitting between the variables is possible.16 This is why two reduced

models have been defined by physicists:

(1) The non-relativistic model (hereafter denoted NR) approximates the relativistic

dynamic by the Newtonian one by setting γ = 1 everywhere. It is physically jus-

tified when the temperature is low enough, so that the proportion of relativistic

electrons is negligible, and the intensity of the pump wave is small.

(2) The quasi-relativistica model (QR) consists in approximating γ by
√

1 + p2

m2 c2

in the second term in (1.8) and in the definition of j, and setting γ = 1 in the

third term in (1.8) and in the definition of nγ , which amounts to setting nγ = n.

It is acceptable when the proportion of ultra-relativistic (v ≃ c) electrons is

negligible and the pump intensity is moderate.

The original model, with γ defined by (1.12) will be referred to as fully relativis-

tic (FR). We remark that the NR model is a class of exact solutions to the non-

relativistic Vlasov–Maxwell system, i.e. (1.1–1.5) with v(p) = p/m. By contrast,

the QR model is only an approximation to the FR one. What makes its interest for

the applied mathematician — besides its widespread use for simulation — is that it

already contains certain features of higher-dimensional relativistic Vlasov–Maxwell

systems, while being simpler to study.

1.2. Rescaled equations and Cauchy problem

The set of equations (1.8–1.13) can be simplified by introducing some rescaled

variables. Let n be the unit of density; we choose the units for the independent

variables as:

x =
c

e

√
mε0
n

, t =
x

c
, p = mc ;

and for the dependent variables as:

E =

√
mc2 n

ε0
, A =

mc

e
, f =

n

mc
,  = n c.

Keeping the same notations for the rescaled variables, we obtain the rescaled system:

∂f

∂t
+

p

γ1

∂f

∂x
−

(
E +

A

γ2

∂A

∂x

)
∂f

∂p
= 0, (1.14)

∂E

∂t
= j (1.15)

aAlso called semi-relativistic by some authors.
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∂2A

∂t2
−
∂2A

∂x2
= −nγ A (1.16)

where the flux j and the quasi-density nγ are defined as

j(t, x) :=

∫
p

γ1
f(t, x, p) dp, nγ(t, x) :=

∫
1

γ2
f(t, x, p) dp.

Of course, suitable initial conditions are supplied, namely

f(0, x, p) = f0(x, p), A(0, x) = A0(x), ∂tA(0, x) = Ȧ0(x). (1.17)

For coherence, the initial electrostatic field must be given by:

E0(x) = E0(0) −

∫ x

0

(n0(y) − next(y)) dy, where: n0(x) :=

∫
f0(x, p) dp. (1.18)

This guarantees that the Poisson (or Gauss) equation

∂E

∂x
= next − n, where: n(t, x) :=

∫
f(t, x, p) dp, (1.19)

will hold at any time provided the continuity equation is satisfied.

As far as the relativistic character of the particles is concerned, the three versions

of the model are respectively:

• NR: γ1 = γ2 = 1.

• QR: γ1 =
√

1 + p2, γ2 = 1.

• FR: γ1 = γ2 =
√

1 + p2 +A2.

Let us note that we shall investigate the existence of two classes of solutions

for the system (1.14–1.16): periodic solutions, corresponding to initial data that are

periodic in space, with a given period L, and “open-space” solutions, i.e. solutions

of finite mass and energy. In both cases, we always assume that next is at least

bounded. Moreover, in the periodic setting, we assume that it is periodic and
∫ L

0

(next(x) − n0(x)) dx = 0,

so that E0 is indeed periodic.

To the best of our knowledge, this is the first mathematical work on this partic-

ular Vlasov–Maxwell system (1.14–1.16): most of the previous mathematical works

on reduced Vlasov–Maxwell models deal with systems living in two or one-and-a-half

dimensions.15,14,13,2 In our case, the lower dimension is, to some extent, compen-

sated by a stronger nonlinearity. This system shares some common features with the

Nordström–Vlasov system recently studied in 7,8. Both systems present a Vlasov

equation coupled to a wave equation whose right-hand side depends on the charge

density. The main differences between them are the gravitational character of the

Nordström–Vlasov system, our coupling with the Poisson equation and our more

complicated right-hand side in the wave equation.
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In this article, we shall only investigate the existence and uniqueness of solutions

to the NR and QR models. The differences between them can be bridged easily by

using the shorthand notation

p̂ := p (NR case), p̂ :=
p√

1 + p2
(QR case).

On the other hand, the method presented in this article cannot apply directly to

the FR model, because of its much stronger and more non-linear coupling between

the kinetic and electromagnetic variables.

The next Section is devoted to reviewing some basic estimates for the Vlasov

equation, and the different notions of solutions we will deal with. In Section 3 we

use the procedure of 9 to prove the global existence of weak solutions in the NR

and QR cases, which are characterised as unique fixed points of a certain operator.

This result is improved in two ways in Sections 4 and 5 respectively. We first

prove the local-in-time existence of characteristic solutions in the NR case. The main

difficulty in proving global existence of characteristic solutions consists in controlling

the second space derivative of the vector potential A or, equivalently, the first space

derivative of the density n. These difficulties are analogous to those found in the

two and one-half dimensional Vlasov–Maxwell systems studied in 15,14,13,2. In the

QR case, we obtain the existence result thanks to a good integral representation of

the second derivative of A reminiscent of similar ideas in 14, used recently in 8.

Finally, the last section is devoted to obtaining a global energy functional for

the three cases. It is conserved in time by characteristic solutions in the NR and

QR cases. This fact, together with now standard relative entropy arguments, leads

to the Lp-nonlinear stability of a family of steady states in the periodic setting.

2. Solutions to the forced Vlasov equation

In this Section, we assume that the fields (E,A) are given and we introduce several

notions of solution to (1.14) and summarise their associated regularity properties.

Whatever their regularity, we are mainly interested in global solutions, i.e. which

exist for any time. However, our estimates will generally not be uniform in time and

thus, we fix an arbitrary target time T and we look for solutions defined on [0, T ],

for all T > 0. We use the following notations for functional spaces:

• Cm (0, T ;X ): the space of m times continuously differentiable functions from

[0, T ] to the Banach space X ;

• W k,∞(R): the space of functions from R to R with all derivatives (in the sense

of distributions) bounded, up to order k;

• Ck
b (R) = Ck(R) ∩ W k,∞(R): the space of k times continuously differentiable

functions with all derivatives bounded;

• W k,∞
L (R), Ck

L(R): the subspaces of functions which have the space period L.

We will denote by ‖·‖t the norm in L∞((0, t) × R), for t ≤ T .
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2.1. The characteristic system

From now on, we denote

F (t, x) := E(t, x) +A(t, x) ∂xA(t, x) (2.1)

the force generated by the fields (E,A). The characteristic system associated to the

transport equation (1.14) reads:





dX

ds
= P̂ (s),

dP

ds
= −F (s,X(s)),

X(t) = x, P (t) = p.
(2.2)

Global existence and uniqueness of solution to the above system is ensured by

assuming that the force field is continuous in time and globally Lipschitz in space;

in turn, a sufficient condition for this is:

E ∈ C0
(
0, T ;W 1,∞(R)

)
, A ∈ C0

(
0, T ;W 2,∞(R)

)
. (2.3)

Under this assumption, the unique solution to the characteristic system (2.2) de-

noted by (X(s; t, x, p), P (s; t, x, p)) becomes (at least) a continuous function in all

its variables. We shall also consider a stronger regularity condition

E ∈ C0
(
0, T ; C1

b (R)
)
, A ∈ C0

(
0, T ; C2

b (R)
)
. (2.4)

From the uniqueness of the solution, we deduce a periodicity result:

Lemma 2.1. If the force field is periodic in space, i.e.: ∀(t, x), F (t, x+L) = F (t, x),

then the following identity holds for all s, t, x, p:

X(s; t, x+ L, p) = X(s; t, x, p) + L, P (s; t, x+ L, p) = P (s; t, x, p). (2.5)

The divergence of characteristics generated by different force fields is measured

in a classical way (see for instance 9 or 2 and references therein).

Lemma 2.2. Let (X1, P 1) and (X2, P 2) be the characteristics associated to the

respective forces F1, F2 ∈ C0
(
0, T ;W 1,∞(R)

)
. Then, the following inequalities hold

for all (t, x, p):

∣∣X1(0; t, x, p) −X2(0; t, x, p)
∣∣ ≤ t

∫ t

0

‖F1 − F2‖s ds, (2.6)

∣∣P 1(0; t, x, p) − P 2(0; t, x, p)
∣∣ ≤

∫ t

0

‖F1 − F2‖s ds. (2.7)

Proof. Eq. (2.7) clearly stems from the integration of the equation for P in (2.2).

In the NR case, Eq. (2.6) immediately follows. In the QR case, we notice that
∣∣∣∣∣

d

dp

[
p√

1 + p2

]∣∣∣∣∣ =
1

(1 + p2)
3/2

≤ 1,

so
∣∣∣P̂ 1 − P̂ 2

∣∣∣ ≤
∣∣P 1 − P 2

∣∣, hence (2.6) by integration.
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In a very similar fashion, the derivatives of the characteristics can be estimated

in terms of derivatives of the force field.

Lemma 2.3. The solution (X,P ) to (2.2), with F ∈ C0
(
0, T ;W 1,∞(R)

)
, is Lips-

chitz w.r.t. the variables (x, p), and thus a.e. differentiable. The derivatives satisfy

the following bound for a.e. (x, p) and all 0 ≤ τ ≤ t:

max

{∣∣∣∣
∂X

∂x
(τ)

∣∣∣∣ ,
∣∣∣∣
∂X

∂p
(τ)

∣∣∣∣ ,
∣∣∣∣
∂P

∂x
(τ)

∣∣∣∣ ,
∣∣∣∣
∂P

∂p
(τ)

∣∣∣∣
}

≤ e(t−τ) (1+‖∂xF‖
t). (2.8)

Proof. Consider two final conditions (x1, p1) and (x2, p2). We use the shorthand:

(Xi(s), Pi(s)) := (X(s; t, xi, pi), P (s; t, xi, pi)) , i = 1, 2 ;

and we denote by ΛF (s) the Lipschitz constant of F (s, ·), i.e. supx |∂xF (s, x)|.

By integrating the characteristic system (2.2), we get:

|X1(τ) −X1(τ)| + |P1(τ) − P2(τ)|

≤ |x1 − x2| + |p1 − p2| +

∫ t

τ

{∣∣∣P̂1(s) − P̂2(s)
∣∣∣+ |F (s,X1(s)) − F (s,X2(s))|

}
ds

≤ |x1 − x2| + |p1 − p2| +

∫ t

τ

{|P1(s) − P2(s)| + ΛF (s) |X1(s) −X2(s)|} ds

≤ |x1 − x2| + |p1 − p2| + (1 + ‖∂xF‖t)

∫ t

τ

{|X1(s) −X2(s)| + |P1(s) − P2(s)|} ds.

Hence, by Gronwall’s lemma:

|X1(τ) −X1(τ)| + |P1(τ) − P2(τ)| ≤ (|x1 − x2| + |p1 − p2|) e(t−τ) (1+‖∂xF‖
t),

which proves the Lipschitz character of the functions X, P and the quantitative

estimate (2.8).

2.2. Characteristic, mild and weak solutions

In this work, we shall always assume the following two hypotheses about the initial

distribution function f0.

Hypothesis 1. In the open-space case, f0 ∈ L1(R2); in the periodic case,

f0 ∈ L1
L(R2) :=

{
f ∈ L1

loc(R
2) : f(x+ L, p) = f(x, p) a.e. in (x, p) ∈ R

2

and f |(0,L)×R
∈ L1((0, L) × R)

}
.

In both cases, (∂xf0, ∂pf0) ∈ L1
loc(R

2).

Hypothesis 2. There exists a continuous, positive, even function g(p), which more-

over is decreasing in |p| and satisfies
∫

R

|p| g(p) dp <∞,
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such that

f0(x, p) ≤ g(p), |∂xf0(x, p)| ≤ g(p), |∂pf0(x, p)| ≤ g(p).

Let us notice that these hypotheses imply, in the open-space case, that f0 ∈

W 1,1
loc (R2) ∩W 1,∞(R2); the initial density n0 ∈ L1(R) ∩W 1,∞(R); and the initial

electrostatic field, given by (1.11), E0 ∈ W 1,∞(R) if next ∈ L∞(R), E0 ∈ C1
b (R) if

next ∈ C0
b (R). In the periodic case, one has similar properties in terms of periodic

spaces; indeed, electrical neutrality ensures that n−next admits a periodic primitive.

For further reference, let us note that the function gr(p) defined as

gr(p) = g(0) for |p| ≤ r, gr(p) = g(|p| − r) for |p| ≥ r,

satisfies ∫

R

gr(p) dp = 2r g(0) +

∫

R

g(p) dp. (2.9)

The first notion of solutions which we consider is the one given by the usual

characteristic method.

Definition 2.1. Given a force field F ∈ C0
(
0, T ;W 1,∞(R)

)
and f0 satisfying Hy-

potheses 1–2, we define the characteristic solution of the Vlasov equation (1.14)

as:

f(t, x, p) := f0(X(0; t, x, p), P (0; t, x, p)), (2.10)

where (X(s; t, x, p), P (s; t, x, p)) is the unique solution to (2.2). Moreover, assuming

F ∈ C0
(
0, T ; C1

b (R)
)

and f0 ∈ C1(R2), then we shall often refer to the characteristic

solution as a classical solution.

The previous definition gets clarified by the following result.

Lemma 2.4. Under the assumption (2.3), the characteristic solution f belongs

to W 1,∞
(
0, T ;W 1,∞(R2)

)
. If, moreover, f0 ∈ C1(R2) and (2.4) holds, then f ∈

C1
(
0, T ; C1

b (R2)
)

and (1.14) is satisfied in the classical sense.

Proof. According to classical dynamical system theory, (X(s; t, x, p), P (s; t, x, p))

is C1 w.r.t. s, and also w.r.t. t given the symmetry of these variables. The Lipschitz

character in (x, p) was obtained in Lemma 2.3. The first part of the conclusion then

follows from Hypothesis 2, and the fact that the composition of Lipschitz functions

is Lipschitz.

Moreover, under (2.4), the force is C1; as p 7→ p̂ is C∞, we deduce that the

solution to (2.2) is C1. The last statement then follows from the chain rule.

Mild solutions are introduced for relaxing the assumption of differentiability of

the characteristics but keeping the fact that they define a family of Lipschitz home-

omorphisms in phase space (see 1 and references therein). In fact, this definition
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can be rephrased using the concept of push-forward of a density through a map,

which is quite well-known in mass transport theory.18 The pushed-forward measure

T#ρ of a given measure ρ in R
n assigns mass

T#ρ[K] := ρ[T−1(K)]

to each Borel set K ⊂ R
n. By this property, it satisfies that
∫

Rn

ψ d(T#ρ) =

∫

Rn

(ψ ◦ T ) dρ

for all test functions ψ ∈ C0
c (Rn).

Definition 2.2. Given a force field F ∈ C0
(
0, T ;W 1,∞(R)

)
and f0 ∈ L1

loc(R
2),

we say that a weakly continuous function f(t, x, p) ∈ Cw

(
[0, T ];L1

loc(R
2)
)

is a mild

solution of the Vlasov equation (1.14) if it satisfies
∫

R2

ψ(x, p) f(t, x, p) dxdp =

∫

R2

ψ(X(t; 0, x, p), P (t; 0, x, p)) f0(x, p) dxdp (2.11)

for all test functions ψ ∈ C0
c (R2) and all t ≥ 0, i.e.,

f(t, x, p) = (X(t; 0, x, p), P (t; 0, x, p))#f0

for all t ≥ 0.

Taking into account the change of variables formula for Lipschitz functions,11 we

deduce that a characteristic solution is a mild solution of the Vlasov equation (1.14).

We can relax even more the assumptions on the force field and talk about dis-

tributional solutions for the Vlasov equation (1.14).

Definition 2.3. Given a force field F ∈ L∞((0, T ) × R) and f0 ∈ L1
loc(R

2), we

say that f(t, x, p) ∈ L1
loc((0, T ) × R

2) is a distributional solution of the Vlasov

equation (1.14) if it satisfies

−

∫ T

0

∫

R2

(
∂ψ

∂t
+ p̂

∂ψ

∂x
− F

∂ψ

∂p

)
f dxdp dt=

∫

R2

ψ(0, x, p) f0 dxdp (2.12)

for all test functions ψ ∈ C∞
c ([0, T ) × R

2).

It is easy to check that any mild solution is a distributional solution. Moreover,

in the particular case of characteristic solutions, in which f0 ∈W 1,∞(R2), f belongs

to W 1,∞
(
0, T ;W 1,∞(R2)

)
by Lemma 2.4. Therefore, one can check from the weak

formulation (2.12) that f satisfies the Vlasov equation (1.14) as an equality almost

everywhere of locally bounded functions on (0,∞) × R
2.

2.3. A priori estimates

Since bounds for functions in C1
b (R) or W 1,∞(R) can often be obtained in the same

manner, we shall treat in the following the two types of characteristic solutions

(classical and mild) together.
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Thanks again to Hypothesis 2, one can define the density and flux:

{n, j}(t, x) :=

∫

R

{1, p̂} f(t, x, p) dp. (2.13)

Indeed, we have the following more general lemma for moments of characteristic

solutions of (1.14). Let us denote by mk(t, x) the moment of order k ∈ N of a

solution f(t, x, p) with a given force field F .

Lemma 2.5. Let f be a characteristic solution of the Vlasov equation (1.14) with

force field F ∈ C0
(
0, T ;W 1,∞(R)

)
. Assume that the function g(p) from Hypothesis 2

has the moment of order k bounded, i.e.,

Mk :=

∫

R

|p|k g(p) dp <∞,

then mk(t, x) is well-defined for all (t, x) and

|mk(t, x)| ≤Mk +Rk (M0 +Mk, t ‖F‖t) (2.14)

where Rk(a, b) will be defined below. In particular, for k = 0 we obtain

‖n‖t ≤M0 + 2 g(0) t ‖F‖t. (2.15)

Proof. From (2.10) and Hypothesis 2, we deduce:

|p|kf(t, x, p) ≤ |p|kg (|P (0; t, x, p)|) .

Now, Eq. (2.7) with one of the force fields replaced by 0 yields |P (0; t, x, p) − p| ≤

t ‖F‖t; as g is decreasing, this gives: g (|P (0; t, x, p)|) ≤ gt ‖F‖
t
(p), and thus

|p|kf(t, x, p) ≤ |p|kgt ‖F‖
t
(p)

which is clearly integrable in p. This proves that mk(t, x) is well-defined and

|mk(t, x)| ≤

∫
|p|kgt ‖F‖

t
(p) dp.

Moreover, we notice that for k ≥ 1 we have

∫

R

|p|k gr(p) dp =
2 g(0)

k + 1
rk+1 +

k∑

i=1

Ci
k r

k−i

∫

R

|p|i g(p) dp

≤
2 g(0)

k + 1
rk+1 +

(
k∑

i=1

Ci
k r

k−i

) ∫

R

(1 + |p|k) g(p) dp

≤
2 g(0)

k + 1
rk+1 +

(
k∑

i=1

Ci
k r

k−i

)
(M0 +Mk)

:= Rk(M0 +Mk, r). (2.16)

Finally, combining previous inequalities, we obtain (2.14). The estimate on the

density (2.15) follows directly from previous arguments and (2.9) which defines the

function R0.
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We can also estimate the divergence of moments corresponding to two different

solutions of the Vlasov equation (1.14).

Lemma 2.6. Let f1, f2 be characteristic solutions of the Vlasov equation (1.14)

with forces F1, F2 ∈ C0
(
0, T ;W 1,∞(R)

)
respectively. Assume that the function g(p)

from Hypothesis 2 has the moment of order k bounded, then

|m1,k −m2,k| (t, x) ≤ Rk

(
M0 +Mk,max

i
‖Fi‖t

) ∫ t

0

‖F1 − F2‖s ds. (2.17)

Proof. To estimate m1,k − m2,k, we consider the characteristics (X1, P 1) and

(X2, P 2) associated to F1 and F2 respectively. Using the shorthand notation for

the characteristics
(
X i

0, P
i
0

)
=
(
X i(0; t, x, p), P i(0; t, x, p)

)
, we write:

(m1,k −m2,k) (t, x) =

∫

R

|p|k
[
f0
(
X1

0 , P
1
0

)
− f0

(
X2

0 , P
2
0

)]
dp

and thus,

|m1,k −m2,k| (t, x) ≤

∫

R

|p|k
{∣∣∣∣
∂f0
∂x0

(
X̃, P 1

0

)∣∣∣∣
∣∣X1

0 −X2
0

∣∣

+

∣∣∣∣
∂f0
∂p0

(
X2

0 , P̃
)∣∣∣∣
∣∣P 1

0 − P 2
0

∣∣
}

dp,

where we have made use twice of the one-dimensional Taylor–Lagrange formula; X̃,

respectively P̃ , lie between X1
0 and X2

0 , resp. P 1
0 and P 2

0 . Then we invoke (2.6–2.7)

to bound

|m1,k −m2,k| (t, x) ≤

∫

R

|p|k
{
g
(∣∣P 1

0

∣∣)+ t g
(
|P̃ |
)}

dp×

∫ t

0

‖F1 − F2‖s ds. (2.18)

Applying again Eq. (2.7) with one of the force fields replaced by 0 yields
∣∣P i

0 − p
∣∣ ≤

t ‖Fi‖t; as g is decreasing, this gives: g
(∣∣P i

0

∣∣) ≤ gt ‖Fi‖t
(p), and then:

g
(
|P̃ |
)
≤ max

{
g
(∣∣P 1

0

∣∣) , g
(∣∣P 2

0

∣∣)} ≤ max
i
gt ‖Fi‖t

(p).

Moreover, r 7→ gr(p) is an increasing function of r, for all p; this implies:
∫

R

|p|k
{
g
(∣∣P 1

0

∣∣)+ t g
(
|P̃ |
)}

dp ≤ (1 + t)

∫

R

|p|k max
i
gt ‖Fi‖t

(p) dp

≤ (1 + t) max
i

∫

R

|p|kgt ‖Fi‖t
(p) dp.

Inequality (2.17) is obtained by using the last lines in Lemma 2.5.

A small variation on the above arguments allows us to prove that in fact, the

density and flux are regular enough to satisfy the continuity equation. This is impor-

tant in order to be able to say that the description via the Poisson equation (1.11)

is equivalent to the Ampère equation (1.10).
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Corollary 2.1. Under Hypotheses 1–2 and the assumption (2.3), resp. (2.4), n and

j are Lipschitz, resp. continuously differentiable in space and time and they satisfy

∂n

∂t
+
∂j

∂x
= 0. (2.19)

Moreover, there is a constant C, depending only on the majorising function g(p),

such that: ∥∥∥∥
∂n

∂x

∥∥∥∥
t

≤ C et (1+‖∂xF‖
t). (2.20)

Proof. When the solution is classical, we can apply the chain rule and estimate

directly the derivative in x of the solution f(t, x, p) to get
∣∣∣∣
∂f

∂x

∣∣∣∣ ≤
(

sup
x

∣∣∣∣
∂X

∂x
(0)

∣∣∣∣
) ∣∣∣∣

∂f0
∂x0

∣∣∣∣+
(

sup
x

∣∣∣∣
∂P

∂x
(0)

∣∣∣∣
) ∣∣∣∣

∂f0
∂p0

∣∣∣∣ .

Lemma 2.3 and Hypothesis 2 imply that (see previous Lemma):
∣∣∣∣
∂f

∂x

∣∣∣∣ ≤ et (1+‖∂xF‖
t) gt ‖F‖t

(p),

and thus ∂xf is integrable. Moreover, Lebesgue’s dominated convergence theorem

implies that n is Lipschitz or differentiable with respect to x and hence (2.20).

Similar arguments apply to ∂tn and ∂xj and the continuity equation (2.19) becomes

an easy consequence of Eq. (1.14) upon integration on p and using Hypotheses 1–2

on the initial data. In case the solution is only mild under assumption (2.3), one can

reproduce the Lipschitz bounds by estimating the difference n(t, x1)−n(t, x2) using

analogous arguments to previous Lemma 2.6, we leave the details to the reader.

And it stems from Lemma 2.1 that:

Lemma 2.7. Under the hypotheses:

∀(x, p), f0(x+ L, p) = f0(x, p) ; ∀(t, x), {E,A}(t, x+ L) = {E,A}(t, x) ;

there holds:

∀(t, x, p), f(t, x+ L, p) = f(t, x, p), {n, j}(t, x+ L) = {n, j}(t, x).

Let us finally remark that thanks to the mass conservation property of the

Vlasov equation, we estimate the integrals of n. In the open-space case, we have
∫ b

a

n(x) dx ≤M, (2.21)

where M is the total mass of f0. In the periodic case,
∫ b

a

n(x) dx ≤M

⌈
b− a

L

⌉
, (2.22)
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where M is now the mass of f0 over one period, and ⌈r⌉ is the smallest integer

larger or equal to r.

Moreover, in the open-space case we can estimate moments in x under suitable

additional assumptions on the initial data. In fact, let us consider the following

Hypothesis 3. f0(x, p) ≤ g(x) g(p) in R
2.

By following the same lines of argument as in Lemma 2.5, we can prove:

Lemma 2.8. Let f be a characteristic solution of the Vlasov equation (1.14) in the

open-space case with force field F ∈ C0
(
0, T ;W 1,∞(R)

)
and assume that Hypoth-

esis 3 is satisfied. Then, there exists a constant Z, depending polynomially on the

first two moments of g(p), t and ‖F‖t, such that

∫

R2

(|x| + |p|) f(t, x, p) dxdp ≤ Z (M0,M1, t, ‖F‖t) . (2.23)

This can be generalised to all moments of f and its derivatives, under

Hypothesis 4. |∂xf0(x, p)| ≤ g(x) g(p) and |∂pf0(x, p)| ≤ g(x) g(p) in R
2.

Lemma 2.9. Assume that Hypotheses 3 and 4 hold, and that g has its moment of

order m bounded. Then, for all k, ℓ ≤ m, there exists a constant Zk,ℓ such that, for

all t ∈ [0, T ]:

∫∫ (
|x|k + |p|ℓ

)
f(t, x, p) dxdp ≤ Zk,ℓ,

∫∫ (
|x|k + |p|ℓ

)
|∂xf(t, x, p)| dxdp ≤ Zk,ℓ et (1+‖∂xF‖t),

and a similar bound holds for ∂pf .

3. Iterative procedure and global weak solutions

In this section, we present an iterative procedure to solve the 1D Vlasov–Maxwell

system (1.14–1.16) for the NR and QR cases.

First, we define the iterative procedure based on the Cooper–Klimas9 approach.

Then, we will derive estimates on the fields that allow us to obtain a limit by tele-

scopic series. However, these estimates will not allow us to get a global characteristic

solution, due to the lack of a global-in-time estimate on the space derivative of the

density, which is needed to control that of the right-hand side in (1.16), and thus the

second space derivative of the vector potential. Therefore, at this level of generality

we are only able to obtain global weak solutions. Improvements of this basic result,

namely local (in the NR case) and global (in the QR case) existence of classical and

mild solutions will be postponed to the next two sections.
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We now fix an initial condition f0 for the distribution function, as well as initial

data (A0, Ȧ0) for the vector potential. n0 and E0 are the density and electrostatic

field given by f0, as defined in (1.18). Let us remind that we always assume that

the external density verifies next ∈ L∞(R). We also fix a target time T , and, if we

are interested in periodic solutions, a space period L.

3.1. Definition of the recurrence operator

Given the field pair (E,A) ∈ C0
(
0, T ;W 1,∞(R) ×W 2,∞(R)

)
, one constructs

(E′, A′) = L(E,A) as follows.

(1) The characteristic system (2.2) is solved, with the force F given by (2.1).

(2) One computes the characteristic solution to Vlasov’s equation by (2.10) and its

density and flux (n, j) by (2.13).

(3) Finally, E′ and A′ are computed as:

E′(t, x) := E0(x) +

∫ t

0

j(s, x) ds, (3.1)

A′(t, x) :=
1

2

{
A0(x+ t) +A0(x − t) +

∫ x+t

x−t

Ȧ0(y) dy

−

∫ t

0

∫ x+t−s

x+s−t

(nA)(s, y) dy ds

}
. (3.2)

From Corollary 2.1 and the Duhamel formulae (A.2–A.4), we immediately deduce:

Theorem 3.1. If (A0, Ȧ0) ∈ W 2,∞(R) × W 1,∞(R), the operator L maps

C0
(
0, T ;W 1,∞(R) ×W 2,∞(R)

)
to itself. If (A0, Ȧ0) ∈ C2

b (R)× C1
b (R), f0 ∈ C1(R2),

and next ∈ C0
b (R), then L maps C0

(
0, T ; C1

b (R) × C2
b (R)

)
to itself.

Moreover, the Poisson equation (1.19) is satisfied for the pair (E′, n); and the

time derivative of A′ is bounded in x, i.e. A′ ∈ C1 (0, T ;L∞(R)) or C1
(
0, T ; C0

b (R)
)
,

even if A does not belong a priori to such a space.

This ensures that the operator L can be iterated. Of course, we shall need some

quantitative estimates. To establish them is the goal of the next Subsection.

Moreover, we deduce from Lemma 2.7 the following

Corollary 3.1. If (A0, Ȧ0) ∈ W 2,∞
L (R) × W 1,∞

L (R), the operator L maps

C0
(
0, T ;W 1,∞

L (R) ×W 2,∞
L (R)

)
to itself. If (A0, Ȧ0) ∈ C2

L(R)×C1
L(R), f0 ∈ C1

L(R2),

and next ∈ C0
L(R), then L maps C0

(
0, T ; C1

L(R) × C2
L(R)

)
to itself.

3.2. A priori estimates

In the sequel, we shall always assume at least that (A0, Ȧ0) ∈W 2,∞(R)×W 1,∞(R).

The constants denoted C or Ci may vary from one line to the next, and depend on

the initial conditions, T and L (but on nothing else).
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First, we fix (E,A) ∈ C0
(
0, T ;W 1,∞(R) ×W 2,∞(R)

)
, and (E′, A′) := L(E,A).

F is the force field corresponding to (E,A).

For the electrostatic field we have the following properties:

Lemma 3.1. The following estimates hold:

‖E′‖t ≤ C0 + C1

∫ t

0

‖F‖s ds ; (3.3)

∥∥∥∥
∂E′

∂x

∥∥∥∥
t

≤ C0 + C1 ‖F‖t. (3.4)

Proof. To obtain the first estimate, we proceed as in 1 by duality. Given ϕ ∈ L1(R),

we apply changes of variables to get
∫

R

∫ t

0

j(s, x)ϕ(x) ds dx =

∫

R2

f0(x, p)

∫ t

0

P (s; 0, x, p)ϕ(X(s; 0, x, p)) ds dxdp

=

∫

R2

f0(x, p)

∫ X(t;0,x,p)

x

ϕ(u) du dxdp,

and thus, using Hypothesis 2

∣∣∣∣
∫

R

∫ t

0

j(s, x)ϕ(x) ds dx

∣∣∣∣ ≤
∫

R2

f0(x, p)

∣∣∣∣∣

∫ X(t;0,x,p)

x

ϕ(u) du

∣∣∣∣∣ dxdp

≤

∫

R

g(p)

∫

R

|ϕ(u)|

∫

R

χ(u;S(t, x, p)) dxdu dp

where χ(u;S(t, x, p)) is the characteristic function of the set S(t, x, p) = {|u− x| ≤

|X(t; 0, x, p)−x|} as a function of u. Using the bound on the divergence of forward-

in-time characteristics as in Lemma 2.6, we obtain

|X(t; 0, x, p)− x| ≤ t

∫ t

0

‖F‖s ds and

∫

R

χ(u;S(t, x, p)) dx ≤ 2t

∫ t

0

‖F‖s ds ;

and therefore, we deduce
∥∥∥∥
∫ t

0

j(s, x) ds

∥∥∥∥
t

≤ 2t

∫

R

g(p) dp

∫ t

0

‖F‖s ds.

Finally, (3.3) is deduced directly from (3.1).

Now, Corollary 2.1 assures that the continuity equation (2.19) is satisfied. Taking

into account that equation and the Ampère equation (3.1), then

∂E′

∂x
= next − n,

holds. Estimate (3.4) follows from (2.15) and next ∈ L∞(R).

For the vector potential, we have a similar result.
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Lemma 3.2. The following estimates hold:

‖A′‖t ≤ C0 + C1

∫ t

0

‖A‖s ds, (3.5)

∥∥∥∥
∂A′

∂x

∥∥∥∥
t

≤ C0 + ‖A‖t

(
C1 + C2

∫ t

0

‖F‖s ds

)
, (3.6)

∥∥∥∥
∂A′

∂t

∥∥∥∥
t

≤ C0 + ‖A‖t

(
C1 + C2

∫ t

0

‖F‖s ds

)
. (3.7)

Proof. From (3.2), we bound

|A′(t, x)| ≤ C0 +

∫ t

0

‖A‖s

(∫ x+t−s

x+s−t

n(s, y) dy

)
ds.

Using (2.21) or (2.22), we then bound the integral of n by M or M ⌈2T/L⌉.

Hence (3.5).

Let us estimate the derivatives ofA. ∂xA
′ is given by the Duhamel formula (A.3),

with f replaced by −nA. Hence the majoration:

2

∣∣∣∣
∂A′

∂x
(t, x)

∣∣∣∣ ≤ C0 + ‖A‖t

∫ t

0

(n(s, x+ s− t) + n(s, x− s+ t)) ds.

Now, using the uniform bound on the density (2.15), we obtain
∫ t

0

(n(s, x+ s− t) + n(s, x− s+ t)) ds ≤ C1 + C2

∫ t

0

‖F‖s ds.

This gives (3.6). As the Duhamel formula (A.2) for the time derivative is very similar

to (A.3), one can establish (3.7) by the same reasoning.

Now, we consider two field pairs (E1, A1) and (E2, A2), with the corresponding

forces F1 and F2, and we set (E′
1, A

′
1) := L(E1, A1), (E′

2, A
′
2) := L(E2, A2).

Lemma 3.3. The following estimates hold for all field pairs (E1, A1) and (E2, A2):

‖E′
1 − E′

2‖t ≤ R1

(
M0 +M1,max

i
‖Fi‖t

) ∫ t

0

‖F1 − F2‖s ds, (3.8)

‖A′
1 −A′

2‖t ≤ ‖A2‖t

(
C0 + C1 max

i
‖Fi‖t

) ∫ t

0

‖F1 − F2‖s ds

+ C2

∫ t

0

‖A2 −A1‖s ds. (3.9)

Proof. From (3.1) we deduce

‖E′
1 − E′

2‖t ≤

∫ t

0

|j1(s, x) − j2(s, x)| ds,

and thus (3.8) is a simple consequence of Lemma 2.6.
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From (3.2), we have

2 (A′
1 −A′

2)(t, x) =

∫ t

0

∫ x+t−s

x+s−t

(n2A2 − n1A1)(s, y) dy ds.

Writing: n2A2 − n1A1 = (n2 − n1)A2 − (A2 −A1)n1, we bound:

2 ‖A′
1 −A′

2‖t ≤

∫ t

0

‖A2‖s

∫ x+t−s

x+s−t

|n2(s, y) − n1(s, y)| dy ds

+

∫ t

0

‖A2 −A1‖s

∫ x+t−s

x+s−t

n1(s, y) dy ds.

Using (2.21) or (2.22), the second line of this inequality is easily bounded as

λM
∫ t

0
‖A2 −A1‖s ds, with λ = 1 or ⌈2T/L⌉. Then, the first line is bounded

thanks to Lemma 2.6:

|n1 − n2| (t, x) ≤
(
C0 + C1 max

i
‖Fi‖t

) ∫ t

0

‖F1 − F2‖s ds, (3.10)

and finally:

‖A′
1 −A′

2‖t ≤ ‖A2‖t

(
C0 + C1 max

i
‖Fi‖t

) ∫ t

0

‖F1 − F2‖s ds

+
λM

2

∫ t

0

‖A2 −A1‖s ds,

which is (3.9).

Now, we estimate the difference of the derivatives.

Lemma 3.4. There holds, for any (E1, A1) and (E2, A2):
∥∥∥∥
∂E′

1

∂x
−
∂E′

2

∂x

∥∥∥∥
t

≤
(
C0 + C1 max

i
‖Fi‖t

) ∫ t

0

‖F2 − F1‖s ds, (3.11)

∥∥∥∥
∂A′

1

∂x
−
∂A′

2

∂x

∥∥∥∥
t

≤
(
C0 + C1 max

i
‖Fi‖t

) {∫ t

0

‖A2 −A1‖s ds

+ ‖A2‖t

∫ t

0

‖F1 − F2‖s ds

}
, (3.12)

∥∥∥∥
∂A′

1

∂t
−
∂A′

2

∂t

∥∥∥∥
t

≤
(
C0 + C1 max

i
‖Fi‖t

) {∫ t

0

‖A2 −A1‖s ds

+ ‖A2‖t

∫ t

0

‖F1 − F2‖s ds

}
. (3.13)

Proof. The Poisson equation and (3.10) imply (3.11). From the Duhamel for-

mula (A.3), with f replaced successively with −n1A1 and −n2A2, we derive:

2

(
∂A′

1

∂x
−
∂A′

2

∂x

)
(t, x) =

∫ t

0

(n2A2 − n1A1)(s, x+ s− t) ds

−

∫ t

0

(n2A2 − n1A1)(s, x+ t− s) ds ;
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once more, we write n2A2 − n1A1 = (n2 − n1)A2 − (A2 −A1)n1, which gives
∥∥∥∥
∂A′

1

∂x
−
∂A′

2

∂x

∥∥∥∥
t

≤ ‖A2‖t

∫ t

0

‖n1 − n2‖s ds+ ‖n1‖t

∫ t

0

‖A1 −A2‖s ds.

Using the bounds (3.10) for the first term, and (2.15) for the second yields
∥∥∥∥
∂A′

1

∂x
−
∂A′

2

∂x

∥∥∥∥
t

≤ ‖A2‖t

(
C0 + C1 max

i
‖Fi‖t

) ∫ t

0

‖F1 − F2‖s ds

+ (C2 ‖F1‖t + C3)

∫ t

0

‖A1 −A2‖s ds,

which implies (3.12). Once again, the similarity of the formulae (A.2) and (A.3)

allows to deduce (3.13).

3.3. Convergence of successive approximations

We start from the initial data (E0(x), A0(x)), by extending them to constant-in-

time functions over [0, T ] × R. Then, we construct a sequence (Ek, Ak)k∈N by the

recurrence formula:

(Ek+1, Ak+1) := L(Ek, Ak), ∀k ≥ 0.

Of course, we set Fk := Ek +Ak ∂xAk.

To establish the convergence of (Ek, Ak)k∈N, the following result will be useful.

It is easily proved by induction.

Lemma 3.5. Let (uk)k∈N be a sequence of positive functions, uk : [0, T ] → R
+,

satisfying

(i) ∀t ∈ [0, T ], u0(t) ≤ c,

(ii) ∀k ∈ N, ∀t ∈ [0, T ], uk+1(t) ≤ a+ b

∫ t

0

uk(s) ds,

for some constants a, b, c ∈ R
+. Then the following estimate holds:

∀k ∈ N, ∀t ∈ [0, T ], uk(t) ≤ a

k−1∑

i=1

bi ti

i!
+ c

bk tk

k!
;

hence the whole sequence is uniformly bounded by a constant u∗ which depends on

a, b, c and T .

Theorem 3.2. The sequence (Ek, Ak)k∈N converges uniformly in t and x towards

a limit (E,A).

(1) If (A0, Ȧ0) ∈ W 2,∞(R) ×W 1,∞(R), the sequences (Ek) and (Ak) converge re-

spectively within C0
(
0, T ;W 1,∞(R)

)
and C1 (0, T ;L∞(R))∩C0

(
0, T ;W 1,∞(R)

)
.

(2) If (A0, Ȧ0) ∈ C2
b (R) × C1

b (R), f0 ∈ C1(R2), and next ∈ C0
b (R), then the conver-

gences take place within C0
(
0, T ; C1

b (R)
)

and C1
(
0, T ; C0

b (R)
)
∩C0

(
0, T ; C1

b (R)
)
.



September 14, 2006 14:50 WSPC/INSTRUCTION FILE carlabnew

20 J. A. Carrillo and S. Labrunie

(3) The above conclusions are valid when all spaces are replaced by their periodic

counterparts.

Proof. First, Eq. (3.5) gives:

‖Ak+1‖t ≤ C0 + C1

∫ t

0

‖Ak‖s ds

and thus, the previous lemma ensures that ‖Ak‖t ≤ A∗ uniformly in k and t. Then,

Eqs. (3.3) and (3.6) imply:

‖Fk+1‖t ≤ ‖Ek+1‖t +A∗ ‖∂xAk+1‖t ≤ C2 + C3

∫ t

0

‖Fk‖s ds,

so, once more, ‖Fk‖t ≤ F∗. Using again (3.3) and (3.6) shows that the sequences

‖Ek‖t and ‖∂xAk‖t are uniformly bounded in k and t.

All these bounds allow to rewrite (3.9) and (3.12) as

‖Ak+1 −Ak‖t ≤ C1

∫ t

0

‖Fk − Fk−1‖s ds+ C2

∫ t

0

‖Ak −Ak−1‖s ds ; (3.14)

∥∥∥∥
∂Ak+1

∂x
−
∂Ak

∂x

∥∥∥∥
t

≤ C1

∫ t

0

‖Fk − Fk−1‖s ds+ C2

∫ t

0

‖Ak −Ak−1‖s ds. (3.15)

Then, writing

Fk+1 − Fk = Ek+1 − Ek +Ak+1 (∂xAk+1 − ∂xAk) + ∂xAk (Ak+1 −Ak) ,

one deduces from (3.8), (3.14) and (3.15)

‖Fk+1 − Fk‖t ≤ C1

∫ t

0

‖Fk − Fk−1‖s ds+ C2

∫ t

0

‖Ak −Ak−1‖s ds. (3.16)

Hence, the sequence uk(t) := ‖Ak −Ak−1‖t + ‖Fk − Fk−1‖t satisfies: uk+1(t) ≤

b
∫ t

0
uk(s) ds, for some constant b. Lemma 3.5 with a = 0 then implies uk(t) ≤

bk T k/k!, i.e.:

‖Ak+1 −Ak‖t ≤
bk T k

k!
, ‖Fk+1 − Fk‖t ≤

bk T k

k!
,

so by (3.8) and (3.15)

‖Ek+1 − Ek‖t ≤ C
bk T k

k!
,

∥∥∥∥
∂Ak+1

∂x
−
∂Ak

∂x

∥∥∥∥
t

≤ C
bk T k

k!
.

As a consequence, the four sequences (Ek)k∈N
, (Ak)k∈N

, (∂xAk)k∈N
, (Fk)k∈N

, all

converge uniformly on [0, T ] × R. Let E, A, B, F , be the limits; clearly B = ∂xA

in the sense of distributions, and F = E +A∂xA. Under the hypothesis (A0, Ȧ0) ∈

W 2,∞(R)×W 1,∞(R), each term of the four sequences is in C0 (0, T ;L∞(R)), and so

are the limits. So: E ∈ C0 (0, T ;L∞(R)) and A ∈ C0
(
0, T ;W 1,∞(R)

)
. If (A0, Ȧ0) ∈

C2
b (R) × C1

b (R), f0 ∈ C1(R2),
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and next ∈ C0
b (R), the terms and the limits are in C0

(
0, T ; C0

b (R)
)
, i.e. E ∈

C0
(
0, T ; C0

b (R)
)

and A ∈ C0
(
0, T ; C1

b (R)
)
.

With all these results, Eq. (3.13) shows that: ‖∂tAk+1 − ∂tAk‖ ≤ C bk T k/k!;

since A0 is independent of time, the sequence (∂tAk)k∈N
also converges uniformly in

C0 (0, T ;L∞(R)), resp. C0
(
0, T ; C0

b (R)
)
, towards a limit which is necessarily equal

to ∂tA. Thus, A ∈ C1 (0, T ;L∞(R)), resp. C1
(
0, T ; C0

b (R)
)
.

Similarly, Eq. (3.11) implies that (∂xEk)k∈N
is a Cauchy sequence and thus

converges uniformly toward a limit which is necessarily equal to ∂xE. Hence, E ∈

C0
(
0, T ;W 1,∞(R)

)
or C0

(
0, T ; C1

b (R)
)
.

The last point easily follows from Corollary 3.1.

3.4. Global existence and properties of weak solutions

If (E,A) ∈ C0
(
0, T ;W 1,∞(R)

)
× C0

(
0, T ;W 2,∞(R)

)
, then it is a fixed point of

L within this space. Thus, the triple (f,E,A), where the function f is defined

by (2.10), is a characteristic solution to (1.14–1.19).

This fixed point and its associated characteristic solution, if they exist, are

unique. Indeed, let (f1, E1, A1) and (f2, E2, A2) be two such solutions, with respec-

tive force fields F1 and F2. Reasoning as in the proof of the above theorem shows:

‖A1 −A2‖t + ‖F1 − F2‖t ≤ C

∫ t

0

{‖A1 −A2‖s + ‖F1 − F2‖s} ds ;

hence A1 = A2 and F1 = F2 by Gronwall’s lemma, then E1 = E2 by (3.8), and

finally f1 = f2 by the Cauchy–Lipschitz theorem.

Without further a priori estimates on the second derivatives of the vector po-

tential A, we will not be able to obtain global existence of characteristic solu-

tions. However, the bounds in Subsection 3.2 show that the norm of L(E,A) in

C0
(
0, T ;L∞(R) ×W 1,∞(R)

)
, resp. C0

(
0, T ; C0

b (R) × C1
b (R)

)
, is controlled by the

norm of (E,A) in the same space. These considerations suggest to extend the oper-

ator L to a bigger space in order to obtain weak solutions, which would also enjoy

a uniqueness property. This programme cannot be achieved within the framework

of C0
(
0, T ;L∞(R) ×W 1,∞(R)

)
. The reason is the well-known lack of density of

smooth functions within L∞(R) or W 1,∞(R). But this obstruction is removed if

one works within C0
(
0, T ; C0

b (R) × C1
b (R)

)
.

Lemma 3.6. Assume (A0, Ȧ0) ∈ C2
b (R) × C1

b (R), f0 ∈ C1(R2), and

next ∈ C0
b (R). The operator L can be extended to a continous operator from

C0
(
0, T ; C0

b (R) × C1
b (R)

)
to itself, which satisfies the estimates of Subsection 3.2. If

the initial conditions are periodic, then L maps C0
(
0, T ; C0

L(R) × C1
L(R)

)
to itself.

Proof. L is defined on the dense subspace Y := C0
(
0, T ; C1

b (R) × C2
b (R)

)
of X :=

C0
(
0, T ; C0

b (R) × C1
b (R)

)
, with values in X . From (3.8, 3.9, 3.12), we see that it is

uniformly continuous, in the norm of X , on any set K ∩ Y , where K is a bounded

set of X . Hence, it admits a unique continuous extension from X to itself.
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The extension procedure preserves the estimates of Subsection 3.2, as their r.h.s.

are uniformly continuous in the norm of X on any K ∩ Y . Finally, the closedness

of C0
(
0, T ; C0

L(R) × C1
L(R)

)
within X guarantees the invariance of this space by the

extended operator.

Hence, the following theorem, whose proof rephrases that of Theorem 3.2.

Theorem 3.3. Assume (A0, Ȧ0) ∈ C2
b (R)×C1

b (R), f0 ∈ C1(R2), and next ∈ C0
b (R).

The operator L admits a unique fixed point (E,A) ∈ C0
(
0, T ; C0

b (R) × C1
b (R)

)
, which

moreover belongs to C0
(
0, T ; C1

b (R)
)
× C1

(
0, T ; C0

b (R)
)
. If the initial conditions are

periodic, so is the fixed point.

Let us now check that this unique fixed point defines a distribution function f in

such a way that the triple (f,E,A) is a global weak solution of the Vlasov–Maxwell

system (1.14–1.19).

Theorem 3.4. Under the hypotheses of Theorem 3.3, let (Ek, Ak)k a sequence con-

verging to the fixed point (E,A); without loss of generality, we can assume that its

terms belong to C0
(
0, T ; C1

b (R) × C2
b (R)

)
. Let (fk)k be the associated sequence of dis-

tribution functions obtained by the method of characteristics. Then, (fk)k converges

uniformly in all its variables toward a function f ∈ C0
(
0, T ; C0

b (R2)
)
, which does not

depend on the sequence (Ek, Ak)k, and the triple (f,E,A) satisfies (1.14)–(1.19) in

the sense of distributions.

Proof. Repeating the argument of Lemma 2.6, we easily obtain the estimate

|fk(t, x, p) − fℓ(t, x, p)| ≤ (1 + t) max
i=k,ℓ

gt ‖Fi‖t
(p)

∫ t

0

‖Fk − Fℓ‖s ds, (3.17)

from which follows that (fk(t))k is a Cauchy sequence in L∞ norm, uniformly in t.

A similar argument shows that, if we consider another approximating sequence

denoted by tildes, fk(t) − f̃k(t) will converge to zero, uniformly in x, p and t. Let

us then call f the common limit of all the sequences (fk)k; its continuity in all

variables follows from that of the fk.

As fk is a classical solution to the Vlasov equation, it is also a distributional

solution, i.e. an equation similar to (2.12) holds, with f and F replaced resp. with

fk and Fk. For any test function ψ, the integrals in this formula are taken over

a compact subset of [0, T ) × R
2. Thus, the uniform convergence in x, p and t of

the sequences (fk)k and (Fk)k ensures that (2.12) will also hold at the limit: the

limiting triple (f,E,A) satisfies (1.14–1.19) in the sense of distributions.

The above result can be improved in the following two ways. First, we show that

f(t) will retain the mass of the initial distribution f0.

Proposition 3.1. In the periodic case, fk(t) converges toward f(t) in L1
L(R2),

uniformly in t, and the mass of f(t) over one space period is equal to that of f0.
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In the open-space case, under Hypothesis 3, fk(t) converges weakly toward f(t)

in L1(R2), and the mass of f(t) is equal to that of f0.

Proof. Inequality (3.17) shows that fk(t, x, ·) converges to f(t, x, ·) in L1(R), uni-

formly in x and t. Hence the convergence of fk(t) toward f(t) in L1((a, b) × R) for

any a < b.

Yet, the fk are classical solutions to the Vlasov equation. In the periodic case,

they conserve the mass of f0 over one space period. So, f(t) retains this mass.

In the open-space case, taking into account the L1 convergence in bounded

intervals in space, it suffices to show that mass does not escape at infinity, uniformly

in t. Using Lemma 2.8, we obtain:
∫

|x|+|p|>R

|fk(t, x, p)| dxdp ≤
1

R

∫

|x|+|p|>R

(|x| + |p|) fk(t, x, p) dxdp ≤
Z

R
→ 0,

uniformly in k and t when R → ∞. Thus, it is a standard argument to check that∫
R2 f(t, x, p) dxdp = limk

∫
R2 fk(t, x, p) dxdp = M .

The second useful precision is that f(t) is “almost a mild solution” to (1.14).

Theorem 3.5. The characteristics given by the Fk converge uniformly in all their

variables toward a limit (X,P ), and Eq. (2.11) holds for this (X,P ) and f(t) given

by Theorem 3.4.

Proof. Let (Xk, P k) be the characteristics associated to Fk. Their uniform conver-

gence follows from (2.6–2.7). As the fk are classical solutions to the Vlasov equation,

they are also mild solutions, i.e. they satisfy
∫

R2

ψ(x, p) fk(t, x, p) dxdp =

∫

R2

ψ(Xk(t; 0, x, p), P k(t; 0, x, p)) f0(x, p) dxdp (3.18)

for all test functions ψ ∈ Cc(R
2) and all t > 0.

The sequence ψ(Xk(t; 0, x, p), P k(t; 0, x, p)) f0(x, p), resp. ψ(x, p) fk(t, x, p), con-

verge uniformly on the support of ψ towards ψ(X(t; 0, x, p), P (t; 0, x, p)) f0(x, p),

resp. ψ(x, p) f(t, x, p). Hence, the integrals on both sides of (3.18) converge toward

the two sides of (2.11), and the latter equality is obtained at the limit.

4. Local-in-time existence of characteristic solutions

In order to have stronger solutions, i.e. such that f satisfies (1.14) in the character-

istic sense, we need estimates on the Lipschitz constant of the force, which in turn

amounts to bounding the second derivative of the vector potential. In this Section

we show that, in both the NR and QR cases, the limiting vector potential given by

Theorem 3.2 does satisfy such a bound, at least for a short time.

In the sequel, the operator L will be that of Subsection 3.1. We no longer consider

the extended version, so that we can obtain estimates based on characteristics.
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Lemma 4.1. Let (E,A) ∈ C0
(
0, T ;W 1,∞(R) ×W 2,∞(R)

)
, and (E′, A′) =

L(E,A). Then, the second derivative of A′ is bounded as:
∥∥∥∥
∂2A′

∂x2

∥∥∥∥
t

≤ C0 + t

{∥∥∥∥
∂A

∂x

∥∥∥∥
t

(C1 + C2 ‖F‖t) + C3 ‖A‖t et (1+‖∂xF‖
t)
}
. (4.1)

Proof. We use the formula (A.4), with f replaced by −nA, and the bounds (2.15)

and (2.20) for n:

2

∣∣∣∣
∂2A′

∂x2
(t, x)

∣∣∣∣ ≤ C0 +

∫ t

0

(
n

∣∣∣∣
∂A

∂x

∣∣∣∣+ |A|

∣∣∣∣
∂n

∂x

∣∣∣∣
)

(s, x+ s− t) ds

+

∫ t

0

(
n

∣∣∣∣
∂A

∂x

∣∣∣∣+ |A|

∣∣∣∣
∂n

∂x

∣∣∣∣
)

(s, x− s+ t) ds

≤ C0 + t

∥∥∥∥
∂A

∂x

∥∥∥∥
t

(C1 + C2 ‖F‖t) + t ‖A‖tC3 et (1+‖∂xF‖
t).

Theorem 4.1. Let (Ek, Ak)k∈N and (E,A) be as in Theorem 3.2. There exists

0 < T ∗ ≤ T such that, for 0 ≤ t < T ∗, the sequence
(
∂2

xAk

)
k∈N

is uniformly bounded

in x and t. As a consequence, the couple (E,A) allows to define a characteristic

solution f to (1.14) on the interval [0, T ∗).

Proof. We have:

∂xFk = ∂xEk + (∂xAk)
2

+Ak ∂
2
xAk.

Thus, the boundedness results of Theorem 3.2 and (4.1) yield:

‖∂xFk+1‖t ≤ α+ β t et (1+‖∂xFk‖t),

for some positive constants α, β depending only on the initial conditions, T and

(possibly) L. Hence, ‖∂xFk‖t ≤ vk(t), where vk(t) is defined by the recurrence

formula:

v0(t) = ‖∂xF0‖t , vk+1(t) = α+ β t et (1+vk(t)) := ϕt(vk(t)). (4.2)

In Appendix B we show that, for t < T ∗, the sequence (vk(t))k∈N is convergent and

hence bounded. This gives the uniform boundedness of (∂xFk(t))k∈N and, by (4.1),

that of (∂2
xAk(t))k∈N, on [0, T ∗)×R. Hence, the latter sequence admits a subsequence

which converges weakly-∗ in L∞([0, T ∗] × R) towards a limit which is necessarily

equal to ∂2
xA. This gives the last part of the conclusion.

5. Global characteristic solutions in the quasi-relativistic case

In this section, we only consider the QR case. We show that, in this framework,

characteristic solutions exist for any time. This result rests on a subtler treatment

of the formula (A.4). On the other hand, we need to introduce another assumption:
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Hypothesis 5. The majorising function g of Hypothesis 2 moreover satisfies
∫

|p|2 g(p) dp <∞.

With this hypothesis, we can derive a better bound on ∂2
xA.

Lemma 5.1. Let E ∈ C0
(
0, T ;W 1,∞(R)

)
, A ∈ C0

(
0, T ;W 1,∞(R)

)
∩

C1 (0, T ;L∞(R)), and (E′, A′) = L(E,A). Then, the second derivative of A′ is

bounded as:∥∥∥∥
∂2A′

∂x2

∥∥∥∥
t

≤ C0 + C1 Π3 (t ‖F‖t)

{∥∥∥∥
∂A

∂x

∥∥∥∥
s

+

∥∥∥∥
∂A

∂t

∥∥∥∥
s

+ ‖A‖s (1 + ‖F‖s)

}
, (5.1)

where Π3 is a polynomial of third degree, whose coefficients are positive and depend

only on the function g.

Proof. We use the formula (A.4) with f replaced by −nA:

2
∂2A′

∂x2
(t, x) ≤ D0(t, x) +

∫ t

0

{(
n
∂A

∂x

)
(s, x+ s− t) −

(
n
∂A

∂x

)
(s, x+ t− s)

}
ds

−

∫ t

0

{(
A
∂n

∂x

)
(s, x+ s− t) +

(
A
∂n

∂x

)
(s, x+ t− s)

}
ds (5.2)

where D0 depends on the initial data only. The first line is bounded by (2.15) as:

C0 + (C1 + C2 t ‖F‖t)

∫ t

0

∥∥∥∥
∂A

∂x

∥∥∥∥
s

ds.

In order to bound the second line in (5.2), we use (1.14) to rewrite

(p̂−1)
∂f

∂x
(s, x+s− t, p) = −

∂

∂s
[f(s, x+s− t, p)]+F (s, x+s− t)

∂f

∂p
(s, x+s− t, p).

We can integrate this w.r.t. p, since p̂ − 1 never vanishes. Hence, the first part of

the integral which appears on the second line in (5.2) becomes:

I1 :=

∫ t

0

(
A
∂n

∂x

)
(s, x+ s− t) ds

=

∫ t

0

A(s, x+ s− t)

∫

R

1

p̂− 1

[
−
∂

∂s
[f(s, x+ s− t, p)]

+ F (s, x+ s− t)
∂f

∂p
(s, x+ s− t, p)

]
dp ds ;

then, performing integration by parts in s and p:

I1 = −A(t, x)

∫

R

f(t, x, p)

p̂− 1
dp+A0(x− t)

∫

R

f0(x− t, p)

p̂− 1
dp

+

∫ t

0

∂

∂s
[A(s, x+ s− t)]

∫

R

f(s, x+ s− t, p)

p̂− 1
dp ds
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+

∫ t

0

(AF )(s, x + s− t)

∫

R

f(s, x+ s− t, p)
d

dp

[
1

p̂− 1

]
dp ds.

When p tends to +∞, there holds:

1

p̂− 1
∼ −2 p2,

d

dp

[
1

p̂− 1

]
=

p+
√

1 + p2

√
1 + p2

(
p−

√
1 + p2

) ∼ −4 p,

so that the integrations by parts mentioned above are fully justified using Hypothe-

ses 1, 2, 5 and moreover,

|I1| ≤ C0 + C1 ‖A‖t

∫

R

(1 + p2) f(t, x, p) dp

+ C2

∫ t

0

{‖∂xA‖s + ‖∂tA‖s + ‖A‖s ‖F‖s}

∫

R

(1 + p2) f(s, x+ s− t, p) dp ds.

Using Lemma 2.5, we obtain a bound on the integrals in p, so that:

|I1| ≤ C0 + C1 Π3 (t ‖F‖t)

{∥∥∥∥
∂A

∂x

∥∥∥∥
s

+

∥∥∥∥
∂A

∂t

∥∥∥∥
s

+ ‖A‖s (1 + ‖F‖s)

}
.

Of course, I2 :=
∫ t

0

(
A ∂n

∂x

)
(s, x + s − t) ds is bounded in the same manner.

Hence (5.1).

In the case of two solutions corresponding to two pairs of fields (E1, A1) and

(E2, A2), we have similarly:

Lemma 5.2. Let (E1, A1) and (E2, A2) be as in Lemma 5.1; and (E′
i, A

′
i) =

L(Ei, Ai). We have:
∥∥∥∥
∂2A′

1

∂x2
−
∂2A′

2

∂x2

∥∥∥∥
t

≤ K

{∥∥∥∥
∂A1

∂x
−
∂A2

∂x

∥∥∥∥
t

+

∥∥∥∥
∂A1

∂t
−
∂A2

∂t

∥∥∥∥
t

+ ‖A1 −A2‖t + ‖F1 − F2‖t

}
(5.3)

where the constant K is polynomial in (t, ‖Ai‖t, ‖∂xAi‖t, ‖∂tAi‖t, ‖Fi‖t).

Proof. This time, we have to bound the integral

I =

∫ t

0

(
∂(n1A1)

∂x
−
∂(n2A2)

∂x

)
(s, x+ s− t) ds,

as well as a similar one in which the current point is (s, x − s+ t), and which will

be handled in exactly the same manner. Writing:

∂(n1A1)

∂x
−
∂(n2A2)

∂x
= A1

(
∂n1

∂x
−
∂n2

∂x

)
+
∂n2

∂x
(A1 −A2)

+ n1

(
∂A1

∂x
−
∂A2

∂x

)
+
∂A2

∂x
(n1 − n2) ,
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we split I into four parts I1, I2, I3, I4, which are the integrals of the four terms

above. By (2.15) and (3.10), we obtain:

|I3| ≤ (C0 + C1 ‖F2‖t) t ‖∂xA2 − ∂xA1‖t ;

|I4| ≤
(
C0 + C1 max

i
‖Fi‖t

)
‖∂xA2‖t t ‖F2 − F1‖t .

Then I2 is bounded as in the previous Lemma:

|I2| ≤C Π3 (t ‖F2‖t) {‖∂xA1 − ∂xA2‖t+‖∂tA1 − ∂tA2‖t+‖A1 −A2‖t (1 + ‖F2‖t)} .

There remains to bound I1. Performing the same computations as in Lemma 5.1,

we obtain:

I1 = −A1(t, x)

∫

R

(f1 − f2)(t, x, p)

p̂− 1
dp

+

∫ t

0

∂

∂s
[A1(s, x+ s− t)]

∫

R

(f1 − f2)(s, x+ s− t, p)

p̂− 1
dp ds

+

∫ t

0

(A1 F1)(s, x+ s− t)

∫

R

f1(s, x+ s− t, p)
d

dp

[
1

p̂− 1

]
dp ds

−

∫ t

0

(A1 F2)(s, x+ s− t)

∫

R

f2(s, x+ s− t, p)
d

dp

[
1

p̂− 1

]
dp ds.

We rearrange the last two integrals by writing, as usual, F1 f1 − F2 f2 = F1 (f1 −

f2) + (F1 − F2) f2. Hence:

|I1| ≤ C

{
‖A1‖t

∫

R

(1 + p2) (f1 − f2)(t, x, p) dp

+

∫ t

0

{‖∂xA1‖s + ‖∂tA1‖s + ‖A1‖s‖F1‖s}

∫

R

(1 + p2)(f1 − f2)(s, x + s− t, p) dp ds

+

∫ t

0

‖A1‖s ‖F1 − F2‖s

∫

R

(1 + p2) f2(s, x+ s− t, p) dp ds

}
,

which is bounded with the help of Lemmas 2.6 and 2.5 as:

|I1| ≤ C

{
{‖∂xA1‖t + ‖∂tA1‖t + ‖A1‖t (1 + ‖F1‖t)}Π3

(
t max

i
‖Fi‖t

) ∫ t

0

‖F1 − F2‖s

+ ‖A1‖t Π3 (t ‖F2‖t)

∫ t

0

‖F1 − F2‖s.

}

Putting all these bounds together, we obtain (5.3).

Such a bound as (5.3) cannot be derived in the NR case, basically because the

velocity p̂ = p is not bounded: singularity formation could happen at any speed.

The proof of the above two Lemmas does not apply, because neither 1/(p− 1) nor

its derivative −1/(p− 1)2 are locally integrable near p = 1, and the integrations by

parts would be unjustified.
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Nevertheless, in the QR case we immediately deduce the following theorem:

Theorem 5.1. Let (Ek, Ak)k∈N and (E,A) be as in Theorem 3.2. The sequence(
∂2

xAk

)
k∈N

converges uniformly in x and t. As a consequence, the triple (f,E,A)

defines a characteristic solution to (1.14–1.16) on the interval [0, T ].

Proof. The convergence of
(
∂2

xAk

)
k∈N

immediately follows from (5.3) and the con-

vergence results of Theorem 3.2, and the limit is necessarily equal to ∂2
xA. So, ∂xFk

converges uniformly towards the x-derivative of the force given by (E,A); and we

get the conclusion.

6. Stability of equilibria

In this section, we restrict ourselves to classical solutions to the system (1.14–1.19).

Thus, in the NR case, we take T > 0 small enough to have a classical solution

on [0, T ].

Furthermore, we only consider solutions of finite mass, energy and entropy —

the latter concepts being precised in the following Subsection — in order to rule

out some unphysical or pathological behaviours.

6.1. Energies and entropy for the system (1.14–1.19)

The physical energy of the system naturally splits in two parts, the transversal

energy made up of the terms containing the vector potential A, and the longitudinal

energy for the other terms.

The transversal energy is written WT [f(t), A(t), ∂tA(t)], where:

WT [f,A, Ȧ] :=
1

2

∫ {
n[f ](x)A(x)2 + |∂xA(x)|

2
+ Ȧ(x)2

}
dx (6.1)

and, of course, n[f ] denotes the density of f . In the periodic case, the integral is to

be taken over one space period; in the open-space case, over the whole space.

Let V = H1(R) or H1
L(R) and H = L2(R) or L2

L(R). The norm denoted ‖ · ‖,

without any subscript, will be that of H; and (· | ·) is its scalar product. For any

function w ∈ C0 (0, T ;H), we set

〈w〉t = sup
0≤s≤t

‖w(s)‖2.

We have the following result:

Proposition 6.1. Assume that A0 ∈ V and Ȧ0 ∈ H. Then A ∈ C0 (0, T ;V) ∩

C1 (0, T ;H). As a consequence, the transversal energy is finite-valued and differen-

tiable on [0, T ], and there holds:

d

dt
WT [f(t), A(t), ∂tA(t)] =

1

2

∫
∂tn(t, x)A(t, x)2 dx. (6.2)
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Proof. Consider the approximating sequence (Ak)k∈N
from Theorem 3.2. Clearly,

A0 ∈ C0 (0, T ;V) ∩ C1 (0, T ;H). Assuming that Ak ∈ C0 (0, T ;V) ∩ C1 (0, T ;H), we

see that Ak+1 can be identified with the variational solution to:

d2

dt2
(Ak+1(t) | B) + (∂xAk+1(t) | ∂xB) = − (nk(t)Ak(t) | B) , ∀B ∈ V ,

Ak+1(0) = A0 ∈ V , ∂tAk+1(0) = Ȧ0 ∈ H,

where, of course, nk = n[fk]; recall that, thanks to (2.15), ‖nk‖t is uniformly

bounded by a constant n∗ on the interval [0, T ]. Hence Ak+1 ∈ C0 (0, T ;V) ∩

C1 (0, T ;H). By induction, the whole sequence belongs to this space.

Moreover, we have the classical energy estimate:

d

dt

1

2

(∥∥∥∥
∂Ak+1

∂t

∥∥∥∥
2

+

∥∥∥∥
∂Ak+1

∂x

∥∥∥∥
2
)

= −

(
nk(t)Ak(t)

∣∣∣
∂Ak+1

∂t

)
, (6.3)

from which we deduce, by Young’s inequality:

1

2

〈
∂Ak+1

∂t

〉

t

+

〈
∂Ak+1

∂x

〉

t

≤ C0 + C1 〈Ak〉t . (6.4)

On the other hand,

‖Ak(t)‖
2

= ‖A0‖
2
+ 2

∫ t

0

(
Ak(t)

∣∣∣
∂Ak

∂t

)
ds ;

applying once more Young’s inequality, we get:

〈Ak(t)〉t ≤ C0 + C1

∫ t

0

〈
∂Ak

∂t

〉

s

ds. (6.5)

This inequality, together with (6.4), shows that

1

2

〈
∂Ak+1

∂t

〉

t

+

〈
∂Ak+1

∂x

〉

t

≤ C0 + C1

∫ t

0

{
1

2

〈
∂Ak

∂t

〉

s

+

〈
∂Ak

∂x

〉

s

}
ds,

which gives the uniform boundedness of 〈∂tAk〉t and 〈∂xAk〉t by Lemma 3.5, and

that of 〈Ak〉t by (6.5).

As a consequence, for any t the sequences (Ak(t))k∈N
(∂xAk(t))k∈N

, (∂tAk(t))k∈N

admit weakly convergent subsequences in H, hence (A(t), ∂xA(t), ∂tA(t)) ∈ H3.

Then, similar computations show that the sequence (Ak)k∈N
is indeed strongly

convergent in C0 (0, T ;V) ∩ C1 (0, T ;H); and, at the limit (6.3) gives

d

dt

1

2

(∥∥∥∥
∂A

∂t

∥∥∥∥
2

+

∥∥∥∥
∂A

∂x

∥∥∥∥
2
)

= −

(
n(t)A(t)

∣∣∣
∂A

∂t

)
,

from which we deduce (6.2) by integration by parts thanks to Corollary 2.1.

We now study the longitudinal energy. To this end, we first define the electro-

static field and potential functionals. In the open-space case, we set

E[f ] = −∂xΦ[f ] := ∂x (φext − φ[f ]) ,
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where φext is (the opposite of) the external confining potential, satisfying φ′′ext = next

and φ[f ] ≥ 0 is the second primitive of the density n[f ] of f , given by the formula:

φ[f ](x) =
1

2

∫

R

|x− y|n[f ](y) dy (6.6)

due to Lemma 2.8. We remark that φ is a linear, self-adjoint and positive operator.

As for the potential φext, we assume that it satisfies the following hypotheses.

Hypothesis 6. There exist C ≥ 0 and m ∈ N s.t.

|φext(x)| ≤ C (1 + |x|m) and

∫

R

|p|m g(p) dp <∞.

(g is the majorising function in Hypothesis 2.)

Let us remark that, if 0 < nmin ≤ next ≤ nmax, the above hypotheses are

satisfied with m = 2, provided Hypothesis 5 holds.

In the periodic case, we do not use the above decomposition of the potential,

since the external and the self potential would not be periodic. We set:

E[f ] = −∂xΦ[f ], −∂2
xΦ[f ] = next − n[f ],

the uniqueness of Φ[f ] being ensured by imposing periodicity and

∫ L

0

Φ[f ](x)next(x) dx = 0.

This, in turn, ensures the self-adjointness of the operator Φ.

As for the kinetic part, we denote by κ(p) the primitive of p̂, viz.

κ(p) =
p2

2
(NR case), κ(p) =

√
1 + p2 (QR case).

We recall that, in the QR case, we always assume Hypothesis 5. In the NR case, the

following assumption will be needed to ensure the differentiability of the energy.

Hypothesis 7. The majorising function g satisfies
∫

R

|p|3 g(p) dp <∞.

We are now ready to state the

Definition 6.1. In the periodic case, the longitudinal energy functional is given

by the two equivalent formulae:

WL[f ] =

∫ L

0

∫

R

{
κ(p) −

1

2
Φ[f ](x)

}
f(x, p) dp dx, (6.7)

WL[f ] =

∫ L

0

∫

R

κ(p) f(x, p) dp dx+
1

2

∫ L

0

|∂xΦ[f ](x)|
2

dx ; (6.8)
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while in the open-space case, one sets:

WL[f ] =

∫

R

∫

R

{
κ(p) + φext(x) −

1

2
φ[f ](x)

}
f(x, p) dp dx. (6.9)

Let us remark that the definition (6.9) becomes formally equivalent to (6.7)

or (6.8). However, in the open-space case |∂xφ[f ]|2 is clearly not integrable and

the integration by parts to arrive to a formula like (6.8) are not justified. We will

comment on this in the next subsection.

Now, we can analyse the evolution of the longitudinal energy.

Proposition 6.2. Let (f,E,A) be a classical solution to (1.14–1.19). Assume Hy-

potheses 1, 2 and 7 if the system is NR, Hypotheses 1, 2 and 5 if it is QR. In

the open-space setting, assume moreover that Hypotheses 3, 4 and 6 hold. Then

t 7→WL[f(t)] is finite-valued and differentiable for all t ∈ [0, T ]. Namely:

d

dt
WL[f(t)] =

∫
j(t, x)

∂

∂x

A2

2
(t, x) dx. (6.10)

Proof. First, we consider the case of periodic solutions. The finiteness of the energy

defined by (6.8) follows from Lemma 2.5 and the various boundedness results of

Theorem 3.2. By the way, the boundedness of E yields that of Φ; and integrating

by parts gives the equivalent expression (6.7). Then, as in Corollary 2.1, we bound

∂

∂t
[κ(p) f(t, x, p)] = −p̂ κ(p)

∂f

∂x
+ κ(p)F (t, x)

∂f

∂p
,

∣∣∣∣
∂

∂t
[κ(p) f(t, x, p)]

∣∣∣∣ ≤ κ(p) (F∗ + |p̂|) gt ‖F‖t
(p) et (1+‖∂xF‖t).

The highest power of p is p3 (NR) or p (QR): the above function is integrable

in p, and in x given the finite length of (0, L). Finally, Eq. (1.15) gives ∂t

(
1
2 E

2
)

=

E j; these functions are continuous on (0, L), so the second term in (6.8) is also

differentiable.

Let us now consider the open-space setting. The finiteness and differentiablity

of the integral
∫∫

{κ(p) + φext(x)} f(t, x, p) dxdp follows from Lemma 2.9. Then,

the self potential defined by (6.6) satisfies:

0 ≤ φ[f(t)](x) ≤
1

2

(
|x|

∫
n[f ](y) dy +

∫
|y|n[f ](y) dy

)

≤
M |x|

2
+

1

2

∫∫
(|y| + |p|) f(t, y, p) dy ≤

1

2
(M |x| + Z),(6.11)

Z being defined in Lemma 2.8. By the same token,

0 ≤

∫∫
φ[f(t)](x) f(t, x, p) dxdp ≤

1

2

∫
(M |x| + Z) f(t, x, p) dxdp ≤M Z. (6.12)

There remains to check the differentiability of the self potential energy. Using the

Vlasov equation (1.14) and Corollary 2.1, we find:

|∂tf(t, x, p)| ≤ (F∗ + |p̂|) gt ‖F‖t
(p) gt2 ‖F‖t

(x− t p) et (1+‖∂xF‖t). (6.13)
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But the linearity and self-adjointness of φ imply: ∂t(φ[f ] f) = 2 ∂tf φ[f ], which

allows to bound∣∣∣∣
∂

∂t
[φ[f(t)] f(t)](x, p)

∣∣∣∣ ≤ (C0 + C1 |x|) (1 + F∗ + |p̂|) gt ‖F‖t
(p) gt2 ‖F‖t

(x− t p)

by (6.11) and (6.13). This proves the integrability of this function, and the differ-

entiability of the self potential energy.

Finally, Eq. (6.10) is obtained through tedious but straightforward computations

(cf. Propositions 1.5 and 1.6 in 2), all the integrations by parts being justified by

the above arguments.

From (6.2), (6.10) and the continuity equation (2.19), we immediately deduce:

Theorem 6.1. Under the hypotheses of Propositions 6.1 and 6.2, the energy

W (t) := WT [f(t), A(t), ∂tA(t)] +WL[f(t)] is constant.

For reference, we give the formulae for the energy in the FR case. There is no

splitting in transversal and longitudinal parts. The total energy is given by:

W (t) :=

∫ L

0

∫ [√
1 + p2 +A(t, x)2 −

1

2
Φ[f(t)](x)

]
f(t, x, p) dp dx

+
1

2

∫ L

0

[∣∣∣∣
∂A

∂t
(t, x)

∣∣∣∣
2

+

∣∣∣∣
∂A

∂x
(t, x)

∣∣∣∣
2
]

dx (6.14)

in the periodic case, and

W (t) :=

∫

R

∫ [√
1 + p2 +A(t, x)2 + φext(x) −

1

2
φ[f(t)](x)

]
f(t, x, p) dp dx

+
1

2

∫

R

[∣∣∣∣
∂A

∂t
(t, x)

∣∣∣∣
2

+

∣∣∣∣
∂A

∂x
(t, x)

∣∣∣∣
2
]

dx (6.15)

in the open-space case. The reader may check that these expressions are formally

constant, even though the mere existence of classical solutions is an open problem,

and subtler arguments are probably necessary to justify the calculations.

Definition 6.2. Let σ ∈ C2((0,+∞)) ∩ C0([0,+∞)) be a strictly convex and

bounded-from-below function, which satisfies

lim
s→+∞

σ(s)

s
= +∞.

Let γ denote the generalised inverse of −σ′ (extended by 0 if necessary): it is a

decreasing function in its support.

The entropy associated to a distribution function f is defined as:

Sσ[f ] :=

∫∫
σ(f(x, p)) dp dx.

The most classical example is σ(s) = s ln s − s, i.e. γ(s) = e−s, associated to

Maxwellian distribution functions.
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Clearly, Sσ is a convex, bounded-from-below, weakly lower semicontinuous func-

tional on its domain of definition. From 5, we know that for any f∗ ∈ L1(Rd), there

exists a function σ as above s.t. Sσ[f∗] is finite. Thus, we shall choose σ according

to the following

Hypothesis 8. In the periodic case,
∫
σ(g(p)) dp < ∞. In the open-space case,∫

σ(g(0) g(p)) dp <∞ and
∫∫
σ(g(x) g(p)) dxdp <∞.

In this case, the following identities hold:
∫
σ (gr(p)) dp = 2 r σ(g(0)) +

∫
σ(g(p)) dp ;

∫∫
σ (gρ(x) gr(p)) dxdp = 4 ρ r g(0) + 2 (ρ+ r)

∫
σ(g(0) g(s)) ds

+

∫∫
σ(g(x) g(p)) dxdp.

Then, the finiteness and differentiability of Sσ[f(t)] stem from arguments very

similar to the proof of Proposition 6.2, and one can easily deduce.

Theorem 6.2. Under Hypothesis 8, the function Sσ[f(t)] is constant on [0, T ].

6.2. Equilibria of (1.14–1.19)

We are looking for solutions to (1.14–1.19) which do not depend on time, i.e.,

solutions to the coupled problem in (f(x, p), A(x)):

p̂
∂f

∂x
+

d

dx

[
Φ[f ] −

A2

2

]
∂f

∂p
= 0, (6.16)

−
d2A

dx2
+ n[f ]A = 0 (6.17)

with the potential satisfying the Poisson equation − ∂2

∂x2 Φ[f ] = next − n[f ].

We have the following result

Lemma 6.1. Any classical solution to (6.16–6.17) s.t. M > 0 and A ∈ V is a

Vlasov–Poisson equilibrium, i.e. it has the form (f∞, 0), where f∞ solves

p̂
∂f∞
∂x

+
dΦ[f∞]

dx

∂f∞
∂p

= 0, (6.18)

with − ∂2

∂x2 Φ[f∞] = next − n[f∞] and consequently satisfies:

f∞(x, p) = F (κ(p) − Φ[f∞](x)) , (6.19)

for some function F .

Proof. If A ∈ V , then for any B ∈ V ,

af (A,B) :=

∫
(A′(x)B′(x) + n[f ](x)A(x)B(x)) dx = 0. (6.20)



September 14, 2006 14:50 WSPC/INSTRUCTION FILE carlabnew

34 J. A. Carrillo and S. Labrunie

Now, take B = A to deduce that af (A,A) = 0. Since both terms in af (A,A) are

non-negative, we deduce that
∫

|A′(x)|2 dx =

∫
n[f ](x)A(x)2 dx = 0.

From the first identity we conclude A is constant, while from the second we conclude

A = 0 since n[f ] > 0 on some non-negligible subset of R or (0, L). We are left

with (6.18), whose solution is well-known to be of the form (6.19).

The function F can be precised by demanding that the solution should minimise

a “free energy” functional. In other words, the choice of the entropy function σ is

determined by the particular equilibrium one is interested in.

Definition 6.3. Let f ∈ L1(R2), resp. f ∈ L1
L(R2), the free energy of f is:

Kσ[f ] := WL[f ] + Sσ[f ].

Let then A ∈ V and Ȧ ∈ H; we set

KTσ[f,A, Ȧ] := Kσ[f ] +WT [f,A, Ȧ].

We consider the set of suitable distribution functions with fixed mass, i.e.

K(L,M) :=
{
f ∈ L1

L(R2) : f ≥ 0 a.e. and ‖f‖L1

L
(R2) = M

}
.

Lemma 6.2. In the periodic case, KTσ is a strictly convex and bounded-from-below

functional on K(L,M) × V × H. It has a unique global minimum which takes the

form (f∞,σ, 0, 0), where

f∞,σ = γ (κ(p) − Φ[f∞,σ](x) − α) (6.21)

and is therefore a stationary solution of the Vlasov–Poisson system. The constant

α is uniquely determined by M and L.

Proof. Eq. (6.7) shows that WL is convex in this case; it is clearly lower semicon-

tinuous and on K(L,M) it is bounded from below. Since Sσ enjoys the same prop-

erty and is strictly convex, we deduce that Kσ has a unique global minimum f∞,σ.

Writing the Lagrange equation expressing the minimisation under the constraint∫
f = M (cf. 3,5), yields the formula (6.21), where α is the Lagrange multiplier.

Then, it is clear that for any (f,A, Ȧ) 6= (f∞,σ, 0, 0),

KTσ[f,A, Ȧ] > KTσ[f, 0, 0] > KTσ [f∞,σ, 0, 0] ,

where the last inequality is a consequence of the results in 3,5.

A similar result in the open-space case does not hold in our case, in contrast

to the situation studied for nonlinear stability of the Vlasov–Poisson system in

higher dimensions. 17,4,3,5 The main difference in 1D being that ∂xφ[f ] /∈ L2(R) as

pointed out before. Sobolev embeddings in d ≥ 2 allow, under confining conditions

on the external potential φext, to deduce a result similar to previous Lemma. 10,3,5

Moreover, the functional KTσ ceases to be convex in our 1D open-space case.
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6.3. L
p-nonlinear stability of equilibria in the periodic case

In this subsection, we just collect the known results in several references and applied

to the particular case we deal with. Like in 17,4,5, one can rewrite:

KTσ[f,A, Ȧ] −KTσ [f∞,σ, 0, 0] = Σσ [f |f∞,σ] +WT [f,A, Ȧ], (6.22)

where the relative entropy of the distribution function f w.r.t. g is defined as:

Σσ[f |g] :=

∫∫
[σ(f)− σ(g)− σ′(g)(f − g)] dxdp+

1

2

∫
|∂xΦ[f − g]|

2
dx.(6.23)

Yet, as a consequence of Theorems 6.1 and 6.2, KTσ [f(t), A(t), ∂tA(t)] is con-

stant for any classical solution to (1.14–1.19). This implies (see 17,4,5) that:

(1) The Lp norm of f − f∞,σ is bounded for 1 ≤ p ≤ 2, if inf σ′′(s)/sp−2 > 0.

(2) The L2 norm of f−f∞,σ is bounded, if f∞,σ is a Maxwellian, i.e. σ(s) = s ln s−s.

(3) The H1 norm of Φ[f ] − Φ[f∞,σ] is bounded.

(4) The transversal energy is bounded — indeed, we already knew this, and even

a little bit more, from Proposition 6.1.

Here, all the norms are taken for x ∈ [0, L], p ∈ R.

The first three points follow from §§3 and 4 of 5 and references therein. Indeed,

the arguments in these passages are independent of the dimension.

In other words, the one-dimensional periodic Vlasov–Poisson equilibria are Lp-

nonlinearly stable under one-dimensional Vlasov–Maxwell perturbations.

Let us finally mention that Landau damping was proved in 6 in the case of the

Vlasov–Poisson system in the periodic case. As a consequence, it was proved in 6

that some Vlasov–Poisson equilibria which are L1-nonlinearly stable, are unstable

for a weak topology. This is not known to happen in our 1D Vlasov–Maxwell system,

although numerical computations seem to indicate that nonlinear Landau damping

should occur in this model. Let us point out that there is no contradiction between

these two stability assertions, since weak topology neighbourhoods of the equilibria

are much larger than L1 neighbourhoods.

Appendix A. The Duhamel formulae

The following representation formulae are capital in the various estimations of Sec-

tions 3–5.

The unique temperate solution u to the wave equation





∂2u

∂t2
−
∂2u

∂x2
= f ∈ L1 (0, T ;X ) ,

u(0, x) = u0(x) ∈ X , ∂tu(0, x) = v0(x) ∈ X ,

where X = L1
loc(R) ∩ S′(R), is explicitly given by the formula:

u(t, x) =
1

2

{
u0(x+ t) + u0(x− t) +

∫ x+t

x−t

v0(y) dy
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+

∫ t

0

∫ x+t−s

x+s−t

f(s, y) dy ds

}
. (A.1)

Hence, after some computations, the formulae for the various derivatives of u:

∂u

∂t
(t, x) =

1

2

{
u′0(x+ t) − u′0(x − t) + v0(x+ t) + v0(x − t)

+

∫ t

0

[f(s, x+ s− t) + f(s, x+ t− s)] ds

}
, (A.2)

∂u

∂x
(t, x) =

1

2

{
u′0(x+ t) + u′0(x − t) + v0(x+ t) − v0(x − t)

+

∫ t

0

[−f(s, x+ s− t) + f(s, x+ t− s)] ds

}
, (A.3)

∂2u

∂x2
(t, x) =

1

2

{
u′′0(x+ t) + u′′0(x− t) + v′0(x+ t) − v′0(x− t)

+

∫ t

0

[
−
∂f

∂x
(s, x+ s− t) +

∂f

∂x
(s, x+ t− s)

]
ds

}
, (A.4)

which are valid e.g. if u′0, u
′′
0 , v

′
0 ∈ X and f ∈ C1 (0, T ;X ).

Appendix B. Convergence of the sequence defined by (4.2)

Here is the technical lemma announced in the proof of Theorem 4.1.

Lemma Appendix B.1. Let (vk(t))k∈N and ϕt be defined by (4.2).

(1) There exists T1 < +∞ such that, for 0 < t < T1, ϕt admits two fixed points

vt < vt. If v0(t) < vt, the unstable fixed point, then the sequence vk(t) converges

toward the stable point vt.

(2) For t > T1, there is no fixed point, and (vk(t))k∈N diverges to +∞.

(3) When t tends to zero, vt goes to infinity, while vt remains bounded.

Consequently, there exists 0 < T ∗ ≤ T1 s.t. (vk(t))k∈N is convergent for 0 ≤ t < T ∗.

Proof. As ϕt is convex and increasing, there are only three possibilities:

(1) The equation ϕt(x) = x admits two solutions vt < vt, which are respectively

stable and unstable fixed points: 0 < ϕ′
t(vt) < 1 and ϕ′

t(v
t) > 1.

(2) The two solutions merge in a unique fixed point v, which satifies both ϕt(v) = v

and ϕ′
t(v) = 1; it is stable on the left side, unstable on the right side.

(3) There is no fixed point at all, and ϕt(x) > x for all x ∈ R.

The case 1 is achieved for t small enough. Indeed:

lim
t→0

β t et (1+x) = 0, ∀x ∈ R
+.

Hence, for any µ > 1, there exists tµ > 0 s.t. ϕt(µα) < µα for t < tµ. On the other

hand, ϕt(α) > α. Hence, ϕt has (at least) one fixed point in the interval (α, µα)
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when t < tµ. Given that ϕt(x) ≫ x when x→ +∞, there is another fixed point in

(µα,+∞).

Then, we notice that, when x is fixed, ϕt(x) is a decreasing function of t. This

has two consequences. Firstly, if s < t and ϕt has fixed points, then ϕs also has

fixed points. This proves the existence of T1, which may be finite or not. Clearly, if

T1 is finite, it achieves the case 2. Eliminating v between ϕt(v) = v and ϕ′
t(v) = 1

gives the following equation for t:

β t2 eα t2+2 t = 1.

As the l.h.s. is zero for t = 0, infinite for t = +∞ and strictly increasing in t, the

equation admits a unique solution T1 ∈ (0,+∞).

The behaviour of vk+1(t) = ϕt(vk(t)) then follows from the elementary theory

of sequences (Figure 1), and the claims 1 and 2 are obtained.

t < T1 t=T1 t>T1

v
t

x t v t x x xv

Fig. 1. Dynamic of the sequence vk+1(t) = ϕt (vk(t)).

The second consequence is that vt and vt are resp. decreasing and increasing

functions of t. Hence, vt is bounded when t→ 0. On the other hand, vt > xt, where

xt is defined by ϕ′
t(x

t) = 1. The latter equation gives

β t2 et (1+xt) = 1 ⇐⇒ xt =
1

t
ln

(
1

β t2

)
− 1 → +∞ when t→ 0.

This proves the third claim. Finally, let us remark that v0(t) is indeed independent

of t: E0 and A0, hence F0 are constant in time. Consequently, for t small enough,

vt > v0(t). This gives the last part of the conclusion.
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