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The Fourier Singular Complement Method

for the Poisson problem. Part II: axisymmetric domains

P. Ciarlet, Jr, 1 B. Jung, 2 S. Kaddouri, 3 S. Labrunie, 4 J. Zou 5

Abstract

This paper is the second part of a threefold article, aimed at solving numerically the Poisson

problem in three-dimensional prismatic or axisymmetric domains. In the first part of this

series, the Fourier Singular Complement Method was introduced and analysed, in prismatic

domains. In this second part, the FSCM is studied in axisymmetric domains with conical

vertices, whereas, in the third part, implementation issues, numerical tests and comparisons

with other methods are carried out. The method is based on a Fourier expansion in the direction

parallel to the reentrant edges of the domain, and on an improved variant of the Singular

Complement Method in the 2D section perpendicular to those edges. Neither refinements

near the reentrant edges or vertices of the domain, nor cut-off functions are required in the

computations to achieve an optimal convergence order in terms of the mesh size and the number

of Fourier modes used.

Date of this version : July 7, 2005

1 Introduction

The Singular Complement Method (SCM) was originally introduced by Assous et al.
[6, 7], for the 2D static or instationary Maxwell equations without charges. It was then
extended [4, 5] to the fully axisymmetric case, i.e. axisymmetric domains and data, with
or without charges. The SCM has been extended in [11] to the 2D Poisson problem.
As noted in [12], further extensions to the 2D heat or wave equations, or to similar
problems with piecewise constant coefficients, can be obtained easily. Methodologically
speaking, the SCM consists in adding some singular test functions to the usual P1

Lagrange FEM so that it recovers the optimal H1-convergence rate, even in non-convex
domains. In the fully axisymmetric case, one may simply add one singular test function
per reentrant edge, and one per conical vertex of sufficiently large aperture.
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There exist a couple of numerical methods in the literature for accurately solv-
ing 2D Poisson problems in non-convex domains. The SCM is clearly different from
(anisotropic) mesh refinement techniques [20, 16], and can be applied efficiently to in-
stationary problems (see Remark 4.1 of [12]), since it does not need the refinements
of the mesh and thus large time steps may be allowed. However the anisotropic mesh
refinement methods have one advantage: they require only a partial knowledge of the
most singular part of the solution.

The numerical solution of 3D singular Poisson problems is quite different from the
2D case, and much more difficult. This is a relatively new field of research: most
approaches rely on anisotropic mesh refinement, see for instance [16, 17] and Refs.
therein. To our knowledge, this series of papers is the first attempt to generalize the
SCM for three-dimensional singular Poisson problems.

The rest of the paper is organised as follows. In the next Section, we define the ge-
ometry of the axisymmetric domain Ω, and the suitable framework for the study of the
Poisson problem in Ω using a Fourier expansion with respect to the rotational angle θ,
namely, weighted Sobolev spaces over the meridian section ω. This suggests a frame-
work for building the Fourier Singular Complement Method (FSCM) for accurately
solving the Poisson problem, using a Fourier expansion in θ, and an improved variant
of the Singular Complement Method [11] in ω. In Section 3, we study theoretically
this variant of the SCM, based on a regular-singular splitting of the solution uk to the
2D problem (7–8). The main feature of the splitting is that it is chosen independently
of the Fourier index k as soon as |k| ≥ 2; this independence is important, and very
helpful, from the computational point of view. Section 4 presents a few results of finite
element theory in the weighted Sobolev spaces. In Section 5, the SCM is considered
from a numerical point of view, to approximate uk accurately, viā the discretization
of the splitting. In the Section 6, we build the numerical algorithms which define the
FSCM, and we show that it has the optimal convergence of order O(h+N−1), where
h is the 2D mesh size and N is the number of Fourier modes used.

2 Poisson problem in axisymmetric domains

2.1 Geometric setting and notations

In this article, we consider an axisymmetric domain Ω, ggenerated by the rotation of a
polygon ω around one of its sides, denoted γa. The boundary of ω is hence ∂ω = γa∪γb,
where γb generates the boundary Γ of Ω. Thus, Ω can be described as:

Ω = ω × S1 ∪ γa. (1)

The natural cylindrical coordinates will be denoted by (r, θ, z). The geometrical singu-
larities that may occur on Γ are circular edges and conical vertices, which correspond
to off-axis corners of γb and to its extremities. Figure 1 precises the various notations
associated to these singularities; a more complete description of the geometry of ω can
be found in [3, 4].

2



ρ

ωe

γ
a

φ0

z

r

π/α

ea

M φ

φ

c

cω

γb

z

r

ρ

π/β

M

Figure 1: Notations for the geometrical singularities; e: reentrant edge; c: conical vertex.

The problem under consideration is once more the homogeneous Dirichlet problem:

Find u ∈
◦
H1(Ω) such that

−∆u = f in Ω, u = 0 on Γ, (2)

with f ∈ L2(Ω). Non-homogeneous Dirichlet boundary conditions, or (non-)homogen-
eous Neumann boundary conditions can be handled in exactly the same manner.

As will appear in the sequel, the problem (2) will be singular, i.e. its solution will
generically not be in H2(Ω)—as it would be the case in a regular or convex domain—
iff there are reentrant edges or sharp vertices in Γ. Sharp vertices are defined by the
condition (see Figure 1):

νc <
1

2
, where: νc def

= min

{
ν > 0 : Pν

(
cos

π

β

)
= 0

}
, (3)

and Pν denotes the Legendre function. This is satisfied iff π/β > π/β⋆ ≃ 130◦48′.
From now on, we shall assume that there is exactly one reentrant edge e (of aperture
π/α, with 1/2 < α < 1) and one sharp vertex c, and we shall omit the superscript c
in νc.

Other notations. We denote by rmax the supremum of the coordinate r on ω, and
by α0 and α1 two fixed numbers such that

1/2 < α0 < α and 1/2 < α1 < min(α, ν + 1/2).

We also introduce 2D neighbourhoods ωe and ωc of e and c respectively. They stay
away from all sides of ∂ω except the two ones that meet at the relevant corner. To
them we associate cutoff functions denoted η(ρ), which vanish outside ωe or ωc and
depend only on the distance to the corner.

3



2.2 Fourier expansions

The functions defined on Ω will be characterised through their Fourier series in θ, the
coefficients of which are functions defined on ω, viz.

f(r, θ, z) =
1√
2π

+∞∑

k=−∞

fk(r, z) eikθ ,

and the truncated Fourier expansion of f at order N is:

f [N ](r, θ, z) =
1√
2π

N∑

k=−N

fk(r, z) eikθ.

The regularity of the function f in the scale Hs(Ω) can be characterised by that of the
(fk)k∈Z in certain spaces of functions defined over ω [10, §§II.1 to II.3], namely:

f ∈ Hs(Ω), s ≥ 0 ⇐⇒ ∀k ∈ Z, fk ∈ Hs
(k)(ω),

where the Hs
(k)(ω) are defined in turn with the help of two different types of weighted

Sobolev spaces. We shall now give these definitions for the values of s and k chiefly
needed in this article. The notations for the various spaces are the same as in [10],
where the interested reader can find the proofs and the most general versions of the
subsequent statements.

First, for any τ ∈ R we consider the weighted Lebesgue space

L2
τ (ω)

def
=

{
w measurable on ω :

∫∫

ω
|w(r, z)|2 rτ dr dz <∞

}
.

This space, as well as all the spaces introduced in this article, is a Hermitian space of
functions with complex values. The scale (Hs

τ (ω))s≥0 is the canonical Sobolev scale

built upon L2
τ (ω), defined for s ∈ N as:

Hs
τ (ω)

def
=

{
w ∈ L2

τ (ω) : ∂ℓ
r∂

m
z w ∈ L2

τ (ω), ∀ℓ,m s.t. 0 ≤ ℓ+m ≤ s
}
,

and by interpolation for s /∈ N. We denote by ‖ · ‖s,τ and | · |s,τ the canonical norm
and semi-norm of Hs

τ (ω).

A prominent role will be played by L2
1(ω); its scalar product is denoted (·|·), without

any subscript. Upon this space, we build another, dimensionally homogeneous Sobolev
scale (V s

1(ω))s≥0, defined as:

V s
1(ω)

def
=

{
w ∈ Hs

1(ω) : rℓ+m−s ∂ℓ
r∂

m
z w ∈ L2

1(ω), ∀ℓ,m s.t. 0 ≤ ℓ+m ≤ ⌊s⌋
}
,

where ⌊s⌋ denotes the integral part of s. One can check that the general definition
reduces to

V s
1(ω) =

{
w ∈ Hs

1(ω) : ∂j
rw

∣∣
γa

= 0, for 0 ≤ j < s− 1
}
,

when s is not an integer; while for the first values of s ∈ N, we have:

V 0
1(ω) = L2

1(ω), V 1
1(ω) = H1

1(ω) ∩ L2
−1(ω), V 2

1(ω) = H2
1(ω) ∩H1

−1(ω).

The canonical norm of V s
1(ω) is denoted by ||| · |||s,1; it is equivalent to | · |s,1 except

for s ∈ N
∗.
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We are now ready to define the most useful spaces of Fourier coefficients.

Lemma 2.1 The spaces Hs
(k)(ω), for s = 0, 1, 2, are characterised as follows.

H0
(k)(ω) = L2

1(ω), ∀k, H1
(0)(ω) = H1

1(ω), H1
(k)(ω) = V 1

1(ω), ∀|k| ≥ 1 ;

H2
(0)(ω) =

{
w ∈ H2

1(ω) : ∂rw ∈ L2
−1(ω)

}
, H2

(±1)(ω) =
{
w ∈ H2

1(ω) : w|γa = 0
}
,

H2
(k)(ω) = V 2

1(ω), ∀|k| ≥ 2.

The definition for the other values of s will be given when needed.

Remark 2.1 The scales Hs
1(ω), V s

1(ω), and Hs
(k)(ω) (for any k) can be extended to

negative values of the exponent s, by the usual duality procedure with respect to the
pivot space, which is L2

1(ω) in all cases.

In order to handle the Dirichlet condition, we introduce the subspaces
⋄
H1

1(ω),
◦
V 1

1(ω),
◦
H1

−1(ω) of functions which vanish on γb. The difference in the notation is
to remind that the functions of V 1

1(ω) and H1
−1(ω) ⊂ V 1

1(ω) automatically vanish
on γa in a weak sense [18, Prop. 4.1]. This difference is of course important when it
comes to discretisation by P1 finite elements.

Similarly to the prismatic case, we introduce the anisotropic Sobolev spaces

h1(Ω)
def
= H1(S1, L2

1(ω)) = {f ∈ L2(Ω) : ∂θf ∈ L2(Ω)} ;

h2(Ω)
def
= H2(S1, L2

1(ω)) = {f ∈ h1(Ω) : ∂2
θf ∈ L2(Ω)} ;

they are identical to the H0,s(Ω) of [10, Eq. (II.4.16)], for s = 1, 2.

The next Lemma summarises the completeness results whose proofs can be found
in [10, Chapter II] or [15].

Lemma 2.2 The following characterisations hold:

f ∈ L2(Ω) ⇐⇒ ∀k ∈ Z, fk ∈ L2
1(ω), and:

+∞∑

k=−∞

∥∥∥fk
∥∥∥

2

0,1
<∞ ; (4)

f ∈ hs(Ω) ⇐⇒ ∀k ∈ Z, fk ∈ L2
1(ω), and:

+∞∑

k=−∞

k2s
∥∥∥fk

∥∥∥
2

0,1
<∞ ; (5)

and the canonical norms of L2(Ω) and hs(Ω) are equal to the square roots of these

sums. Moreover, defining V(k) = H1
(k)(ω)∩

⋄
H1

1(ω), viz.
⋄
H1

1(ω) for k = 0 and
◦
V 1

1(ω) for
the other cases, we have:

f ∈
◦
H1(Ω) ⇐⇒ ∀k ∈ Z, fk ∈ V(k) and |f |2H1(Ω) =

+∞∑

k=−∞

∥∥∥fk
∥∥∥

2

(k)
<∞, (6)

where the norm ‖w‖2
(k) = |w|21,1 + k2 ‖w‖2

0,−1.

As we did in the prismatic framework, we define the relation operators . and ≈
as follows. a . b means a ≤ C b, where C is a constant which depends only on the
geometry of the domain ω, and not on the mesh size h, the Fourier order k, or the
data f of the Poisson problem. a ≈ b denotes the conjunction of a . b and b . a.
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2.3 Singular Poisson problem in 2D

Denoting by uk and fk the Fourier coefficients of u and f in (2), we see [10, §II.4] that
for any k, uk is solution to the following singular Poisson problem in ω:
Find uk such that

Aku
k def

= −∆ku
k = fk in ω, where: ∆k

def
=

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
− k2

r2
, (7)

uk = 0 on γb. (8)

A special role will be played by ∆0, whose values are the traces in a meridian half-plane
of the Laplacian of axisymmetric functions. We remark that the operators ∆k have
real coefficients, hence the real and imaginary parts of the solution to (7–8) correspond
to the real and imaginary parts of the data. So, in practice, it will be sufficient to
consider problems with real data and solutions.

The variational space associated to (7–8) is the V(k) defined in Lemma 2.2. The
variational formulation reads [10, §II.4.a]:

ak

(
uk, v

)
=

(
fk | v

)
, ∀ v ∈ V(k), (9)

where ak is now the sesquilinear form defined by the norm ‖ · ‖(k), viz.

ak(u, v) =

∫∫

ω

[
r∇u · ∇v +

k2

r
u v

]
dω.

(In this text, ∇ will always denote the 2D gradient in the (r, z) plane.)

Like in the prismatic case, we have the following results.

Lemma 2.3 Let f ∈ L2(Ω), and u be the solution to (2). Then
(
u[K]

)
K

converges to

u in H1(Ω), and
(
∆u[K]

)
K

converges to −f in L2(Ω).

Proof: Similar to [12, Corollary 3.1]. ⋄

Lemma 2.4 Let f ∈ L2(Ω), and u be the solution to (2). Then ∂θu ∈ H1(Ω).

Proof: One may follow the lines of [12, Corollary 3.2], using the a priori estimates
of [15, Thm 4.2] to check that

(
∂r∂θu, r

−1 ∂θ∂θu, ∂z∂θu
)
∈ L2(Ω)3. ⋄

Besides the variational space, we shall consider, for each Fourier mode k:

• the natural space, which is the one to which uk belongs, i.e. the domain of the
operator Ak:

D(Ak)
def
=

{
w ∈ V(k) = H1

(k)(ω) ∩
⋄
H1

1(ω) : Akw ∈ L2
1(ω)

}
; (10)

• the regularised space, i.e. the one to which the solution uk would belong if the

domain Ω were regular or convex, namely H2
(k)(ω) ∩

⋄
H1

1(ω).

6



In [10, Thm II.3.1], it is established that the regularised space no longer depends on k
as soon as |k| ≥ 2; in Theorem 3.2, we will show that the same occurs for the natural
space. This suggests that the mode 2 can serve as the “fundamental mode” for the
high-|k| modes, just like the mode 0 does in the prismatic case. In contradistinction to
the latter, the modes 0 and ±1 have to be treated separately, with their own singular
functions.

3 Regular-singular decompositions in the 2D do-

main ω: theoretical study

We now establish the regular-singular decompositions, for the various Fourier modes k,
of the solution uk to (7–8), which will be effectively used in the numerical method. This
parallels the work exposed in the companion paper [12, §4].

We shall need the following integration by parts formulae.

Theorem 3.1 For any u, v ∈ H1
1(ω) such that ∆0v ∈ L2

1(ω), there holds:
∫∫

ω
{u∆0v + ∇u · ∇v} r dω =

∫

γb

u
∂v

∂ν
r dγ. (11)

For any w ∈
◦
H1

−1(ω) such that ∆0w ∈ L2
1(ω), there holds:

ℜ
∫∫

ω
−

{
w

r2
∆0w

}
r dω = ‖∇w‖2

0,−1 − 2 ‖w‖2
0,−3. (12)

Proof: Eq. (11) is the expression, in a meridian half-plane, of the usual Green formula
applied to axisymmetric functions. To prove (12), we first note that there holds, in the
sense of distributions in ω:

∇w · ∇
(
w

r2

)
=

|∇w|2
r2

− 2w

r3
∂w

∂r
.

But w ∈ H1
−1(ω) implies w ∈ L2

−3(ω) [3, Lemma 4.9], i.e. r−2w ∈ L2
1(ω); so the above

function is integrable with respect to the measure r dω, and we can apply (11) with
u = r−2w and v = w:

I1
def
=

∫∫

ω
−

{
w

r2
∆0w

}
r dω =

∫∫

ω
∇w · ∇

(
w

r2

)
r dω

=

∫∫

ω

|∇w|2
r2

r dω − 2

∫∫

ω

(
1

r

∂w

∂r

) (
w

r2

)
r dω

def
= ‖∇w‖2

0,−1 − 2 I2.

Now, we treat I2 by the usual integration by parts formula of order one:
∫∫

ω

[
∂w

∂r

w

r2
+ w

∂

∂r

w

r2

]
dω =

∫

γ
w
w

r2
νr dω = 0

∫∫

ω

[
∂w

∂r

w

r2
+
w

r2
∂w

∂r
+ |w|2

(
− 2

r3

)]
dω = 0

2ℜI2 − 2 ‖w‖2
0,−3 = 0.

7



Hence, ℜI1 = ‖∇w‖2
0,−1 − 2 ‖w‖2

0,−3. ⋄

3.1 Modes |k| ≥ 2.

From [10, §II.4], we know the following facts. The solution uk to (7–8) is regular
everywhere except in the neighbourhood of the reentrant edge, and it can be written
as:

uk = uk
R

+ λk S
e
k, with:

{
uk

R
∈ H2

(k)(ω) ∩
⋄
H1

1(ω) = V 2
1(ω) ∩

◦
V 1

1(ω),

Se
k(ρ, φ) = η(ρ) e−|k| ρ ρα sin(αφ).

(13)

As a first consequence, we have the following

Theorem 3.2 Let w ∈ D(Ak). Then:

• w has a V 2
1 regularity near the axis, hence w ∈

◦
H1

−1(ω) ⊂ L2
−3(ω), and both ∆0w

and r−2w are in L2
1(ω).

• w has an H1+α0 regularity near the reentrant edge, so its global regularity is w ∈
V 1+α0

1 (ω); and there holds: |||w|||1+α0,1 ≤ C(k) ‖∆kw‖0,1.

In close analogy to the orthogonal decomposition of L2(ω) introduced by Gris-
vard [14, p. 45], we have:

L2
1(ω) = ∆2[H

2
(2)(ω) ∩

◦
V 1

1(ω)]
⊥
⊕ N2, (14)

where N2 is a space of singular harmonic functions defined by

N2 =
{
p ∈ L2

1(ω) : ∆2p = 0 in ω, p = 0 on each side of γb

}
.

Here, as well as in the subsequent definitions of N1 and N0, the boundary condition
on the sides of γb is understood in the suitable space, which is the trace in a meridian
half-plane of the space H̆(Γi) defined in [3, Definition 5.4]. Following the same line
of proof as in [4, §3], it is not difficult to establish that the dimension of N2 is equal
to the number of off-axis re-entrant corners in ω, i.e. in our case dimN2 = 1, and
N2=span{p2

s}, where p2
s can be chosen as:

p2
s = Se + p2

R
, with:

{
p2

R
∈

◦
V 1

1(ω),
Se(ρ, φ) = η(ρ) ρ−α sin(αφ).

(15)

Similarly to [12, §4], we define ϕ2
s as the element of

◦
V 1

1(ω) which solves the Poisson
problem

−∆2ϕ
2
s = p2

s in ω . (16)

Then by the decomposition (14), we can split the solution uk to (7–8) as

uk = ũk + ckϕ
2
s, (17)

8



where ũk ∈ H2
(2)(ω) ∩

◦
V 1

1(ω) = H2
(k)(ω) ∩

⋄
H1

1(ω), and is called the regular part of

uk. How is this decomposition related to (13) ? Applying (13) to ϕ2
s itself gives:

ϕ2
s = ϕ2

R
+ δ2 Se

2; observing that all the Se
k have the same principal part, we deduce

uk
R

= ũk + ck ϕ
2
R
, and λk = ck δ

2. Then, using the orthogonality relation (14) we infer:

δ2 =

∥∥p2
s

∥∥2

0,1

(−∆2S
e
2 | p2

s)
.

Calculating this scalar product is rather tedious but can be done using (15) and (11)—
modified so as to avoid the singularity. We find:

λk

ck
= δ2 =

1

aπ

∥∥p2
s

∥∥2

0,1
, (18)

where a = r(e) is the distance from the reentrant edge to the axis (see Fig. 1).

The following lemma summarises some a priori estimates on uk and ck.

Lemma 3.1 Let uk be the solution to the Poisson problem (7–8), then we have the
following a priori estimates:

k2 ‖uk‖0,−1 ≤ rmax ‖fk‖0,1 , k |uk|1,1 ≤ rmax√
2
‖fk‖0,1 , (19)

(
k2 − 2

)
‖uk‖0,−3 ≤ ‖fk‖0,1 ,

(
k2 − 2

)1/2 |uk|1,−1 ≤ 1√
2
‖fk‖0,1 , (20)

‖∆0u
k‖0,1 ≤ 2 ‖fk‖0,1 , (21)

|ck| . kα−1 ‖fk‖0,1 (22)∣∣∣∣∣∣uk
∣∣∣∣∣∣

1+α0,1
≈ |uk|1+α0,1 . kα0−1 ‖fk‖0,1 . (23)

Proof: The variational formulation (9) with v = uk gives:

|uk|21,1 + k2 ‖uk‖2
0,−1 ≤ ‖fk‖0,1 ‖uk‖0,1 ≤ rmax ‖fk‖0,1 ‖uk‖0,−1 ,

this proves the first estimate in (19). Then applying the Young inequality, we further
obtain

|uk|21,1 + k2 ‖uk‖2
0,−1 ≤ rmax

2

[
rmax

k2
‖fk‖2

0,1 +
k2

rmax
‖uk‖2

0,−1

]
,

which leads to the H1
1 semi-norm estimate in (19). Similarly, multiplying (7) by r−2 uk

and using (12) yields:

|uk|21,−1 +
(
k2 − 2

)
‖uk‖2

0,−3 ≤ ‖fk‖0,1 ‖uk‖0,−3 ,

and we obtain the two estimates in (20) by a similar reasoning. Then (21) immediately
follows from ∆0u

k = fk − k2 r−2 uk.

The formula (18) implies: |ck| ≈ |λk|; thus, the estimate (22) is clearly equivalent
to: |λk| . kα−1. This, in turn, can be obtained by following the lines of [14, §2.5.2]
or [4, §5.1]. As a matter of fact, the latter reference shows that, away from the axis,
the weights in the Sobolev spaces and the exact form of the modified Laplacian under
consideration are of no importance.
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Now, setting fk
R

def
= −∆k

(
uk − ck ϕ

2
s

)
, i.e.

fk
R

= −∆0u
k
R

+
k2

r2
uk

R
, (24)

one concludes, like in the above references, that
∥∥fk

R

∥∥
0,1

.
∥∥fk

∥∥
0,1

. Expanding the

squared norm of the equality (24) and using (12) then yields:
∥∥∥∆0u

k
R

∥∥∥
2

0,1
+ 2k2

∣∣∣uk
R

∣∣∣
2

1,−1
+ (k4 − 4k2)

∥∥∥uk
R

∥∥∥
2

0,−3
.

∥∥∥fk
∥∥∥

2

0,1
. (25)

On the other hand, there holds: uk
R

∈ H2
(0)(ω) ∩

⋄
H1

1(ω), and within this space the

canonical norm of H2
(0)(ω) is equivalent to the norm ‖∆0w‖0,1 [4, Lemma 4.7]. So, we

have both
∣∣uk

R

∣∣
2,1

.
∥∥fk

∥∥
0,1

and
∣∣uk

R

∣∣
1,1

. k−1
∥∥fk

∥∥
0,1

; and we obtain by interpolating

in the scale Hs
1(ω) that:

∣∣uk
R

∣∣
1+α0,1

. kα0−1
∥∥fk

∥∥
0,1

. We then derive (23) by adapting

the proof of Lemma 4.1 of [12]. ⋄

Lemma 3.2 The regular part ũk and the singularity coefficient ck in (17) are given
as the unique solution of the coupled system:

ak(ũ
k, v) + ck ak(ϕ

2
s , v) =

(
fk | v

)
, ∀v ∈

◦
V 1

1(ω) , (26)

(
‖p2

s‖2
0,1 + µ

[
|ϕ2

s|21,−1 + 2 ‖ϕ2
s‖2

0,−3

])
ck + µ

(
ũk | p2

s

)
=

(
fk | p2

s

)
, (27)

where the symbol µ
def
= k2 − 4. And ũk and ck have the following stability estimates:

‖ũk‖(k) . k ‖fk‖0 , |ck| ≤ 2
‖fk‖0,1

‖p2
s‖0,1

,
∣∣∣∣∣∣ũk

∣∣∣∣∣∣
2,1

. ‖fk‖0,1 .

We omit the details of the proof, which is very similar to that of Lemma 4.2 of [12]. It

makes use of the result:
(
r−2 ϕ2

s

∣∣∣ p2
s

)
= |ϕ2

s|21,−1 + 2 ‖ϕ2
s‖2

0,−3, which directly follows

from (12) and (16), as p2
s and ϕ2

s are real. The representation formula for the singularity
coefficient is:

ck =

(
fk − (µ/r2)A−1

k fk
∣∣∣ p2

s

)

‖p2
s‖2

0,1

. (28)

The scalar product
(
r−2A−1

k fk | p2
s

)
in (28) is defined thanks to Theorem 3.2. We shall

see—and this will be of practical relevance—that it can be written as
(
A−1

k fk | r−2 p2
s

)
,

i.e. p2
s ∈ L2

−3(ω). This is a consequence of the following lemma.

Lemma 3.3 The dual singularity p2
s is of V 2

1 regularity near the axis. It admits the
following splitting:

p2
s = p̃2 + p2

P
, p̃2 ∈ V 1

1(ω), p2
P

=
(r
a

)2
ρ−α sin(αφ). (29)

Similarly, the primal singularity ϕ2
s can be represented as:

ϕ2
s = ϕ̃2 + δ2 ϕ2

P
, ϕ̃2 ∈ V 2

1(ω), ϕ2
P

=
(r
a

)2
ρα sin(αφ). (30)
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Proof: Let 0 < a′′ < a′ < a; we consider a cut-off function χ such that χ(r) = 1 for
r ≤ a′′ and χ(r) = 0 for r ≥ a′, as well as the domain ω′ = {x ∈ ω : r(x) < a′}. This
domain has no off-axis reentrant corner (see Figure 1), so there are no singularities
of ∆2, either primal or dual, in ω′.

As we stay away from the reentrant corner, the splitting (15) shows that p2
s ∈

V 1
1(ω

′). Thus, χp2
s ∈ V 1

1(ω
′) and it vanishes on ∂ω′. Moreover:

∆2

(
χp2

s

)
= χ∆2p

2
s + ∇χ · ∇p2

s + p2
s ∆χ+

p2
s

r

∂χ

∂r
∈ L2

1(ω
′),

since the first term is identically zero, and the other three are smooth and vanish near
the axis. We conclude from Theorem 3.2, and the absence of primal singularities, that
χp2

s ∈ V 2
1(ω

′), i.e. p2
s is V 2

1 where χ = 1.

Now, using (see Figure 1):

( r
a

)2
− 1 =

(r − a)(r + a)

a2
=

2

a
ρ cos(φ+ φ0) + h.o.t.,

we remark

Se − p2
P

= ρ1−α (g1(φ) + h.o.t.) ∈ H1(ωe), Se
2 − ϕ2

P
= ρ1+α (g2(φ) + h.o.t.) ∈ H2(ωe),

since the functions g1,2(φ) as well as the higher-order terms (h.o.t.) are smooth. More-
over, thanks to the factor (r/a)2, p2

P
and ϕ2

P
are of V 2

1 regularity near the axis. The
smoothness of these functions in the rest of the domain yields Se − p2

P
∈ V 1

1(ω),
Se

2 − ϕ2
P
∈ V 2

1(ω). This proves (29) and (30). ⋄

3.2 Modes k = ±1.

As we can see from Lemma 2.1, the variational space is still
◦
V 1

1(ω); but the regularised
space has changed. Once again, the only singularities are located at the reentrant
edges. Hence, the solution uk to (7–8), with k = ±1, can be split as:

uk = uk
R

+ λk S
e
±1, with:

{
uk

R
∈ H2

(±1)(ω) ∩
◦
V 1

1(ω) = H2
1(ω) ∩

◦
V 1

1(ω),

Se
±1(ρ, φ) = η(ρ) e−ρ ρα sin(αφ).

(31)

As a consequence of Theorem 3.2, ϕ2
s ∈ D(A1), and the decomposition (17) is still

valid in this case. However, that singular function belongs to a space which appears
too constrained for the modes ±1: it is even better decaying near the axis than the

functions of H2
1(ω)∩

◦
V 1

1(ω); moreover, this decay is lost in the discretisation by P1 finite
elements. So the representation formula (28), though valid at the continuous level with
µ = −3, is numerically hardly stable and its use would deteriorate the convergence rate
of the SCM.
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So, it is better to use singular functions that are adapted for these modes. Let p1
s

be a basis of the dual singular space

N1 =
{
p ∈ L2

1(ω) : ∆1p = 0 in ω, p = 0 on each side of γb

}
,

and ϕ1
s = A−1

1 p1
s. These functions were defined and studied in [5, §4.1], and a numerical

method was defined. We will introduce below (§5.4) a slight modification of that
method in order to improve the convergence rate. For the moment, we recall that the
function uk admits the splitting

uk = ũk + ckϕ
1
s, (32)

where ũk ∈ H2
(1)(ω) ∩

⋄
H1

1(ω) = H2
1(ω) ∩

◦
V 1

1(ω). As we are in the “usual” SCM

framework [11], we have the simple representation formula

ck =

(
fk| p1

s

)

‖p1
s‖2

0,1

, (33)

and the regular part satisfies:

a1(ũ
k, v) + ck a1(ϕ

1
s, v) =

(
fk | v

)
∀v ∈

◦
V 1

1(ω) , (34)

From the above considerations easily follow the estimates:

∣∣∣uk
∣∣∣
1,1

.
∥∥∥fk

∥∥∥
0,1
,

∥∥∥uk
∥∥∥

0,−1
.

∥∥∥fk
∥∥∥

0,1
,

∥∥∥∆0u
k
∥∥∥

0,1
.

∥∥∥fk
∥∥∥

0,1
, (35)

∣∣∣uk
∣∣∣
1+α0,1

.
∥∥∥fk

∥∥∥
0,1
,

∣∣∣∣∣∣ũk
∣∣∣∣∣∣

1,1
.

∥∥∥fk
∥∥∥

0,1
, |ck| .

∥∥∥fk
∥∥∥

0,1
. (36)

3.3 Mode k = 0.

Now, the variational space is V(0) =
⋄
H1

1(ω), and the regularised space is H2
(0)(ω)∩V(0),

with H2
(0)(ω) given by Lemma 2.1. Moreover, there is one singularity per reentrant

edge and one per sharp vertex, see [10, §II.4] or [4, §4.4]. The splitting of u0 with
respect to regularity thus becomes:

u0 = u0
R

+ λe
0 S

e
0 + λc

0 S
c
0, with:





u0
R
∈ H2

(0)(ω) ∩
⋄
H1

1(ω),

Se
0(ρ, φ) = η(ρ) ρα sin(αφ),
Sc

0(ρ, φ) = η(ρ) ρν Pν(cosφ).

(37)

Once more, there holds: H2
(0)(ω) ⊂ H2

(2)(ω); yet, once more, attempting to represent the

singularity at the edge with the help of the function ϕ2
s would imperil the convergence

rate of the numerical method. As a consequence, we shall use the “natural” singular
functions for this mode (see [4, 5] for details). The dual singular space is

N0 =
{
p ∈ L2

1(ω) : ∆0p = 0 in ω, p = 0 on each side of γb

}
;

12



it is of dimension two, with the basis
{
p0,e

s , p0,c
s

}
given by

p0,e
s = Se + p0,e

R
,

p0,c
s = Sc + p0,c

R
,

}
with:

{
p0,e

R
, p0,c

R
∈

⋄
H1

1(ω),
Sc(ρ, φ) = η(ρ) ρ−ν−1 Pν(cosφ),

(38)

and Se is as in (15). The primal singular functions ϕ0,j
s ∈

⋄
H1

1(ω) (j = e, c) are of course
defined as: ϕ0,j

s = A−1
0 p0,j

s .

Lemma 3.4 The primal singular function ϕ0,j
s admits the splitting

ϕ0,j
s = ϕ0,j

R
+ δ0,j Sj

0, where: ϕ0,j
R

∈ H2
(0)(ω) ∩

⋄
H1

1(ω), and: (39)

δ0,c =
∥∥p0,c

s

∥∥2

0,1

{
(1 + 2 ν)

∫ π/β

0
Pν(cosφ)2 sinφdφ

}−1

, (40)

δ0,e =
∥∥p0,e

s

∥∥2

0,1
/(aπ). (41)

Equivalently, p0,j
s and ϕ0,j

s can be represented as

p0,j
s = p̃0,j + p0,j

P
, p̃0,j ∈ H1

1(ω),

{
p0,c

P
= ρ−ν−1 Pν(cosφ),

p0,e
P

= ρ−α sin(αφ),
(42)

ϕ0,j
s = ϕ̃0,j + δ0,j ϕ0,j

P
, ϕ̃0,j ∈ H2

1(ω),

{
ϕ0,c

P
= ρν Pν(cosφ),

ϕ0,e
P

= ρα sin(αφ).
(43)

Proof: Let us examine first the conical singularity: j = c. The splitting (37) applied
to ϕ0,c

s yields: ϕ0,c
s = ϕ0,c

R
+ δ0,c

e Se
0 + δ0,c

c Sc
0. Using the definitions of p0,c

s and ϕ0,c
s we

deduce ∥∥p0,c
s

∥∥2

0,1
= δ0,c

e

(
−∆0S

e
0 | p0,c

s

)
+ δ0,c

c

(
−∆0S

c
0 | p0,c

s

)
. (44)

Rewriting the first scalar product in (44) as:

(
−∆0S

e
0 | p0,c

s

)
=

(
−∆0S

e
0 | p0,c

R

)
+ (−∆0S

e
0 | Sc) ,

we notice that the second term is zero by a support argument. To evaluate the first
term, we remark that −∆0p

0,c
R

= ∆0S
c vanishing near the conical point, is smooth

and belongs to L2
1(ω). So, both Sc

0 and p0,c
R

are functions in
⋄
H1

1(ω) with Laplacian ∆0

in L2
1(ω); and we use (11) twice to obtain:

(
−∆0S

e
0 | p0,c

R

)
=

(
Se

0 | −∆0p
0,c
R

)
= (Se

0 | ∆0S
c) ,

which again vanishes by a support argument. Finally, the last scalar product in (44)
can be computed e.g. as in [19] to obtain

(
−∆0S

c
0 | p0,c

s

)
= (1 + 2 ν)

∫ π/β

0
Pν(cosφ)2 sinφdφ,

and (39–40) are proven. This immediately yields (42–43). Similar computations are
carried out for the edge singularity; δ0,e is computed like δ2 above. ⋄
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Lemma 3.5 The solution to −∆0u
0 = f0 can be represented as

u0 = ũ0 + c0,e ϕ
0,e
s + c0,c ϕ

0,c
s , where: ũ0 ∈ H2

(0)(ω) ∩
⋄
H1

1(ω). (45)

The c0,j are given by the representation formulae:

c0,j =

(
f0 | p0,j

s

)

‖p0,j
s ‖2

0,1

. (46)

Proof. As the space of singularities is of dimension two, it is enough to exhibit two
linearly independent functions to have a basis. This is obviously the case of ϕ0,e

s

and ϕ0,c
s , which proves (45). Taking the Laplacian −∆0 of this equality and the scalar

product by p0,c
s yields, thanks to the orthogonality property:

(
f0 | p0,c

s

)
= c0,e

(
−∆0ϕ

0,e
s | p0,c

s

)
+ c0,c ‖p0,c

s ‖2
0,1.

Then, using the decomposition (39), we obtain:
(
−∆0ϕ

0,e
s | p0,c

s

)
= δ0,e

(
−∆0S

e
0 | p0,c

s

)
,

which is zero as seen in the proof of Lemma 3.4. Hence (46) for j = c; the case j = e
is treated similarly. ⋄

Let us state without proof the elliptic equation satisfied by ũ0:

a0

(
ũ0, v

)
+ c0,e a0

(
ϕ0,e

s , v
)

+ c0,c a0

(
ϕ0,c

s , v
)

=
(
f0 | v

)
, ∀v ∈

⋄
H1

1(ω), (47)

and the stability estimates on the various terms in (45):
∣∣u0

∣∣
1,1

.
∥∥f0

∥∥
0,1
,

∣∣u0
∣∣
1+α1,1

.
∥∥f0

∥∥
0,1
, (48)

∣∣ũ0
∣∣
1,1

.
∥∥f0

∥∥
0,1
, |c0,j | .

∥∥f0
∥∥

0,1
. (49)

4 Interpolation and projection operators

We consider a regular triangulation of the domain ω, with mesh size h. The space
spanned by P1 finite elements on this triangulation is denoted V h; the subspace of

functions which vanish on the whole of ∂ω is V h
◦ = V h∩

◦
V 1

1(ω); while V h
⋄ = V h∩

⋄
H1

1(ω)
is the subspace of functions which vanish only on γb. We introduce the usual Lagrange
interpolation operator Πh as well as the weighted Clément operator Ph. The latter—
identical to the operator called Π̃0

h in [8, §4]—is a local projection operator onto P1 in
the L2

1 sense, which does not take into account the nodes of the triangulation which

stand on ∂ω. Hence, it maps
◦
V 1

1(ω) onto V h
◦ .

We now prove a few results on these operators, in the framework of weighted Sobolev
spaces of fractional order. We begin by a useful density lemma.

Lemma 4.1 V 2
1(ω)∩

◦
V 1

1(ω) is dense within V 1+α0

1 (ω)∩
◦
V 1

1(ω) = H1+α0

1 (ω)∩
◦
V 1

1(ω).

Proof: Let w ∈ V 1+α0

1 (ω) ∩
◦
V 1

1(ω) and ε > 0. The construction of w̃ ∈ V 2
1(ω) ∩

◦
V 1

1(ω) such that ‖w − w̃‖1+α0,1 ≤ ε is decomposed into two steps. The first one will
not be effectively used in this article, since we do not consider arbitrary functions in

V 1+α0

1 (ω) ∩
◦
V 1

1(ω), but only those which belong to D(A2).

14



Step 1: From H1+α0

1 (ω)∩
◦
V 1

1(ω) to D(A2). From [10, Thm II.4.8], we know that

A−1
k is an isomorphism from Hs−1

(k) (ω) to Hs+1
(k) (ω) ∩

⋄
H1

1(ω) for s < α. Let C(s, k) be

the norm of this operator. Setting g = −∆2w ∈ Hα0−1
(2) (ω) = Hα0−1

1 (ω), we use the

density of H0
1(ω) within Hα0−1

1 (ω) to construct g′ ∈ L2
1(ω) such that ‖g − g′‖1−α0,1 <

ε/(2C(α0, 2)). Then w′ def
= A−1

2 g′ ∈ D(A2) and satisfies ‖w − w′‖1+α0,1 < ε/2.

Step 2: From D(A2) to V 2
1(ω)∩

◦
V 1

1(ω). There remains to find w̃ ∈ V 2
1(ω)∩

◦
V 1

1(ω)

such that ‖w′ − w̃‖1+α0,1 < ε/2. Since D(A2) = V 2
1(ω) ∩

◦
V 1

1(ω) ⊕ spanSe
2, this is

obviously equivalent to find S̃ ∈ V 2
1(ω) ∩

◦
V 1

1(ω) such that ‖Se
2 − S̃‖1+α0,1 ≤ ε′, for

arbitrary ε′.

We claim that S̃ = Se
2 − Se

k does the job for k large enough. As a matter of fact,

Se
2 − Se

k = ρ1+α sin(αφ) + h.o.t. ∈ H2(ωe) ∩
◦
H1(ωe); thanks to the cutoff function η,

this gives Se
2 − Se

k ∈ V 2
1(ω) ∩

◦
V 1

1(ω). Then, it is enough to check that

Se
k → 0 strongly in H1+α0(ωe) as k → +∞.

This is done like in [14, Lemma 5.3.3], by using the Sobolev imbedding H1+α0(ωe) ⊂
W 2,p(ωe) with p = 2/(2 − α0); indeed, one calculates ‖Se

k‖H1+α0 (ωe) . ‖Se
k‖W 2,p(ωe) .

k2(α0−α)/(2−α0). ⋄

Lemma 4.2 For any w ∈ V 1+α0

1 (ω) ∩
◦
V 1

1(ω), there holds:
∣∣∣∣∣∣w − Phw|||1,1 . hα0 |||w|||1+α0,1, ‖w − Phw‖0,1 . h1+α0 |||w|||1+α0 ,1. (50)

Proof: Assume first that w ∈ V 2
1(ω) ∩

◦
V 1

1(ω). From [8, Thm 4.2], we know

h−1 ‖w − Phw‖0,1 + |||w − Phw|||1,1 . hs−1 |||w|||s,1 for s = 1, 2 ;

and, from [9, Prop. 1.e.1], that V 1+α0

1 (ω) is the interpolate of order α0 between V 1
1(ω)

and V 2
1(ω). Hence the two estimates in (50) by a standard interpolation argument.

Then one generalises to w ∈ V 1+α0

1 (ω) ∩
◦
V 1

1(ω) by Lemma 4.1. ⋄

Lemma 4.3 For w ∈ H2
1(ω), there holds:

|||w − Πhw|||1−σ,1 ≈ |w − Πhw|1−σ,1 . h1+σ |w|2,1. (51)

for any σ ∈ [0, 1].

Proof: It stems from [18, Prop. 6.1] or [8, Prop. 4.1] that

h−1 ‖w − Πhw‖0,1 + |w − Πhw|1,1 . h |w|2,1.

One concludes by interpolating in the scale Hs
1(ω). ⋄
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5 Discrete formulation, SCM

In §§5.1 to 5.3, the superscript 2 in p2
s, ϕ

2
s, δ

2, etc. will generally be omitted.

5.1 Approximation of the dual singular function p2
s.

We start from the decomposition (29). p̃ is characterised by the three conditions

p̃ ∈ V 1
1(ω), p̃ = −p

P
on γ, −∆2p̃ = ∆2pP

in ω.

A direct calculation shows that, denoting φ′ = φ+ φ0 (see Figure 1):

∆2pP
= −5r

a2
αρ−α−1 sin(αφ+ φ′).

This function is of H−1 regularity near the reentrant edge, and smooth elsewhere, so it

belongs to the dual of
◦
V 1

1(ω). However, it should be noticed that ∆2pP
never belongs

locally to L2(ωe). This phenomenon causes the local regularity of p̃ to be weaker than
in the prismatic case, and dramatically deteriorates the convergence rate of the SCM.

This inconvenience can be overcome by enriching the principal part with the next
term in the expansion of ps near the reentrant corner. To do so, we look for a func-
tion in V 1

1(ω), with a V 2
1 regularity near the axis, vanishing on ∂ωe ∩ γ, and whose

Laplacian ∆2 is locally “almost equal” to ∆2pP
. First, we look for a local variational

solution of

−∆Q = α ρ−α−1 sin(αφ+ φ′) in ωe, Q = 0 on ∂ωe ∩ γ.
By separation of variables, we obtain: Q(ρ, φ) = 1

2 ρ
1−α cosφ′ sin(αφ). As the exponent

1 − α > 0, Q does belong to H1(ωe). To obtain the V 2
1 regularity near the axis, we

have to multiply it by (r/a)2. A simple calculation shows that:

∆2

[( r
a

)2
Q

]
= −

(r
a

)2
α ρ−α−1 sin(αφ+ φ′)

+
5 r

2 a2
ρ−α

[
sin(αφ) − α cosφ′ sin(αφ+ φ′)

]
.

Hence, the new decomposition:

ps = pp + p̂, where: pp
def
= p

P
− 5

a

( r
a

)2
Q =

(r
a

)2
[
1 − 5 ρ

2 a
cosφ′

]
ρ−α sin(αφ), (52)

enjoys the following properties. First, p̂ = p̃ + (5 r2/a3)Q ∈ V 1
1(ω) and it vanishes on

∂ωe ∩ γ. Then, using
( r
a

)2
− r

a
=
r (r − a)

a2
=

r

a2
ρ cosφ′,

we obtain

ϑp
def
= ∆2pp =

r

a3
ρ−α

[
−25

2
sin(αφ) +

35

2
α cosφ′ sin(αφ+ φ′)

]
∈ L2

1(ω). (53)

As −∆2p̂ = ϑp, we infer by localisation that p̂ ∈ H1+α0(ωe). Elsewhere, the smoothness
of ϑp implies that of p̂, so p̂ ∈ V 1+α0

1 (ω), and is V 2
1 near the axis.
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Now, we are ready to derive the FE approximation of ps. The variable p̂ solves the
variational problem: Find p̂ ∈ V 1

1(ω) such that

p̂ = s on ∂ω, and a2 (p̂, v) = (ϑp | v) ∀v ∈
◦
V 1

1(ω). (54)

Similarly to the prismatic case [12, §5.1], we introduce

• the boundary function s which is equal to the trace of −pp, hence is zero on the
two sides that meet at the reentrant corner, and smooth elsewhere;

• the smooth extension s̃ ∈ H2
1(ω) of s into ω;

• the variable p◦ = p̂− s̃.

In the variable p◦, the problem (54) reads: Find p◦ ∈
◦
V 1

1(ω) such that

a2 (p◦, v) = (ϑp | v) − a2 (s̃, v) ∀v ∈
◦
V 1

1(ω) ; (55)

and we have p◦ ∈ V 1+α0

1 (ω) ∩
◦
V 1

1(ω). Here, too, we approximate p̂ by p̂h = Πhs̃+ p◦h,
and ps by ph

s = pp + Πhs̃+ p◦h, where p◦h solves the approximate FE problem

a2 (p◦h, vh) =
(
ϑh

p | vh

)
− a2 (Πhs̃, vh) ∀vh ∈ V h

◦ . (56)

The notation
(
ϑh

p | vh

)
stands for an approximation by a quadrature formula of the

integral
∫∫

ω ϑp(r, z) vh(r, z) r dr dz, with ϑp(r, z) given by (53). As ϑp ∈ L2
1(ω), we can

suppose that the error caused by this quadrature is bounded as

∣∣∣
(
ϑh

p − ϑp | wh

)∣∣∣ ≤ C1
Q h

q1 ‖wh‖1,1, ∀wh ∈ V h, for some C1
Q > 0 and q1 ≥ 1. (57)

This can be done e.g. by using a sixth-order Gauss–Hammer formula [21, p. 201], with
seven points inside each triangle, which does not require the unbounded value of ϑp.
Of course, if wh vanishes on γa, one can replace ‖wh‖1,1 with the stronger norm ‖wh‖(2)

in (57).

Lemma 5.1 Assume q1 ≥ 2; then we have:

∣∣∣∣∣∣ps − ph
s

∣∣∣∣∣∣
1,1

. hα0 ,
∥∥∥ps − ph

s

∥∥∥
0,1

. h2α0 .

Proof: Subtracting (56) from (55) yields:

a2 (p◦ − p◦h, vh) =
(
ϑp − ϑh

p | vh

)
− a2 (s̃− Πhs̃, vh) ∀vh ∈ V h

◦ . (58)

With vh = p◦h − wh, this implies:

‖p◦ − wh‖2
(2) ≥ ‖p◦ − p◦h‖2

(2) + 2 a2 (s̃− Πhs̃, p
◦
h − wh) + 2

(
ϑp − ϑh

p | p◦h − wh

)
.
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Now, we set wh = Php
◦. Using (57), we obtain

‖p◦ − p◦h‖2
(2) ≤ ‖p◦ − Php

◦‖2
(2) + 2 ‖s̃− Πhs̃‖(2)

(
‖p◦h − p◦‖(2) + ‖p◦ − Php

◦‖(2)

)

+ C1
Q h

q1

(
‖p◦h − p◦‖(2) + ‖p◦ − Php

◦‖(2)

)
.

With the Young inequality, the above estimate becomes:

‖p◦ − p◦h‖2
(2) ≤ ‖p◦ − Php

◦‖2
(2) + 5 ‖s̃− Πhs̃‖2

(2) +
1

4
‖p◦h − p◦‖2

(2) + ‖p◦ − Php
◦‖2

(2)

+
C1

Q

2

[
(
2C1

Q + 1
)
h2q1 +

‖p◦h − p◦‖2
(2)

2C1
Q

+ ‖p◦ − Php
◦‖2

(2)

]
.

Thanks to the equivalence of norms ‖ · ‖(2) ≈ ||| · |||1,1, we are left with the estimate:

∣∣∣∣∣∣p◦ − p◦h
∣∣∣∣∣∣2

1,1
.

∣∣∣∣∣∣p◦ − Php
◦
∣∣∣∣∣∣2

1,1
+

∣∣∣∣∣∣s̃− Πhs̃
∣∣∣∣∣∣2

1,1
+ h2q1 .

By [18, Prop. 6.1], there holds:
∣∣∣∣∣∣s̃ − Πhs̃

∣∣∣∣∣∣
1,1

. h |s|2,1; by Lemma 4.2, we have∣∣∣∣∣∣p◦ − Php
◦
∣∣∣∣∣∣

1,1
. hα0

∣∣∣∣∣∣p◦
∣∣∣∣∣∣

1+α0,1
. s and p◦ depend only on the geometry of ω so

all their norms can be seen as constants. Hence, as soon as q1 ≥ 1, there holds:∣∣∣∣∣∣p◦ − p◦h
∣∣∣∣∣∣2

1,1
. h2α0 . Finally:

∣∣∣∣∣∣ps − ph
s

∣∣∣∣∣∣
1,1

=
∣∣∣∣∣∣p◦ + s̃− p◦h − Πhs̃

∣∣∣∣∣∣
1,1

≤
∣∣∣∣∣∣p◦ − p◦h

∣∣∣∣∣∣
1,1

+
∣∣∣∣∣∣s̃− Πhs̃

∣∣∣∣∣∣
1,1

. hα0 . (59)

The obtention of the L2
1 norm estimate also follows the prismatic case closely. Here,

we define w as the variational solution in
◦
V 1

1(ω) to

a2 (w, v) = (p◦ − p◦h | v) , ∀v ∈
◦
V 1

1(ω).

By elliptic theory [10, Thm II.4.8] we know w ∈ H1+α0

(2) (ω) = V 1+α0

1 (ω) and |||w|||1+α0 ,1 .

‖p◦ − p◦h‖0,1. Its FE approximation wh solves

a2 (wh, vh) = (p◦ − p◦h | vh) , ∀v ∈ V h
◦ , (60)

so ‖wh‖(2) . ‖p◦ − p◦h‖0,1; by using Céa’s lemma and Lemma 4.2, we infer:

‖w − wh‖(2) . hα0 |||w|||1+α0
. hα0 ‖p◦ − p◦h‖0,1 .

Then, using successively (60) and (58), we obtain

‖p◦ − p◦h‖2
0,1 = a2 (w − wh, p

◦ − p◦h)+
(
ϑp − ϑh

p | wh

)
+a2 (s̃− Πhs̃, w − wh)−a2(s̃−Πhs̃, w).

This is bounded by the Cauchy inequality and (57), as well as the duality argument in
the scale V s

1(ω):

‖p◦ − p◦h‖2
0,1 . ‖p◦ − p◦h‖(2) ‖w − wh‖(2) + hq1 ‖wh‖(2)

+ ‖s̃− Πhs̃‖(2) ‖w − wh‖(2) + |||s̃− Πhs̃|||1−α0,1 |||w|||1+α0 ,1

. ‖p◦ − p◦h‖0,1

{
hα0 hα0 + hq1 + h |s̃|2,1 × hα0 + h1+α0 |s̃|2,1 × h0

}
,
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where we have made use of [18, Prop. 6.1] and our Lemma 4.3. In order to get the
h2α0 estimate, we have to suppose q1 ≥ 2. Using once more (51), we obtain:

∥∥∥ps − ph
s

∥∥∥
0,1

≤ ‖p◦ − p◦h‖0,1 + ‖s̃− Πhs̃‖0,1 . h2α0 . (61)

⋄
We are also confronted with the task of approximating qs

def
= ps/r

2. The scalar
product

(
zk | qs

)
(see (74) below) is needed to compute the singularity coefficient.

However, since ph
s is just element-wise linear, it is locally proportional to r in the

triangles which have one or two vertices on the axis; so qh
s

def
= r−2 ph

s /∈ L2
1(ω). This is

why we cannot hope to control any such thing as
∥∥qs − qh

s

∥∥
0,1

.

Yet, thanks to the bounds (59) and (61) for ph
s −ps, we do have the weak estimates:

∣∣∣
(
qs − qh

s | v
)∣∣∣ . h2α0 ‖v‖0,−3, ∀v ∈ L2

−3(ω), (62)

resp.
∣∣∣
(
qs − qh

s | v
)∣∣∣ . hα0 ‖v‖0,−1, ∀v ∈ L2

−1(ω). (63)

5.2 Approximation of the primal singular function ϕ2
s.

We start from (30), which is sufficient for obtaining error estimates similar to those of
the prismatic case. Using (16), we see that ϕ̃, satisfying ϕ̃ = −δϕ

P
on ∂ω, solves the

variational problem:

a2 (ϕ̃, v) = (ps | v) + δ (ψ
P
| v) , ∀ v ∈

◦
V 1

1(ω), (64)

where: ψ
P

def
= ∆2ϕP

=
5 r

a2
αρα−1 sin [(α− 1)φ − φ0] . (65)

We propose the following finite element approximation of ϕ̃ in V h:

ϕ̃h = −δh πhϕP + ϕ0
h,

where: πhϕP is a simple lifting of the boundary condition, cf. [12, Eq. (40)]; the

singularity coefficient δh is computed using δh =
1

aπ

∫∫

ω

(
ph

s

)2
r dω; and ϕ0

h ∈ V h
◦ is

such that ϕ̃h is solution to the problem:

a2 (ϕ̃h, vh) =
(
ph

s | vh

)
+ δh

(
ψh

P
| vh

)
, ∀ vh ∈ V h

◦ . (66)

Like above, we assume that the quadrature formula denoted by
(
ψh

P
| vh

)
satisfies:

∣∣∣
(
ψh

P
− ψ

P
| wh

)∣∣∣ ≤ C2
Q h

q2 ‖wh‖1,1, ∀wh ∈ V h, for some C2
Q > 0 and q2 ≥ 1,

(67)
where one can replace ‖wh‖1,1 with ‖wh‖(2) if wh|γa

= 0. Then, we propose to compute
the finite element approximation of ϕs as:

ϕh
s = ϕ̃h + δhϕP

.
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Lemma 5.2 The following error estimates hold:

|||ϕs − ϕh
s |||1,1 . h , ‖ϕs − ϕh

s‖(k) . k h .

Proof: We follow the lines of the proof of Lemma 5.2 of the companion paper [12],
taking care of the extra error generated by the quadrature. Subtracting (66) from (64),
we obtain

a2 (ϕ̃− ϕ̃h, vh) =
(
ps − ph

s | vh

)
+(δ− δh) (ψ

P
| vh)+ δh

(
ψ

P
− ψh

P
| vh

)
, ∀ vh ∈ V h

◦ .

So, for any wh ∈ V h satisfying wh − ϕ̃h ∈ V h
◦ :

‖ϕ̃− ϕ̃h‖2
(2) ≤ ‖ϕ̃− wh‖2

(2) + 2
{∥∥∥ps − ph

s

∥∥∥
0,1

+ |δ − δh| ‖ψP
‖0,1

+ |δh| C2
Q h

q2
(
‖ϕ̃− ϕ̃h‖(2) + ‖ϕ̃− wh‖(2)

)}

≤ 2 ‖ϕ̃− wh‖2
(2) +

1

2
‖ϕ̃− ϕ̃h‖2

(2)

+ C

(∥∥∥ps − ph
s

∥∥∥
2

0,1
+ |δ − δh|2 ‖ψ

P
‖2
0,1 + |δh|2 h2q2

)
. (68)

But ‖ψ
P
‖0,1 is a constant of the domain, and the error on the singularity coefficient is

bounded as

|δ − δh| =
1

aπ

∣∣∣∣‖ps‖2
0,1 −

∥∥∥ph
s

∥∥∥
2

0,1

∣∣∣∣ .
∥∥∥ps − ph

s

∥∥∥
0,1

. h2α0 , (69)

hence |δh| ≈ 1. With Lemma 5.1, (68) becomes

‖ϕ̃− ϕ̃h‖2
(2) . ‖ϕ̃− wh‖2

(2) + h4α0 + h2q2 . (70)

To obtain an h1 estimate, it is thus sufficient to assume q2 ≥ 1. We then derive
from (70) that, with wh = δhΠhϕ̃/δ

‖ϕ̃− ϕ̃h‖2
(2) . h4α0 + |δ|−2

{
|δ − δh|2 |ϕ̃|21 + |δh|2 ‖ϕ̃− Πhϕ̃‖2

(2)

}
. (71)

As ϕ̃ ∈ H2
1(ω), we have from [18, Prop. 6.1]: ‖ϕ̃− Πhϕ̃‖(2) ≈

∣∣∣∣∣∣ϕ̃−Πhϕ̃
∣∣∣∣∣∣

1,1
. h |ϕ̃|2,1,

which with (69) gives:
∣∣∣∣∣∣ϕ̃− ϕ̃h

∣∣∣∣∣∣
1,1

≈ ‖ϕ̃− ϕ̃h‖(2) . h, and finally:

∣∣∣∣∣∣ϕs − ϕh
s

∣∣∣∣∣∣
1,1

≤
∣∣∣∣∣∣ϕ̃− ϕ̃h

∣∣∣∣∣∣
1,1

+ |δ − δh|
∣∣∣∣∣∣ϕ

P

∣∣∣∣∣∣
1,1

. h.

Finally, the estimate on
∥∥ϕs − ϕh

s

∥∥
(k)

follows from

∥∥∥ϕs − ϕh
s

∥∥∥
2

(k)
=

∥∥∥ϕs − ϕh
s

∥∥∥
2

(2)
+ µ

∥∥∥ϕs − ϕh
s

∥∥∥
2

0,−1
≤

(
1 +

µ

4

) ∥∥∥ϕs − ϕh
s

∥∥∥
2

(2)
. k2 h2.

⋄
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5.3 Approximation of ũk and ck in decomposition (17), for
|k| ≥ 2.

Noting that ũk and ck solve the coupled system (26–27), it seems natural to formulate
their finite element approximations as follows:
Find ũk

h ∈ V h
◦ and chk ∈ R

1 such that:

ak(ũ
k
h, vh) + chk ak(ϕ

h
s , vh) =

(
fk | vh

)
∀vh ∈ V h

◦ , (72)
(
‖ph

s‖2
0,1 + µ

[
|ϕh

s |21,−1 + 2 ‖ϕh
s ‖2

0,−3

])
chk + µ

(
ũk

h | ph
s

)
=

(
fk | ph

s

)
. (73)

However, like any function in V h
◦ , ϕh

s does not necessarily belong to H1
−1(ω) or L2

−3(ω).
This is no serious problem: like in the prismatic case [12, §5.3], we shall rather discretise
the representation formula (28), which we rewrite as follows:

ck =
1

‖ps‖2
0,1

[(
fk | ps

)
− µ

(
zk | qs

)]
, (74)

where qs = ps/r
2 and zk = A−1

k fk ∈
◦
V 1

1(ω) solves

ak

(
zk, v

)
=

(
fk | v

)
, ∀v ∈

◦
V 1

1(ω). (75)

So, we state the

SCM Algorithm for finding ũk
h ∈ V h

◦ and chk ∈ R
1.

Step 1. Find zk
h ∈ V h

◦ such that

ak(z
k
h, v) =

(
fk | v

)
∀ v ∈ V h

◦ . (76)

Compute chk as follows:

chk =
1

‖ph
s‖2

0,1

[(
fk | ph

s

)
− µ

(
zk
h | qh

s

)]
, if k < C⋆ h

− 1

2−α0 ; (77)

for some fixed constant C⋆, and

chk = 0 if k ≥ C⋆ h
− 1

2−α0 . (78)

Step 2. Find ũk
h ∈ V h

◦ such that

ak

(
ũk

h, v
)

+ chk ak

(
ϕh

s , v
)

=
(
fk | v

)
∀v ∈ V h

◦ . (79)

Lemma 5.3 For the solution zk to the problem (75) and its piecewise linear finite
element approximation zk

h in (76), we have the following error estimates
∥∥∥zk − zk

h

∥∥∥
0,−1

. k−2 ‖fk‖0,1 , (80)
∥∥∥zk − zk

h

∥∥∥
0,−1

. k−1
[
hα0 kα0−1 + h

]
‖fk‖0,1 , (81)

∥∥∥zk − zk
h

∥∥∥
0,1

.
[
h2α0 k2(α0−1) + h2

]
‖fk‖0,1 , (82)
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while for the coefficient ck in (74) and its approximation chk in (77), we have

∣∣∣ck − chk

∣∣∣ . (h2α0 k2α0 + h2 k2) ‖fk‖0,1 . (83)

Proof: It follows from (75) and (76) that

ak

(
zk − zk

h, z
k − zk

h

)
= ak

(
zk, zk − zk

h

)
=

(
fk | zk − zk

h

)
.

This implies

∣∣∣zk − zk
h

∣∣∣
2

1,1
+ k2

∥∥∥zk − zk
h

∥∥∥
2

0,−1
≤

∥∥∥fk
∥∥∥

0,1

∥∥∥zk − zk
h

∥∥∥
0,1

≤ rmax

∥∥∥fk
∥∥∥

0,1

∥∥∥zk − zk
h

∥∥∥
0,−1

,

hence (80). Then, using Céa’s lemma, Lemma 4.2, Thm 7.1 of [18], and the bounds
(20) and (23), we obtain another estimate:

∥∥∥zk − zk
h

∥∥∥
2

(k)
≤

∥∥∥zk − Phz
k
∥∥∥

2

(k)

=
∣∣∣∣∣∣zk − Phz

k
∣∣∣∣∣∣2

1,1
+ (k2 − 1)

∥∥∥zk − Phz
k
∥∥∥

2

0,−1

. h2α0

∣∣∣zk
∣∣∣
2

1+α0,1
+ (k2 − 1)h2

∣∣∣zk
∣∣∣
2

1,−1
,

.
[
h2α0 k2(α0−1) + h2

] ∥∥∥fk
∥∥∥

2

0,1
.

Of course, a similar bound holds for any g ∈ L2
1(ω), w = A−1

k g and Phw. Thus, the
estimate (82) follows from a duality argument like in [12, Lemma 5.3]. Moreover, we
obtain (81) thanks to the bound: ‖ · ‖2

0,−1 ≤ k−2 ‖ · ‖2
(k).

To obtain the estimate (83), we subtract (74) from (77) to obtain

ck − chk =
{(
fk | ps

)

‖ps‖2
0,1

−
(
fk | ph

s

)

‖ph
s‖2

0,1

}
+ µ

{(
zk
h | qh

s

)

‖ph
s‖2

0,1

−
(
zk | qs

)

‖ps‖2
0,1

}
def
= I1 + I2.

We bound I1 by Lemma 5.1: |I1| . h2α0

∥∥fk
∥∥

0,1
. As for I2, it is zero when µ = 0;

otherwise we rewrite it as follows:

I2
µ

=
1

‖ph
s‖

2
0,1

{(
zk
h − zk | qs

)
+

(
zk
h − zk | qh

s − qs

)
+

(
zk | qh

s − qs

)}

+
(
zk | qs

){ 1

‖ph
s‖2

0,1

− 1

‖ps‖2
0,1

}

def
= J1

2 + J2
2 + J3

2 + J4
2 .

Then, recalling that ‖qs‖ is constant, we estimate:

• |J1
2 | .

∥∥zk
h − zk

∥∥
0,1

.
[
h2α0 k2(α0−1) + h2

] ∥∥fk
∥∥

0,1
by (82).

• |J2
2 | . hα0

∥∥zk
h − zk

∥∥
0,−1

.
[
h2α0 kα0−2 + h1+α0 k−1

]
‖fk‖0,1 by (63) and (81).
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• |J3
2 | . h2α0

∥∥zk
∥∥

0,−3
. h2α0 k−2

∥∥fk
∥∥

0,1
by (62) and (20).

• |J4
2 | . h2α0

∥∥zk
∥∥

0,1
≤ h2α0 rmax

∥∥zk
∥∥

0,−1
. h2α0 k−2

∥∥fk
∥∥

0,1
by (61) and (19).

Summarising, we obtain
∣∣∣ck − chk

∣∣∣ ≤ |I1| + µ
{∣∣J1

2

∣∣ +
∣∣J2

2

∣∣ +
∣∣J3

2

∣∣ +
∣∣J4

2

∣∣}

.
(
h2α0 + h2α0 kα0 + h2α0 k2α0 + h1+α0 k + h2 k2

) ∥∥∥fk
∥∥∥

0,1
.

The estimate (83) then follows by remarking that the first, second and fourth terms in
the bracket are negligible with respect to the third. ⋄

Now, we observe that the formula (79) for computing ũk
h, as well as the SCM

reconstruction formula for uk
h

uk
h = ũk

h + chk ϕ
h
s = ũk

h + chk (ϕ̃h + δhϕP
). (84)

are formally identical to their prismatic counterparts (cf. the SCM algorithm of [12,
§5.3]); and the “building blocks” chk and ϕh

s also satisfy estimates similar to those of

the prismatic case. Indeed, under the assumption k < C⋆ h
− 1

2−α0 , both terms within
the bracket in (83) are negligible with respect to hk. Hence the following two results,
whose proofs closely parallel that of Lemma 5.4 and Theorem 5.1 in [12], with the same
kind of adaptations (use of weighted norms, Ph and Lemma 4.2) as usual.

Lemma 5.4 The following error estimate holds:

∥∥∥ũk − ũk
h

∥∥∥
2

(k)
. k

(
h2 (1 + k2 h2)

∥∥∥fk
∥∥∥

2

0,1
+

∣∣∣ck − chk

∣∣∣
2
)
.

Theorem 5.1 Let uk be the solution to the equation (7–8) and uk
h be its finite element

approximation given in (84). Then the following error estimate holds:
∥∥∥uk − uk

h

∥∥∥
(k)

. k2 h
∥∥∥fk

∥∥∥
0,1

(85)

5.4 Approximation of the singular functions for the modes
|k| = 0, 1.

The FE approximation of these functions has been exposed in [5, §§4.1 and 4.2]. (In
that work, the Laplacians ∆0 and ∆1 are respectively called ∆ and ∆′). We keep
this method, with the following modification. The dual singular functions associated
to the reentrant edge undergo the same inconvenience as p2

s, namely, the Laplacian of
the principal parts as defined in [5] do not belong to L2

1(ω). Hence we must enrich
them, just as we did for p2

P
, in order to preserve the convergence rate. Calculating like

in §5.1, we obtain the following decompositions:

p1
s = p1

p + p̂1, p1
p

def
= ρ−α sin(αφ)

r

a

[
1 − 3ρ

2a
cosφ′

]
, p̂1 ∈ V 1

1(ω) ; (86)

p0,e
s = p0,e

p + p̂0,e, p0,e
p

def
= ρ−α sin(αφ)

[
1 − ρ

2a
cosφ′

]
, p̂0,e ∈ H1

1(ω). (87)
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The Laplacians of the principal parts are:

ϑ1
p

def
= ∆1p

1
p =

1

a2
ρ−α

[
−9

2
sin(αφ) +

15

2
α cosφ′ sin(αφ+ φ′)

]
∈ L2

1(ω) ; (88)

ϑ0,e
p

def
= ∆0p

0,e
p =

1

a r
ρ−α

[
−1

2
sin(αφ) +

3

2
α cosφ′ sin(αφ+ φ′)

]
∈ L2

1(ω). (89)

Then we proceed like in §5.1 to obtain:
∣∣∣
∣∣∣
∣∣∣p1

s − p1;h
s

∣∣∣
∣∣∣
∣∣∣
1,1

. hα0 ,
∥∥∥p1

s − p1;h
s

∥∥∥
0,1

. h2α0 , (90)
∣∣∣p0,e

s − p0,e;h
s

∣∣∣
1,1

. hα1 ,
∥∥∥p0,e

s − p0,e;h
s

∥∥∥
0,1

. h2α1 . (91)

However, for the primal edge singular functions, the method of [5] yields the desired
convergence rate. We just recall the decompositions:

ϕk
s = ϕ̃k + δk ϕk

P
, ϕ̃k ∈ H2

1(ω) ∩H1
(k)(ω), ϕk

P
=

(r
a

)k
ρα sin(αφ), (92)

as well as the Laplacians of the principal parts:

ψk
P

def
= ∆kϕ

k
P

=
(k + 1)(k + 2)

2 ak r1−k
α ρα−1 sin [(α− 1)φ− φ0] . (93)

The line of proof already exposed in §5.2 then easily leads to the error estimates:

∣∣∣∣∣∣ϕ1
s − ϕ1;h

s

∣∣∣∣∣∣
1,1

. h and
∣∣ϕ0,e

s − ϕ0,e;h
s

∣∣
1,1

. h. (94)

Now, as far as the conical point singularities are concerned, the method appears
very similar to that of [12, §§5.1 and 5.2] since the principal parts p0,c

P
and ϕ0,c

P
have a

vanishing Laplacian ∆0. So, mutatis mutandis, we get the error estimates:
∣∣∣p0,c

s − p0,c;h
s

∣∣∣
1,1

. hα1 ,
∥∥∥p0,c

s − p0,c;h
s

∥∥∥
0,1

. h2α1 ,
∣∣∣ϕ0,c

s − ϕ0,c;h
s

∣∣∣
1,1

. h. (95)

Remark 5.1 Thanks to the asympotic expansions [1, Eq. 8.7.1] of the Legendre func-
tion, it is possible to compute the function Pν(cosφ) with an arbitrary precision. Thus,
one can compute once and for all the singularity exponent ν and the integral in (40)
with an accuracy equal to the machine precision. All this guarantees that the errors
due to the approximation of the conical singular functions will be negligible before the
FE discretisation error.

5.5 Approximation of ũk and ck, for |k| ≤ 1.

As the representation formulae (33) and (46) for the singularity coefficients of these
modes are rather standard, one can use the simple discrete versions:

ch±1 =

(
f±1| p1;h

s

)

‖p1;h
s ‖2

0,1

, ch0,j =

(
f0 | p0,j;h

s

)

‖p0,j;h
s ‖2

0,1

. (96)
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Similarly, we will approximate the regular parts ũk, |k| ≤ 1, by ũ1
h, ũ

−1
h ∈ V h

◦ , and
ũ0

h ∈ V h
⋄ such that

k = ±1 : a1

(
ũk

h, vh

)
+ chk a1

(
ϕ1,h

s , vh

)
=

(
fk | vh

)
, ∀vh ∈ V h

◦ , (97)

k = 0 : a0

(
ũ0

h, vh

)
+ ch0,e a0

(
ϕ0,e;h

s , vh

)
+ ch0,c a0

(
ϕ0,c;h

s , vh

)
=

(
f0 | vh

)
, ∀vh ∈ V h

⋄ . (98)

Of course, we have the SCM reconstruction formulae:

k = ±1 : uk
h = ũk

h + chk ϕ
1;h
s = ũk

h + chk (ϕ̃1
h + δ1hϕ

1
P
) ; (99)

k = 0 : u0
h = ũ0

h + ch0,e ϕ
0,e;h
s + ch0,c ϕ

0,c;h
s

= ũ0
h + ch0,e (ϕ̃0,e

h + δ0,e
h ϕ0,e

P
) + ch0,c (ϕ̃0,c

h + δ0,c
h ϕ0,c

P
). (100)

The results of §5.4 then allow to conclude that:

k = ±1 :
∣∣∣ck − chk

∣∣∣ . h
∥∥∥fk

∥∥∥
0,1
,

∣∣∣∣∣∣ũk − ũk
h

∣∣∣∣∣∣
1,1

. h
∥∥∥fk

∥∥∥
0,1
,

∣∣∣∣∣∣uk − uk
h

∣∣∣∣∣∣
1,1

. h
∥∥∥fk

∥∥∥
0,1

; (101)

k = 0 :
∣∣∣ch0,j − c0,j

∣∣∣ . h
∥∥f0

∥∥
0,1
,

∣∣ũ0 − ũ0
h

∣∣
1,1

. h
∥∥f0

∥∥
0,1
,

∣∣u0 − u0
h

∣∣
1,1

. h
∥∥f0

∥∥
0,1
. (102)

6 Fourier Singular Complement Method

Let u be the solution to the 3D problem (2), and uk its Fourier coefficients. From
the previous Sections, we know that uk(r, z) solves the 2D problem (9), the weak
formulation of the elliptic problem (7–8). And, according to the mode k, one can
decompose uk as (17), (32) or (45).

The result of Heinrich [15, Thm 5.2] can be straightforwardly extended to our
domain with a sharp vertex.

Theorem 6.1 Let f ∈ h2(Ω), and u ∈
◦
H1(Ω) be the solution to (2). Then:

u(r, θ, z) = ũ(r, θ, z) + γ(θ)ϕ2
s(r, z) + cc0 ϕ

0,c
s (r, z), (103)

with: ũ ∈ H2(Ω) ∩
◦
H1(Ω), and γ ∈ H2(S1) is given by the formula:

γ(θ) =
δ0,e

δ2
ce0 +

δ1

δ2

∑

k=±1

ck eikθ +
∑

|k|≥2

ck eikθ.

Like in the prismatic case (cf. [12], Remark 6.1), the hypothesis f ∈ h2(Ω) is crucial:
the lack of its satisfaction would prevent the convergence of γ in a regular enough
space, and hence that of the singular part of the solution in the natural space.
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We define the Fourier–SCM (FSCM) solution to (2) as follows:

u
[N ]
h =

N∑

k=−N

uk
h(r, z) eikθ,

where uk
h is the SCM solution to (9) algorithmically defined in §5. The main result on

this method is the following

Theorem 6.2 Assume f ∈ h2(Ω). Then the following error estimate holds:

∣∣∣u− u
[N ]
h

∣∣∣
H1(Ω)

. (h+N−1)
{∥∥∥f

∥∥∥
L2(Ω)

+
∥∥∥
∂2f

∂θ2

∥∥∥
L2(Ω)

}
.

Proof: Using the definition of u
[N ]
h and (6) we have

∣∣∣u− u
[N ]
h

∣∣∣
2

H1(Ω)
=

∑

|k|≤N

∥∥∥uk − uk
h

∥∥∥
2

(k)
+

∑

|k|>N

∥∥∥uk
∥∥∥

2

(k)

def
= E1 + E2.

Using (19), we estimate E2 as:

E2 ≤ N−2
∑

|k|>N

k2

(∣∣∣uk
∣∣∣
2

1,1
+ k2

∥∥∥uk
∥∥∥

2

0,−1

)
. N−2

∑

|k|>N

∥∥∥fk
∥∥∥

2

0,1
≤ N−2 ‖f‖2

L2(Ω) .

As for E1, we cut it into three parts, corresponding to k = 0, |k| = 1, and 2 ≤ |k| ≤ N ,
which we bound respectively by (102) and (101) and (85):

E1 . h2
∥∥f0

∥∥2

0,1
+ h2

(∥∥f1
∥∥2

0,1
+

∥∥f−1
∥∥2

0,1

)
+ h2

∑

2≤|k|≤N

k4
∥∥∥fk

∥∥∥
2

0,1

. h2

{
‖f‖L2(Ω) +

∥∥∥∥
∂2f

∂θ2

∥∥∥∥
L2(Ω)

}
,

where we have used Lemma 2.2 to bound the sum. Hence the result. ⋄

7 Conclusion

In this paper, we have proven that the FSCM for the Poisson equation achieves the
optimal convergence rate for P1 finite elements and a datum of L2-style regularity in
the meridian directions. The same result also holds for the discretization of the Poisson
problem with a homogeneous Neumann boundary condition, or with non-homogeneous
boundary conditions, provided there exist sufficiently smooth liftings.

This result closely parallels that of the companion paper [12]. The specificities of
the axisymmetric geometry (namely, that the 2D problems are set in weighted Sobolev
spaces, which moreover vary for the low-order Fourier modes before stabilising, and
involve differential operators with non-constant coefficients) only cause technical dif-
ficulties. As far as the presence of conical vertices is concerned, its effect is no more
than a finite-dimensional perturbation. Furthermore, it is no difficulty to consider the
case of an axisymmetric domain Ω with several reentrant edges (i.e. ω with several
off-axis reentrant corners) and/or several sharp vertices.
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As already mentioned, this paper is the second part of a three-part article [12, 13].
In [13], the FSCM is analysed from a numerical point of view (complexity, implemen-
tation issues, numerical experiments, etc.), and it is compared to other methods—in
the axisymmetric case, to anisotropic mesh refinement techniques.

One can apply the same theoretical and numerical techniques to the fully axisym-
metric heat or wave equations, with any L2-smooth (in space) right-hand side. For
these PDEs, the singular functions ps and ϕs do not depend on the time-step.
Finally, the results, can also be viewed as the first effort towards the discretization
of electromagnetic fields in axisymmetric domains, with continuous numerical approx-
imations, the importance of which is well-known, cf. [2]. As a matter of fact, the
SCM developed in [3, 4, 5] for fully axisymmetric electromagnetic computations can
be generalized to arbitrary data, with the help of the results obtained here.
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